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ABSTRACT: In this paper, the molecular design of the first
deep-lowest unoccupied molecular orbital (LUMO) level
diimide π-electron core, benzo[c]thiophene diimide (BTDI),
as a novel n-type organic semiconductor was determined. An
original synthetic sequence was devised to obtain the target
cyclohexyl-BTDI (Cy6-BTDI) derivative. Cy6-BTDI demon-
strated completely reversible reduction waves and a stable
radical anionic state. Favorable brickwork molecular assembly
and two-dimensional charge transport properties of Cy6-BTDI
were exhibited in the solid state. As a result, air-stable electron mobilities were obtained from the BTDI organic field-effect
transistors under ambient conditions.

Organic field-effect transistors (OFETs) are promising
candidates for lightweight, low-cost, and flexible

electronics,1 such as sensors2 and radio frequency identifier
(RF-ID) tags.3 To achieve these high-performance electronic
devices with organic materials, both hole-transporting (p-type)
and electron-transporting (n-type) components are required to
construct bipolar transistors and complementary logic circuits.4

To date, a large number of p-type organic semiconductors have
been reported such as [1]benzothieno[3,2-b][1]-benzothio-
phene (BTBT),5 dinaphtho[2,3-b:2′,3′-f ]thieno[3,2-b]-
thiophene (DNTT),6 dinaphtho[2,3-b:2′,3′-d]thiophene
(DNT−V),7 dinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′] di-
thiophene (DNBDT),8 and chryseno[2,1-b:8,7-b′]dithiophene
(ChDT)9 with charge-carrier mobility (μ) values higher than
10 cm2 V−1 s−1, which are promising for sensor and RF-ID tag
applications. However, contemporary n-type organic semi-
conductors, on the other hand, suffer from low-performance
and instability drawbacks due to oxidation of charge carriers by
ambient oxidants such as O2 and H2O upon charge
injections.10−12 As a general design principle suggested by
numerous studies, lowering the lowest unoccupied molecular
orbital (LUMO) energy level below −4.0 eV protects the n-
type organic semiconductors against detrimental oxidation in
the charge-carrying states.13

To date, a large number of electron-deficient molecules have
been synthesized to obtain low-lying LUMO energy levels
required for air-stable n-channel OFET performances,14 and a

significant portion of the molecular designs so far has been
based on naphthalene diimide (NDI)15 (Figure 1a) and
perylene diimide (PDI)16 π-cores for their relatively low
LUMO levels (ca. −3.80 eV). However, the parent NDI and
PDI π-cores cannot achieve air-stable OFET operations, and
chemical modifications such as incorporations of highly
electron-withdrawing substituents17 and lateral expansion of
the rylene framework18 are required to obtain LUMO energy
levels below −4.0 eV. However, the total number of distinct π-
cores remains limited, which impedes the overall development
of the urgently demanded n-channel OFETs.
Herein, we report the first deep-LUMO level diimide π-core,

benzo[c]thiophene diimide (BTDI) (Figure 1a), as an air-
stable n-type organic semiconductor without the requirement
of any chemical modifications. In contrast to naphthalene
(ELUMO = −1.33 eV), which is the main π-conjugated moiety
of NDI, the quinoidal-like benzo[c]thiophene possesses a
respectably deeper LUMO energy level (−1.67 eV). Thus, the
relatively deep LUMO energy level of benzo[c]thiophene can
be potentially harnessed to design deep-LUMO level n-type
organic semiconductors for air-stable OFETs. Albeit having
seemingly intriguing optoelectronic properties, benzo[c]-
thiophene has been reported to be unstable and tends to
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self-polymerize in air due to its highly reactive 1,3-positions,
which makes it challenging to study its structure for functional
materials purposes.19 However, by fusing benzo[c]thiophene
with the electron-deficient imide groups, we stabilize the highly
reactive 1,3-positions, making BTDI a stable compound under
ambient conditions. Furthermore, our initial density functional
theory (DFT) calculation shows a LUMO level of −4.17 eV
for BTDI (Figure 1b), which renders air-stable n-channel
OFET operations as a π-core without the installation of any
substituents. Large LUMO coefficients are observed on the
benzo[c]thiophene sulfur (Figure 1a), which suggests the

protruding sulfur is likely to participate in intermolecular
orbital overlap for electron transports. Thus, our current BTDI
design features aim to (1) develop a brand-new deep-LUMO
π-core via ring-fusion between benzo[c]thiophene and imide
moieties and obtain air-stable n-channel OFET operations, (2)
achieve effective intermolecular orbital overlaps in the solid-
state and high electron mobility, and (3) obtain highly soluble
semiconducting materials through the large dipole moment of
benzo[c]thiophene (1.38 debye).
The synthetic route to Cy6-BTDI is illustrated in Scheme 1.

Compound 1 was prepared according to the previously
reported procedure in good yield. As previously mentioned,
the unsubstituted benzo[c]thiophene is highly reactive and
prone to self-polymerization. Thus, compound 2 was generated
in situ by the strong reducing agent lithium bis(trimethylsilyl)-
amide (LiHMDS) under argon, and its formation was
determined by 1H NMR. Intermediate 2 was lithiated in the
1,3-positions, and it is worth mentioning that the regiose-
lectivity of lithiation could be significantly improved by the
addition of tetramethylethylenediamine (TMEDA). The
dilithiated benzo[c]thiophene was then trapped by dimethyl-
carbamoyl chloride to yield the diamide compound 3 in 42%
yield. By installing the electron-withdrawing amides at the 1,3-
positions of benzo[c]thiophene, 3 exists as a perfectly stable
compound. Regioselective bromination performed by dibro-
moisocyanuric acid in concentrated H2SO4 gave 4,7-
dibromobenzo[c]thiophene 4 in 83% yield. Manabe and co-
workers previously reported the use of trichlorophenyl formate
to serve as a highly reactive CO surrogate in Heck reactions.20

The electron-deficient formate can later be readily hydrolyzed
under basic conditions. Hence, we adopted this method and
converted the dibromo compound 4 to afford compound 5 via
a Pd-catalyzed cross-coupling reaction using palladium acetate
and Xantphos. A subsequent hydrolysis was done using an
aqueous solution of NaOH to hydrolyze both the amide and
formate groups to give the tetracarboxylic acid 6, followed by a
condensation reaction in acetic anhydride to furnish the key
precursor 7 in an excellent 90% yield.
We intend to compare our BTDI properties and device

performance with the well-studied N,N′-biscyclohexylnaph-
thalene diimide (Cy6-NDI). Since compound 7 adopts a

Figure 1. (a) Molecular structure of BTDI (left), the LUMO
coefficients of BTDI (middle), and the structure of NDI (right) and
(b) molecular orbital energy levels of benzo[c]thiophene, BTDI,
NDI, and naphthalene.

Scheme 1. Synthetic Route toward BTDI
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slightly distorted geometry due to the five-membered
thiophene moiety, common imidization methods for six-
membered imides only lead to the ring-opened amide
intermediate. Thus, we attempted the synthesis of Cy6-BTDI
in a stepwise fashion by first treating the anhydride 7 with
cyclohexylamine and using acetic anhydride/pyridine to
catalyze the ring-closing step in one pot. The imidization
was successfully completed using this method and furnished
Cy6-BTDI in 64% yield at room temperature as a bright yellow
solid. Cy6-BTDI demonstrated superior solubility in common
organic solvents such as toluene and anisole compared to the
Cy6-NDI counterpart due to the large internal dipole moment
of the benzo[c]thiophene moiety (Table S2). The high
solubility of BTDI allows for purification with column
chromatography and solution-processable OFET fabrications.
Large platelet-shaped single-crystals of Cy6-BTDI were

obtained by physical vapor transport (PVT). The BTDI π-
core appears to be planar. However, the five-membered
thiophene moiety causes the π-core to slightly bend toward the
sulfur atom at an angle of 3.8°. Using the molecular geometry
obtained from the single-crystal X-ray diffraction, we calculated
the nucleus-independent chemical shifts (NICS)21 values of
the BTDI π-core (Figure 2a). The benzene and thiophene
moieties of BTDI exhibit NICS values of −6.6 and −14.2,
respectively, which are consistent with those of the DFT-
optimized BTDI structure and lower than those of the parent
benzo[c]thiophene. Cy6-BTDI adopts a brickwork packing
motif where the molecules are stacked antiparallel to the b-axis,
and each plane is tilted to the a-axis so the distances to the
upper and lower stacked molecules along the b-axis are
different (Figure 2b). Similar to the reported single-crystal
structure of Cy6-NDI,

22 adjacent BTDI molecules are held by
C−H···O interactions, but with a shorter distance of 2.519 Å.
Mean plane intermolecular distances of Cy6-BTDI were
measured to be 3.801, 3.762, and 3.838 Å. Transfer integral
(t) values of the LUMO are calculated at the PBEPBE/6-
31G(d) level of theory. Cy6-BTDI exhibits t value of +14.6
meV in the lateral direction, and large negative t values of
−71.1, −39.0, and −99.3 meV in the vertical directions (Figure
2c). From our effective mass calculations at the PBEPBE/6-
31G(d) level, Cy6-BTDI shows a two-dimensional anisotropic
charge transport behavior in the a and b axes with effective
masses of ma = 2.83 and mb = 4.64.
In contrast to the previously reported Cy6-NDI, Cy6-BTDI

showed a pronounced reduction in the optical HOMO−
LUMO energy gap attributed to the quinoidal characteristic of
the benzo[c]thiophene core.23 Cy6-BTDI exhibits a λmax at 460

nm in CHCl3, which is dramatically red-shifted with respect to
Cy6-NDI (382 nm) (Figure 3a). From the absorption onset,

the optical energy gap of Cy6-BTDI was calculated to be 2.58
eV. Cy6-BTDI demonstrates its chemical stability under
ambient conditions as its solution-state time-dependent UV−
vis absorption spectra remain unchanged over 30 days (Figure
3b). In addition, Cy6-BTDI appears to be emissive in the
solution state with a λem at 467 nm, as opposed to the
nonemissive NDI (Figure S13). Cy6-BTDI exhibits two fully
reversible reduction waves in cyclic voltammetry (CV)
experiments with the first half-width reduction potential E1/2
at −0.79 V, which corresponds to a LUMO energy level of
−4.01 eV (Figure 4). Compared to the electrochemical LUMO
energy level of Cy6-NDI (−3.69 eV), Cy6-BTDI shows the
potential for achieving air-stable electron mobility in OFETs.
Thermogravimetry-differential thermal analysis (TG-DTA)
experiment reveals the thermal stability of Cy6-BTDI with its

Figure 2. (a) NICS values of benzo[c]thiophene and Cy6-BTDI in ppm, (b) molecular packing structure of Cy6-BTDI along the a-axis, and (c)
mean-plane intermolecular distances and transfer integrals of the LUMO; alkyl chains are omitted for clarity.

Figure 3. (a) UV−vis absorption spectra of Cy6-NDI and Cy6-BTDI
and (b) time-dependent UV−vis of Cy6-BTDI in CHCl3.

Figure 4. Cyclic voltammograms of Cy6-NDI (0.1 mM) and Cy6-
BTDI (0.5 mM) in benzonitrile with 0.1 M of NBu4PF6 at a scan rate
of 100 mV s−1.
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5% weight loss temperature (T95) at 296 °C, and it exhibits an
endothermic phase transition peak higher than its T95 value at
336 °C (Figure S14). We observed no apparent phase
transitions from 20 °C to 260 °C for Cy6-BTDI in the
differential scanning calorimetry (DSC) measurement (Figure
S15). The excellent thermal stability of Cy6-BTDI ensures its
consistent crystalline structures during the high-temperature
device fabrication processes.
To evaluate the intrinsic charge-carrier properties of BTDI,

we fabricated bottom-gate/top-contact OFETs with PVT-
grown Cy6-BTDI single crystals as the active semiconductor
layer (Figure 5a). The crystals were carefully picked up and
laminated via electrostatic adhesion on the olefin layer above
the SiO2/Si substrate with gold as the source and drain
electrodes. Cy6-BTDI single-crystal OFETs exhibit negligible
hysteresis between the forward and reverse sweeps and
constant threshold voltages in the transfer characteristic curves
(Figure 5b), which demonstrate reproducible n-channel OFET
operations. Cy6-BTDI transistors achieved an air-stable
electron mobility of μe = 0.16 cm2 V−1 s−1 in the saturation
regime, and the OFET performances remained consistent over
1 week of exposure in air. We examined the X-ray diffraction
patterns of the semiconductor layer in Cy6-BTDI-based OFET
and found the channel direction corresponded to neither the
a* nor b* charge-transporting axis. In fact, the OFET channel
is in either the +2a* + b* or −2a* + b* direction, which
resulted in low electron mobility. Other essential OFET
parameters, device stability data, as well as solution-processed
Cy6-BTDI OFET results via the edge-casting method24 are
summarized in Tables S3 and S4.
Cy6-BTDI OFETs demonstrated superior stability under

ambient conditions compared to Cy6-NDI,
22,25 which suggests

BTDI may be a promising π-core for future development of
air-stable n-type semiconductors. It is noteworthy that the
maximum drain current ([|ID|

1/2]2 = 2.56 μA) in the transfer
characteristic of the Cy6-BTDI OFET is consistent with that of
the output characteristic (Figure 5c), which indicates Cy6-
BTDI n-channel OFETs are insensitive toward bias-stress from
charge trapping in transistor channels and confirms no
overestimation of the electron mobility.26,27

In summary, a novel air-stable electron-deficient BTDI π-
core is reported in the current work, and we have developed an
original synthetic route toward possible BTDI derivatives.
Compared to the well-studied NDI core, BTDI has shown
remarkable improvements in photophysical and electronic
properties. The X-ray single-crystal packing structure of BTDI
reveals strong intermolecular interactions as well as effective
orbital overlaps. Thermal studies also suggest Cy6-BTDI
derivative possesses high thermal stability and stabilized crystal

phase. Air-stable single-crystal n-channel OFETs of Cy6-BTDI
have been fabricated using lamination and edge-casting
methods, and the highest electron mobility of 0.16 cm2 V−1

s−1 is achieved. From our preliminary results herein, BTDI is a
promising π-core for air-stable n-channel OFETs. Prospective
studies involving BTDI such as tuning of electronic structures
and packing structures via chemical modifications and side-
chain engineering are anticipated. Optimizations of device
architecture and fabrications are likewise expected to further
improve the semiconductor performance of the BTDI π-core.
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Figure 5. (a) Schematic diagram of the Cy6-BTDI single-crystal OFET architecture, (b) transfer characteristic of Cy6-BTDI single-crystal OFET at
VD = 40 V, and (c) output characteristic of Cy6-BTDI single-crystal OFET.
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Fluorinated Naphtha- lene Diimides: Synthesis, Characterization, and
Application in n-Type Organic Field-Effect Transistors. Org. Lett.
2016, 18, 456−459. (c) He, T.; Stolte, M.; Würthner, F. Air-Stable n-
Channel Organic Single Crystal Field- Effect Transistors Based on
Microribbons of Core-Chlorinated Naphtha- lene Diimide. Adv.
Mater. 2013, 25, 6951−6955. (d) Oh, J. H.; Suraru, S.-L.; Lee, W. Y.;
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