# Asymmetric Synthesis of 2-Substituted Hexahydroquinolin-4-ones Using a Pd-Catalyzed Asymmetric Allylic Amination and Intramolecular Mannich Reaction: Catalytic Asymmetric Synthesis of 2-*epi-cis*-195A

Kazumi Kakugawa, Tetsuhiro Nemoto, Yuta Kohno, Yasumasa Hamada\*

Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, 263-8522, Japan Fax +81(43)2902987; E-mail: hamada@p.chiba-u.ac.jp

Received 12 May 2011; revised 5 June 2011

**Abstract:** A novel method of the enantioselective synthesis of 2-substituted hexahydroquinolin-4-ones is described. The method relies on a Pd-catalyzed asymmetric allylic amination using a chiral diaminophosphine oxide (DIAPHOX) preligand and diastereose-lective intramolecular Mannich reaction. The developed synthetic method could be applied to the catalytic asymmetric synthesis of (+)-2-*epi-cis*-195A.

**Key word:** asymmetric allylic amination, asymmetric synthesis, chiral diaminophosphine oxide, decahydroquinoline alkaloid, in-tramolecular Mannich reaction, palladium

Decahydroquinoline ring systems are ubiquitous structural motifs in various biologically active compounds. Since the first isolation of a representative decahydroquinoline alkaloid cis-195A (pumiliotoxin C) from skin extracts of the Panamanian frog *dendrobatus pumilio*,<sup>1</sup> approximately 50 decahydroquinoline alkaloids have been isolated from dendrobatide and mantelline frogs,<sup>2</sup> bufonid toads,<sup>3</sup> tunicates,<sup>4</sup> marine flatworms,<sup>5</sup> and myrmicine ants.<sup>6</sup> Decahydroquinoline alkaloids generally possess a cis- or trans-fused azabicyclic structure with a side-chain substituent at both the C-2 and C-5 positions (Figure 1). These alkaloids, however, cannot be obtained from their natural sources in sufficient quantities for NMR analysis and X-ray crystal structure analysis. Therefore, the structure and stereochemistry of many decahydroquinoline alkaloids have been only tentatively assigned based on MS and IR spectra.<sup>7</sup> Some decahydroquinoline alkaloids exhibit neurological activity as reversible antagonists of the nicotinic acetylcholine receptor channel.<sup>8</sup> An inhibitory effect against sodium and potassium transport has been also reported.9 These profiles make this class of compounds an attractive target in the field of pharmaceutical chemistry.

Due to the structural diversity and interesting biological activities of decahydroquinoline alkaloids, extensive efforts have been directed towards the synthesis of these alkaloids and their structurally related heterocyclic compounds. Total synthesis of *cis*-195A has been most intensively studied since the 1980s. In addition to racemate syntheses,<sup>10</sup> several enantioselective total syntheses have

SYNTHESIS 2011, No. 16, pp 2540–2548 Advanced online publication: 14.07.2011 DOI: 10.1055/s-0030-1260102; Art ID: E50111SS © Georg Thieme Verlag Stuttgart · New York been achieved using chiral auxiliaries<sup>11</sup> or a catalytic asymmetric synthesis.<sup>12</sup> Natural or unnatural epimers of *cis*-195A such as *trans*-195A,<sup>13a,b</sup> 4a-*epi*-Pmiliotoxin C,<sup>13c</sup> 2-*epi-cis*-195A,<sup>11a,d,13d</sup> are also attractive targets for synthetic organic chemists (Figure 1). Asymmetric total syntheses of *trans*-219A<sup>14</sup> and gephyrotoxin<sup>15</sup> have been accomplished. General strategies for constructing the 2,5-disubstituted decahydroquinoline skeleton bearing four asymmetric carbon centers in an enantioselective manner would allow access to various decahydroquinoline alkaloids for unequivocal determination of their ambiguous molecular structure. Furthermore, new synthetic entries to functionalized hydroquinolines can be applied to the synthesis of other natural products with a 1-azabicyclo[3.3.0] skeleton and pharmacologically interesting heterocycles.<sup>16,17</sup>



Figure 1 Representative decahydroquinoline alkaloids

An efficient method of introducing an amine unit to sixmembered-ring carbon skeletons in an enantioselective manner can be a powerful tool for the asymmetric synthesis of decahydroquinoline alkaloids. Since the first report in 2004,<sup>18</sup> we have intensively studied transition-metalcatalyzed asymmetric allylic substitution using aspartic acid-derived P-chiral *dia*minophosphine oxides: DIA-PHOXs.<sup>19</sup> These pentavalent phosphorus compounds, preligands, are activated in situ by N,O-bis(trimethylsilyl)acetamide (BSA)-induced tautomerization to afford trivalent phosphorus compounds that function as the actual ligands. The DIAPHOX preligands are effective for Pdcatalyzed asymmetric allylic substitution of cyclic allylic carbonates with various amine nucleophiles.<sup>20</sup> As shown in Scheme 1, asymmetric allylic amination of an esterconjugated cyclohexenyl carbonate using benzylamine as a nucleophile gave the corresponding chiral amine in excellent yield with high enantiomeric purity. The suitably functionalized structure of the reaction product led us to investigate catalytic asymmetric synthesis of 2,5-disubstituted decahydroquinolines. Herein, we describe a new method of synthesizing 2-substituted hexahydroquinolin-4-ones as optically active compounds through a Pd-catalyzed asymmetric allylic amination and diastereoselective intramolecular Mannich reaction sequence, which can be successfully applied to the catalytic asymmetric synthesis of (+)-2-epi-cis-195A.



Scheme 1 Pd-catalyzed asymmetric allylic amination using chiral diaminophosphine oxide preligand  $(S, R_p)$ -1

The synthetic plan for enantioselective synthesis of 2,5disubstituted decahydroquinolines is shown in Scheme 2. Retrosynthetically, 2,5-disubstituted azabicyclic ketone **2** 

# **Biographical Sketches**



**Kazumi Kakugawa** was born in Chiba, Japan, in 1984. He received his B.S. (2008) and M.S. (2010) degrees from Chiba University under the direction of Prof. Yasumasa Hamada. He is currently a Ph.D. course student in Prof. Hamada's group. His current research interests include the development of novel methods for the synthesis of heterocyclic compounds.



**Tetsuhiro Nemoto** was born in Chiba, Japan, in 1976. He received his B.S. (1999), M.S. (2001), and Ph.D. (2005) degrees from the University of Tokyo under the direction of Prof. Masakatsu Shibasaki. In 2002, he also worked as a JSPS Research Fellow. In

**Yuta Kohno** was born in Chiba, Japan, in 1985. He received his B.S. degree (2010) from Chiba Univer2003, he started his academic career as an assistant professor in Prof. Yasumasa Hamada's group at Chiba University. He has received the Banyu Award in Synthetic Organic Chemistry (2004), Inoue Research Award for Young Scientists (2005), Daiichi-Sankyo

sity under the direction of Prof. Yasumasa Hamada. After spending one year as a graduate student in Prof. Award in Synthetic Organic Chemistry (2007), the Pharmaceutical Society of Japan Award for Young Scientists (2008), and the Thieme Chemistry Journal Award (2011). His current research interests include asymmetric catalysis and synthetic organic chemistry.

Hamada's group, he started working in the analytical department of Tokyo metropolitan.



Yasumasa Hamada is Professor of Pharmaceutical Chemistry at Chiba University. He was born in Hokkaido in 1949 and received his B.S. degree (1973) from Toyama University and M.S. degree (1975) from the University of Tokyo. In 1977, he joined Nagoya City University as an assistant professor. After obtaining his Ph.D. in 1982 and one year postdoctoral work with Prof. E. J. Corey at Harvard University in 1985, he was promoted to associate professor at Nagoya City University in 1988. In 1995, he moved to Chiba University to take up his present position. He received the Pharmaceutical Society of Japan Award for Young Scientists in 1990 and the Pharmaceutical Society of Japan Award in 2011. His research interests include the development of new methods and reagents for use in organic synthesis and total synthesis of biologically active natural products.

Synthesis 2011, No. 16, 2540–2548 © Thieme Stuttgart · New York

would be a reasonable precursor of the target decahydroquinolines, which, in turn, would be obtained from **3** via diastereoselective conjugate addition and protonation. There is a  $\beta$ -amino ketone motif in the  $\alpha$ , $\beta$ -unsaturated ketone **3**. Therefore, we envisioned that an intramolecular Mannich reaction using  $\delta$ -amino  $\beta$ -keto ester **5** and aldehyde **6**, followed by a decarboxylation reaction of **4**, would be applicable to construct the azabicyclic core in **3**. Finally, compound **7**, a promising precursor of **5**, can be prepared via asymmetric allylic amination of **8** with a flexibly deprotectable amine such as 4-methoxybenzylamine using the Pd-DIAPHOX catalyst system.



Scheme 2 Retrosynthetic plan for 2,5-disubstituted decahydroquinolines

Considering the structure of compound **4**, the stereochemistry at the C-2 position is expected to epimerize through the retro-aza-Michael reaction (Scheme 3). The molecular energy calculation (M06-2X/6-31G\*\*) of model compounds **4a** and **4b** revealed that **4b** is 2.42 kcal/mol more stable than **4a**, indicating that thermodynamically stable **4b**-type adducts would be obtained as the major product.<sup>21</sup>



Scheme 3 Thermodynamic stability of azabicyclic adducts

Our synthesis began with the preparation of optically active δ-amino β-keto esters through an asymmetric allylic amination using the Pd-DIAPHOX catalyst system (Scheme 4). Using 0.05 mol% of  $[\eta^3-C_3H_5PdCl]_2$ , 0.2 mol% of  $(S,R_p)$ -1, and BSA, asymmetric allylic amination of **8** with 4-methoxybenzylamine proceeded at -35 °C, providing the corresponding product (*S*)-**9**<sup>20b</sup> in 99% yield with 95% ee. After protection of the secondary amine with a *tert*-butoxycarbonyl (Boc) group (88% yield),  $\alpha$ , $\beta$ -un-

Synthesis 2011, No. 16, 2540–2548  $\,$   $\,$   $\,$   $\,$   $\,$  Thieme Stuttgart  $\cdot$  New York  $\,$ 

saturated ester **10** was converted into the corresponding  $\alpha,\beta$ -unsaturated aldehyde **11** by a two-step process involving diisobutylaluminum hydride (DIBAL-H) reduction, followed by oxidation with Dess–Martin periodinane (DMP) (88% yield, 2 steps). Subsequent aldol reaction of **11** with lithium ester enolates proceeded smoothly at –78 °C, affording the corresponding adducts **12a** and **12b** in over 90% yield. Finally, Dess–Martin oxidation of the alcohol provided  $\delta$ -amino  $\beta$ -keto esters **13a** and **13b** in 79% and 97% yield, respectively.



Scheme 4 Preparation of  $\delta$ -amino  $\beta$ -keto esters using Pd-catalyzed asymmetric allylic amination

With the substrates in hand, the construction of the azabicyclic skeleton through the diastereoselective intramolecular Mannich reaction (Table 1) was next examined. After removal of the Boc group of 13a under acidic conditions, the resulting amine trifluoroacetate salt was reacted with *n*-butyraldehyde in the presence of sodium bicarbonate and 3 Å molecular sieves (MS) at room temperature. After 48 hours, the desired azabicyclic compound 15aa was obtained in 79% yield with a 98:2 diastereomeric ratio (Table 1, entry 1). The same reaction using allyl estertype substrate 13b also gave 15ba in 98% yield as a nearly diastereomerically pure compound (entry 2). On the other hand, when this reaction was quenched after four hours, a diastereomeric product mixture was obtained in 52% yield with a ca. 2:1 ratio, clearly indicating that the product ratio of this cyclization process was thermodynamically controlled (entry 3). Intramolecular Mannich reactions with some other aldehydes were also examined using 13b under the same reaction conditions. Primary aldehydes, an  $\alpha$ -branched primary aldehyde, an aromatic aldehyde, and an  $\alpha$ ,  $\beta$ -unsaturated aldehyde could be utilized for this process, giving the corresponding products in moderate to high yield with excellent diastereoselectivity (entries 4-9). NOE experiments revealed that the stereochemistry of **15bb** was 2*S*,8a*S*, consistent with the computational prediction shown in Scheme  $3^{22}$ 

| Table 1 | Diastereoselective | Intramolecular | Mannich | Reaction |
|---------|--------------------|----------------|---------|----------|
|         |                    |                |         |          |

| H.    | O O O O O O O O O O O O O O O O O O O | 1) TFA-CH <sub>2</sub> (<br>Et <sub>3</sub> SiH (10 ec<br>2) R <sup>2</sup> -CHO 1<br>NaHCO <sub>3</sub> , MS<br>CH <sub>2</sub> Cl <sub>2</sub> -MeC<br>a: R <sup>2</sup> = $n$ -Pr, -<br>c: R <sup>2</sup> = PhCH<br>d: R <sup>2</sup> = CH=C<br>e: R <sup>2</sup> = <i>i</i> -Pr, 1<br>g: R <sup>2</sup> = trans- | Cl <sub>2</sub> (1:1)<br>quiv), r.t., 30  <br>4a-g (3 equiv<br>3 3 Å<br>)H (5:1), r.t., 4<br>14b: R <sup>2</sup> = Me<br><sub>2</sub> CH <sub>2</sub><br>C(CH <sub>2</sub> ) <sub>3</sub><br>4f: R <sup>2</sup> = Ph<br>Me(CH <sub>2</sub> ) <sub>2</sub> CH | $ \begin{array}{c} \text{min} \\ \downarrow \\ 48 \text{ h} \\ \hline H \\ \text{H} \\$ | OH O<br>OR <sup>1</sup><br>Ar<br><b>15</b><br>-MeOC <sub>6</sub> H <sub>4</sub> ) |
|-------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Entry | Substrate                             | Aldehyde                                                                                                                                                                                                                                                                                                             | Product                                                                                                                                                                                                                                                      | Yield (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>a</sup> dr                                                                   |
| 1     | 1 <b>3</b> a                          | 14a                                                                                                                                                                                                                                                                                                                  | 15aa                                                                                                                                                                                                                                                         | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98:2                                                                              |
| 2     | 13b                                   | 14a                                                                                                                                                                                                                                                                                                                  | 15ba                                                                                                                                                                                                                                                         | 98 (87) <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | >99:1                                                                             |
| 3°    | 13b                                   | 14a                                                                                                                                                                                                                                                                                                                  | 15ba                                                                                                                                                                                                                                                         | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67:33                                                                             |
| 4     | 13b                                   | 14b                                                                                                                                                                                                                                                                                                                  | 15bb                                                                                                                                                                                                                                                         | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >99:1                                                                             |
| 5     | 13b                                   | 14c                                                                                                                                                                                                                                                                                                                  | 15bc                                                                                                                                                                                                                                                         | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >99:1                                                                             |
| 6     | 13b                                   | 14d                                                                                                                                                                                                                                                                                                                  | 15bd                                                                                                                                                                                                                                                         | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >99:1                                                                             |
| 7     | 13b                                   | 14e                                                                                                                                                                                                                                                                                                                  | 15be                                                                                                                                                                                                                                                         | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 94:6                                                                              |
| 8     | 13b                                   | 14f                                                                                                                                                                                                                                                                                                                  | 15bf                                                                                                                                                                                                                                                         | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 98:2                                                                              |
| 9     | 13b                                   | 14g                                                                                                                                                                                                                                                                                                                  | 15bg                                                                                                                                                                                                                                                         | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97:3                                                                              |

<sup>a</sup> Yield of diastereomeric mixture.

<sup>b</sup> Isolated yield for the reaction on a 15.2 g scale.

<sup>c</sup> Reaction was quenched in 4 h.



Scheme 5 Decarboxylation of 15ba

We next performed decarboxylation of the reaction products. Allyl esters are easily transformed to the corresponding carboxylate in the presence of Pd catalyst and amine nucleophiles. In practice, a deallylation reaction of **15ba**  $(95\% \text{ ee})^{23}$  proceeded smoothly using 1 mol% of Pd(PPh<sub>3</sub>)<sub>4</sub> and 10 equivalents of morpholine in THF at room temperature. After the starting material was consumed, 1 M aqueous HCl was added subsequently to the reaction mixture to give 2-propylhexahydroquinoline-4one (+)-**16a** (95% ee)<sup>23</sup> in 82% yield (Scheme 5).

Having established the synthetic route to enantiomerically enriched 2-propylhexahydroquinolin-4-one 16a, our attention was focused next on the enantioselective synthesis of 2-epi-cis-195A (Scheme 6). As shown in Scheme 1, the stereochemistry at the C-8a position of cis-195A is R. Therefore, (2R,8aR)-(-)-16a with 95% ee was first prepared using the developed method, where DIAPHOX preligand  $(R,S_{\rm P})$ -1 derived from (R)-D-aspartic acid was utilized in the Pd-catalyzed asymmetric allylic amination step. Conjugate addition of an organocopper reagent prepared from CuCN and methyllithium (CuCN/MeLi = 1:2) to (-)-16a, followed by entrapment of the copper enolate 17 with N-(5-chloro-2-pyridyl)bis(trifluoromethansulfonimide) (18),<sup>24</sup> afforded triflate 19 in 54% yield as a single diastereomer. When the copper enolate 17 was quenched with tert-butanol as a proton source, diastereomeric mixtures 20 and 21 were obtained in 40% and 56%, respectively. Relative configurations of 20 and 21, determined by NOE experiments,<sup>22</sup> revealed that the conjugate addition predominantly occurred from the stereoelectronically preferred  $\beta$ -axial direction of (–)-16a (*Re*-face attack).<sup>22,25</sup>

Compound **19** can be directly transformed to 2-*epi-cis*-195A by treating with hydrogen in the presence of a transition-metal catalyst through a series of reactions involving the reductive removal of triflate, diastereoselective hydrogenation, and the removal of a 4-methoxybenzyl group. The reductive removal of triflate was, however, very sluggish under several reaction conditions [Pd/C, H<sub>2</sub>, MeOH; Pd(OH)<sub>2</sub>/C, H<sub>2</sub>, MeOH–2 M HCl–MeOH; Pd(OH)<sub>2</sub>/C, H<sub>2</sub> (100 atm), MeOH–2 M HCl–MeOH].



Scheme 6 Asymmetric synthesis of (+)-2-epi-cis-195A

Synthesis 2011, No. 16, 2540-2548 © Thieme Stuttgart · New York

Therefore, the synthetic route was changed to that using compound 21 as the key intermediate. Although the reaction was quenched with various proton donors to improve the isolate yield of 21 from 17, all trials gave less satisfactory results.<sup>22</sup> On the other hand, the diastereoselective protonation proceeded with improved efficiency using the corresponding enol triisopropylsilyl (TIPS) ether 22. After conversion of 17 into compound 22 by trapping with TIPSCI, the copper species was removed from the reaction mixture by washing with ammonia solution. The obtained crude 22 was allowed to react with tetrabutylammonium fluoride (TBAF) in THF at room temperature, affording compound 21 in 70% yield, accompanied by the formation of 20 in 27% yield. Compound 21 was then converted into the corresponding enol triflate 23 by treatment with lithium diisopropylamide (LDA), followed by the addition of 18 (87% yield). Finally, compound 23 was reacted in the presence of Pearlman's catalyst under a hydrogen atmosphere, providing (+)-2-epi-cis-195A in 93% yield { $[\alpha]_D^{22}$  +18.1 (c 0.25, MeOH)}. The NMR data were identical to the data previously reported in the literature for ent-2-epi-cis-195A:  $[\alpha]_{D}^{22}$  –22.2 (*c* 0.6, MeOH).<sup>11d,13d</sup>

In conclusion, we have developed a novel method to synthesize 2-substituted hexahydroquinolin-4-one derivatives through asymmetric allylic amination using the Pd-DIAPHOX catalyst system and diastereoselective intramolecular Mannich reaction sequence. The present method was successfully applied to enantioselective synthesis of (+)-2-*epi-cis*-195A in combination with a diastereoselective conjugate addition of an organocopper reagent (33% overall yield in 12 steps from compound **8**). The divergent synthetic route provides access to natural products with the same stereochemical arrangement, such as *cis*-219A and gephyrotoxin. Further studies on the application of the developed method to catalytic asymmetric synthesis of other natural products are in progress.

IR spectra were recorded on a JASCO FT/IR 230 Fourier transform IR spectrophotometer, equipped with ATR (Smiths Detection, DuraSample IR II). NMR spectra were recorded on a JEOL ecp 400 spectrometer, operating at 400 MHz for <sup>1</sup>H NMR, 100 MHz for <sup>13</sup>C NMR. Optical rotations were measured on a JASCO P-1020 polarimeter. ESI mass spectra were measured on JEOL AccuTOF LC-plus JMS-T100LP. The enantiomeric excesses were determined by HPLC analysis. HPLC was performed on JASCO HPLC systems consisting of the following: pump, PU-980; detector, UV-970, measured at 254 nm. Reactions were carried out in anhydrous solvents. Other reagents were purified by the usual methods.

6-Methoxycarbonyloxycyclohex-1-enecarboxylic acid methyl ester (8) was prepared according to the literature procedure.<sup>20b,26</sup>

# $(6S)\mbox{-}6\mbox{-}(4\mbox{-}Methoxybenzylamino)\mbox{cyclohex-}1\mbox{-}enecarboxylic Acid Methyl Ester <math display="inline">(9)^{20b}$

To a solution of  $[\eta^3-C_3H_5PdCl]_2$  (2.7 mg, 0.0072 mmol), (*S*,*R*<sub>P</sub>)-1 (11.3 mg, 0.028 mmol), and **8** (3.06 g, 14.4 mmol) in MeCN (72 mL) at r.t. was added BSA (10.7 mL, 43.2 mmol). After stirring the solution at r.t. for 10 min, and then at -40 °C for 30 min, 4-meth-oxybenzylamine (5.6 mL, 43.2 mmol) was added to the reaction mixture over 30 min. After stirring at -35 °C for 48 h, the resulting mixture was allowed to warm to r.t., and the solvent was removed

Synthesis 2011, No. 16, 2540–2548 © Thieme Stuttgart · New York

under reduced pressure. The obtained crude residue was purified by flash column chromatography to give (*S*)-**9** (3.94 g, 14.3 mmol, 99%) as a pale yellow oil;  $[\alpha]_D^{23}$ -60.9 (*c* 1.40, CHCl<sub>3</sub>); 95% ee. The enantiomeric excess was determined by chiral HPLC analysis after converting into the corresponding *tert*-butyl carbamate **10** {DAICEL CHIRALPAK AD-H, hexane–propan-2-ol, 97:3, flow rate: 0.5 mL/min,  $t_R$  32.1 min [(*R*)-isomer] and 38.3 min [(*S*)-isomer], detection at 254 nm}.

#### (6S)-6-[tert-Butoxycarbonyl-(4-methoxybenzyl)amino]cyclohex-1-enecarboxylic Acid Methyl Ester (10)

To a solution of **9** (180.2 mg, 0.654 mmol), Et<sub>3</sub>N (0.28 mL, 2.00 mmol), and NaI (98.1 mg, 0.654 mmol) in MeCN (3.3 mL) at 0 °C was added Boc<sub>2</sub>O (214.3 mg, 0.981 mmol), and the reaction mixture was stirred at r.t. After 12 h, the reaction was quenched with H<sub>2</sub>O (3.3 mL), and the resulting mixture was extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine (5 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained residue was purified by flash column chromatography to give **10** (215.5 mg, 0.573 mmol, 88%) as a pale yellow oil;  $[\alpha]_D^{23}$  –37.6 (*c* 3.10, CHCl<sub>3</sub>); 95% ee.

IR (ATR): 2946, 1716, 1684, 1511, 1241, 1162, 1035, 817, 761  $\rm cm^{-1}.$ 

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 55 °C):  $\delta$  = 1.41 (s, 9 H), 1.40–1.90 (m, 4 H), 2.10–2.20 (m, 2 H), 3.64 (s, 3 H), 3.50–3.90 (m, 2 H), 3.79 (s, 3 H), 4.23 (d, *J* = 14.4 Hz, 1 H), 6.75–6.85 (m, 2 H), 6.95–7.25 (m, 3 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 55 °C): δ = 19.9, 25.5, 28.3 (3 C), 28.8, 48.5, 51.3, 51.7, 55.2, 79.5, 113.6 (2 C), 128.2 (2 C), 132.0, 141.8, 143.2, 155.6, 158.5, 166.9.

ESI-HRMS: m/z calcd for  $C_{21}H_{29}NO_5 + Na (M + Na^+)$ : 398.1943; found: 398.1935.

# (1*S*)-(2-Formylcyclohex-2-enyl)(4-methoxybenzyl)carbamic Acid *tert*-Butyl Ester (11)

To a solution of **10** (1.20 g, 3.20 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (32 mL) at -78 °C was added DIBAL-H (9.60 mL, 1.0 M in *n*-hexane, 9.60 mmol), and the reaction mixture was stirred at the same temperature. After 30 min, the reaction was quenched by the addition of MeOH (6 mL) and H<sub>2</sub>O (32 mL), and the resulting mixture was extracted CH<sub>2</sub>Cl<sub>2</sub> (3 × 30 mL). The combined organic layers were dried (MgSO<sub>4</sub>). After concentration in vacuo, the obtained residue was purified by flash column chromatography to give the corresponding alcohol (1.02 g, 2.95 mmol, 92%) as a colorless oil;  $[\alpha]_D^{27}$  –68.2 (*c* 1.47, CHCl<sub>3</sub>, 95% ee).

#### **Intermediate Alcohol**

IR (ATR): 2934, 1668, 1612, 1512, 1405, 1365, 1244, 1160, 1035, 976, 734, 701 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 55 °C):  $\delta$  = 1.42 (s, 9 H), 1.35–1.85 (m, 4 H), 1.94–2.05 (m, 2 H), 2.71 (br s, 1 H), 3.78 (s, 3 H), 3.72–3.85 (m, 2 H), 3.93 (d, *J* = 14.2 Hz, 1 H), 3.90–4.10 (m, 1 H), 4.46 (d, *J* = 14.2 Hz, 1 H), 5.85–5.95 (m, 1 H), 6.77–6.90 (m, 2 H), 7.09–7.21 (m, 2 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 55 °C): δ = 21.6, 24.8, 28.1, 28.3 (3 C), 47.6, 52.9, 55.2, 64.6, 80.2, 113.8 (2 C), 127.9, 128.9, 131.8 (2 C), 137.8, 156.9, 158.6.

ESI-HRMS: m/z calcd for  $C_{20}H_{29}NO_4 + Na (M + Na^+)$ : 370.1994; found: 370.2008.

To a solution of the obtained alcohol (147.7 mg. 0.425 mmol) and  $Et_3N$  (0.24 mL, 1.70 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (4.3 mL) was added Dess–Martin periodinane (360.6 mg, 0.85 mmol), and the resulting mixture was stirred for 4 h at r.t. The reaction was quenched with aq  $Na_2S_2O_3$  (10 mL), and then  $Et_2O$  (4.3 mL) was added to the reaction mixture. After stirring for 1 h, the resulting mixture was extracted

with EtOAc (10 mL), and the combined organic layers were washed with brine (10 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained residue was purified by flash chromatography to give **11** (140.3 mg, 0.406 mmol, 96%) as a yellow oil;  $[\alpha]_D^{27}$  –13.7 (*c* 4.40, CHCl<sub>3</sub>); 95% ee.

### 11

IR (ATR): 2935, 1683, 1511, 1455, 1402, 1364, 1300, 1243, 1163, 1118, 1034  $\rm cm^{-1}.$ 

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 55 °C):  $\delta$  = 1.43 (s, 9 H), 1.40–1.60 (m, 1 H), 1.65–1.90 (m, 3 H), 2.25–2.35 (m, 2 H), 3.79 (s, 3 H), 4.25 (d, *J* = 15.2 Hz, 1 H), 4.20–4.80 (m, 2 H), 6.75–6.90 (m, 3 H), 7.10–7.20 (m, 2 H), 9.36 (s, 1 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 55 °C):  $\delta$  = 20.5, 26.1, 28.1, 28.4 (3 C), 49.8, 51.5, 55.1, 79.6, 113.6 (2 C), 128.6 (2 C), 131.7, 141.4, 155.4, 158.6, 175.6, 192.0.

ESI-HRMS: m/z calcd for  $C_{20}H_{27}NO_4 + Na (M + Na^+)$ : 368.1838; found: 368.1819.

#### 3-{(6S)-6-[*tert*-Butoxycarbonyl(4-methoxybenzyl)amino]cyclohex-1-enyl}-3-hydroxypropionic Acid Allyl Ester (12b)

To a solution of *i*-Pr<sub>2</sub>NH (3.5 mL, 25.0 mmol) in THF (54 mL) at -78 °C was added *n*-BuLi (16.2 mL, 1.56 M in *n*-hexane, 25.3 mmol), and the reaction mixture was stirred at the same temperature. After 30 min, allyl acetate (2.7 mL, 25.0 mmol) was added to the solution, and the resulting mixture was stirred for additional 30 min at the same temperature. Then, a THF solution of **11** (2.91 g, 8.44 mmol in 30 mL of THF) was added to the mixture, which was kept stirring at -78 °C. After 12 h, the mixture was extracted with aq NH<sub>4</sub>Cl (30 mL), and the resulting mixture was extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with brine (30 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained residue was purified by flash column chromatography to give **12b** (3.65 g, 8.19 mmol, 97%) as a mixture of diastereomers (yellow oil); [ $\alpha$ ]<sub>D</sub><sup>23</sup> +4.3 (*c* 3.85, CHCl<sub>3</sub>); 95% ee.

IR (ATR): 2933, 1735, 1683, 1512, 1455, 1404, 1365, 1274, 1244, 1158, 1118, 1033, 981 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 55 °C):  $\delta$  (major diastereomer) = 1.40 (s, 9 H), 1.20–1.50 (m, 1 H), 1.50–1.70 (m, 2 H), 1.75–1.85 (m, 1 H), 1.95– 2.05 (m, 2 H), 2.40 (br s, 1 H), 2.60–3.00 (m, 2 H), 3.78 (s, 3 H), 4.04 (d, *J* = 15.6 Hz, 1 H), 4.27–4.37 (m, 1 H), 4.49 (d, *J* = 15.6 Hz, 1 H), 4.50–4.65 (m, 2 H), 4.65–4.80 (m, 1 H), 5.22 (dd, *J* = 1.2, 10.4 Hz, 1 H), 5.31 (dd, *J* = 1.2, 17.2 Hz, 1 H), 5.80–6.00 (m, 1 H), 6.05– 6.16 (m, 1 H), 6.77–6.88 (m, 2 H), 7.10–7.20 (m, 2 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 55 °C): δ (major diastereomer) = 21.2, 24.8, 28.4 (3 C), 28.8, 41.3, 47.5, 53.2, 55.3, 65.2, 67.4, 80.2, 113.8 (2 C), 118.3, 126.9, 127.9, 131.9, 132.1 (2 C), 138.6, 156.2, 158.6, 172.2. ESI-HRMS: m/z calcd for C<sub>25</sub>H<sub>35</sub>NO<sub>6</sub> + Na (M + Na<sup>+</sup>): 468.2362; found: 468.2341.

#### 3-{(6S)-6-[*tert*-Butoxycarbonyl(4-methoxybenzyl)amino]cyclohex-1-enyl}-3-oxopropionic Acid Allyl Ester (13b)

To a solution of **12b** (3.45 g, 7.74 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (77.4 mL) at r.t. was added Dess–Martin periodinane (3.61 g, 8.51 mmol), and the reaction mixture was stirred at the same temperature. After 12 h, the reaction was quenched by the addition of aq Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (40 mL) and sat. aq NaHCO<sub>3</sub> (40 mL) After dilution with Et<sub>2</sub>O (40 mL), the resulting mixture was stirred for 1 h, and then extracted with EtOAc (3 × 100 mL). The combined organic layers were washed with brine (100 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained residue was purified by flash column chromatography to give **13b** (3.33 g, 7.51 mmol, 97%) as a pale yellow oil;  $[\alpha]_D^{23}$ –39.9 (*c* 1.45, CHCl<sub>3</sub>); 95% ee.

IR (ATR): 2936, 1742, 1681, 1511, 1456, 1402, 1364, 1301, 1242, 1162, 1034, 986 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>, 55 °C):  $\delta$  = 1.42 (s, 9 H), 1.40–1.55 (m, 1 H), 1.55–1.70 (m, 2 H), 1.71–1.87 (m, 1 H), 2.10–2.27 (m, 2 H), 3.35–3.52 (m, 1 H), 3.64 (d, *J* = 15.2 Hz, 1 H), 3.78 (s, 3 H), 4.19 (d, *J* = 15.2 Hz, 1 H), 4.31–4.50 (m, 1 H), 4.55–4.70 (m, 2 H), 4.70–4.79 (m, 1 H), 5.15–5.39 (m, 2 H), 5.80–6.00 (m, 1 H), 6.72–6.85 (m, 2 H), 6.85–6.94 (m, 1 H), 7.05–7.18 (m, 2 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>, 55 °C): δ = 19.6, 25.6, 28.2 (3 C), 44.7, 49.4, 51.7, 55.0, 65.4, 79.4, 87.2, 113.5 (2 C), 118.1, 128.4, 131.5, 131.7 (2 C), 139.9, 142.9, 155.2, 158.4, 166.9, 192.1.

ESI-HRMS: m/z Calcd for  $C_{25}H_{33}NO_6$  + Na (M + Na<sup>+</sup>): 466.2206; found: 466.2185.

#### (25,8aS)-4-Hydroxy-1-(4-methoxybenzyl)-2-propyl-1,2,6,7,8,8a-hexahydroquinoline-3-carboxylic Acid Allyl Ester (15ba)

To a solution of 13b (718.5 mg, 1.62 mmol) and Et<sub>3</sub>SiH (2.59 mL, 16.2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (8.1 mL) at r.t. was added TFA (8.1 mL), and the reaction mixture was stirred at the same temperature for 30 min. After concentration in vacuo, the obtained residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub> (13.5 mL) and MeOH (2.7 mL). n-Butyraldehyde (14a; 0.44 mL, 4.86 mmol), MS 3Å (0.81 g), and NaHCO<sub>3</sub> (408.3 mg, 4.86 mmol) were added to the solution, and the reaction mixture was stirred at r.t. After 48 h, the resulting mixture was filtered through a short pad of Celite, and the filtrate was concentration in vacuo. The obtained residue was purified by flash column chromatography to give 15ba (631.8 mg, 1.59 mmol, 98%) as a yellow oil. The enantiomeric excess was determined by chiral HPLC analysis {DAICEL CHIRALPAK AD-H, hexane-propan-2-ol, 99:1, flow rate: 1 mL/min, t<sub>R</sub> 9.6 min [(2S,8aS)-isomer] and 11.0 min [(2*R*,8a*R*)-isomer], detection at 254 nm};  $[\alpha]_D^{23}$  +44.3 (c 2.01, CHCl<sub>3</sub>); 95% ee.

IR (ATR): 2933, 1649, 1628, 1583, 1509, 1321, 1287, 1239, 1222, 1117, 1073, 1037, 984, 964, 802  $\rm cm^{-1}.$ 

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 0.76$  (t, J = 7.0 Hz, 3 H), 1.17–1.70 (m, 6 H), 1.79–1.91 (m, 2 H), 2.19–2.30 (m, 2 H), 3.14 (d, J = 14.0 Hz, 1 H), 3.43 (dd, J = 3.4, 10.2 Hz, 1 H), 3.73 (d, J = 14.0 Hz, 1 H), 3.80 (s, 3 H), 3.82–3.93 (m, 1 H), 4.58–4.70 (m, 2 H), 5.12–5.30 (m, 2 H), 5.79–5.94 (m, 1 H), 6.73–6.89 (m, 3 H), 7.18–7.26 (m, 2 H), 12.1 (s, 1 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>): δ = 13.8, 19.8, 21.9, 26.4, 27.2, 35.4, 51.0, 51.1, 55.2, 55.7, 64.6, 98.9, 113.3 (2 C), 117.5, 128.8, 129.5 (2 C), 132.0, 132.1, 133.2, 158.2, 163.6, 172.5.

ESI-HRMS: m/z calcd for  $C_{24}H_{32}NO_4$  (M + H<sup>+</sup>): 398.2331; found: 398.2336.

#### (2*S*,8a*S*)-1-(4-Methoxybenzyl)-2-propyl-2,3,6,7,8,8a-hexahydro-1*H*-quinolin-4-one [(+)-16a]

To a solution of **15ba** (1.41 g, 3.55 mmol) and morpholine (3.1 mL, 35.5 mmol) in THF (36 mL) at r.t. was added Pd(PPh<sub>3</sub>)<sub>4</sub> (41.1 mg, 0.0355 mmol), and the resulting mixture was stirred at the same temperature. After 2 h, 1 M aq HCl (36 mL) was added to the solution, and the resulting mixture was stirred at r.t. for additional 24 h. After the reaction was quenched with aq NaHCO<sub>3</sub> (50 mL), the obtained mixture was extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with brine (50 mL), and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained residue was purified by flash column chromatography to give (+)-**16a** (910.9 mg, 2.91 mmol, 82%) as a yellow oil. The enantiomeric excess was determined by chiral HPLC analysis {DAICEL CHIRALPAK AD-H, hexane–propan-2-ol, 99:1, flow rate: 1 mL/min,  $t_{\rm R}$  19.5 min [(2S,8aS)-isomer] and 22.9 min [(2*R*,8a*R*)-isomer], detection at 254 nm};  $[\alpha]_{\rm D}^{25}$  +9.9 (*c* 1.22, CHCl<sub>3</sub>); 95% ee.

IR (ATR): 2930, 1686, 1613, 1509, 1457, 1298, 1241, 1170, 1101, 1034, 830, 807, 731 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 0.85$  (t, J = 7.0 Hz, 3 H), 1.15–1.73 (m, 6 H), 1.77–1.89 (m, 1 H), 1.93–2.08 (m, 1 H), 2.16–2.28 (m, 2 H), 2.33 (dd, J = 3.0, 17.2 Hz, 1 H), 2.60 (dd, J = 6.4, 17.2 Hz, 1 H), 2.90–3.02 (m, 1 H), 3.55–3.70 (m, 1 H), 3.67 (d, J = 14.0 Hz, 1 H), 3.73 (d, J = 14.0 Hz, 1 H), 3.81 (s, 3 H), 6.79–6.90 (m, 3 H), 7.24–7.33 (m, 2 H).

 $^{13}\text{C}$  NMR (CDCl<sub>3</sub>):  $\delta$  = 14.1, 19.8, 21.1, 26.1, 28.2, 31.6, 42.2, 52.2, 54.3, 54.5, 55.2, 113.6 (2 C), 129.3 (2 C), 132.3, 137.1, 137.4, 158.5, 199.6.

ESI-HRMS: m/z calcd for  $C_{20}H_{27}NO_2 + Na (M + Na^+)$ : 336.1940; found: 336.1963.

#### (2*R*,5*R*,8a*R*)-Trifluoromethanesulfonic Acid 1-(4-Methoxybenzyl)-5-methyl-2-propyl-1,2,3,5,6,7,8,8a-octahydroquinolin-4-yl Ester (19)

To a suspension of CuCN (83.2 mg, 0.927 mmol) in Et<sub>2</sub>O (3.3 mL) at -78 °C was added MeLi (1.7 mL, 1.07 M in Et<sub>2</sub>O, 1.89 mmol), and the mixture was stirred at the same temperature. After 30 min, a THF solution of (-)-16a (97.0 mg, 0.309 mmol in 5.0 mL of THF) was added to the solution, and the resulting mixture was stirred at the same temperature for 30 min. After gradually warming to r.t., the reaction mixture was stirred overnight, and then cooled down to -78 °C again. N-(5-Chloro-2-pyridyl)bis(trifluoromethanesulfonimide) (18; 364.6 mg, 0.928 mmol) was added to the solution. The reaction was gradually warmed to r.t., and kept stirring overnight. The reaction was quenched with ammonia solution (10 mL), and the aqueous phase was extracted with EtOAc ( $3 \times 10$  mL). The combined organic layers were washed with brine (10 mL), and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained crude residue was purified by flash column chromatography to give 19 (76.5 mg, 0.166 mmol, 54%) as a pale yellow oil;  $[\alpha]_D^{24} + 5.4 (c \ 1.01, CHCl_3)$ .

IR (ATR): 2933, 1510, 1410, 1242, 1203, 1139, 1092, 1038, 966, 928, 903, 870, 837 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 0.93$  (t, J = 7.2 Hz, 3 H), 1.03 (d, J = 7.2 Hz, 3 H), 1.40–1.70 (m, 9 H), 1.71–1.82 (m, 1 H), 2.10–2.23 (m, 1 H), 2.32 (dd, J = 8.8, 16.0 Hz, 1 H), 2.97–3.09 (m, 1 H), 3.10–3.21 (m, 2 H), 3.28 (d, J = 13.4 Hz, 1 H), 3.66 (d, J = 13.4 Hz, 1 H), 3.81 (s, 3 H), 6.80–6.92 (m, 2 H), 7.18–7.30 (m, 2 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>): δ = 13.9, 17.2, 19.8, 20.2, 29.6, 30.0, 32.5, 32.7, 33.8, 49.4, 52.9, 55.2, 55.3, 113.7 (2 C), 118.4 (q, *J* = 317.6 Hz), 129.4 (2 C), 132.0, 135.0, 137.5, 158.5.

ESI-HRMS: m/z calcd for  $C_{22}H_{31}F_3NO_4S$  (M + H<sup>+</sup>): 462.1926; found: 462.1929.

# Procedures for the Conjugate Addition of Organocopper Reagents to Enone (-)-16a Method A

To a suspension of CuCN (27.6 mg, 0.308 mmol) in Et<sub>2</sub>O (1.1 mL) at -78 °C was added MeLi (0.57 mL, 1.09 M in Et<sub>2</sub>O, 0.62 mmol), and the resulting mixture was stirred at the same temperature. After 30 min, a THF solution of (–)-**16a** (32.2 mg, 0.103 mmol in THF 1.7 mL) was added to the solution, and the reaction was stirred at -78 °C for 30 min. After gradually warming to r.t., the reaction mixture was stirred overnight. The reaction was quenched with *tert*-butyl alcohol (1.7 mL), and the mixture was stirred for additional 30 min. Ammonia solution (5 mL) was added to the mixture and the aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (10 mL), and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained residue was

purified by flash column chromatography to give 20 (13.5 mg, 0.0410 mmol, 40%) and 21 (19.0 mg, 0.0577 mmol, 56%).

#### Method B

To a suspension of CuI (1.41 g, 7.40 mmol) in THF (34.2 mL) at -78 °C was added MeLi (14.8 mL, 1.0 M in Et<sub>2</sub>O, 14.8 mmol), and the resulting mixture was stirred at the same temperature. After 30 min, triisopropylsilyl chloride (1.6 mL, 7.47 mmol) was added to the solution, and the reaction mixture was stirred at the same temperature for additional 30 min. A THF solution of (-)-16a (979.6 mg, 2.46 mmol in 15 mL of THF) was added to the solution. The reaction mixture was stirred for 30 min at -78 °C, and then gradually warmed to r.t. After stirring overnight, the reaction was quenched with sat. aq NaHCO3 (40 mL) and the resulting mixture was stirred for 1 h at r.t. A small volume of ammonia solution was added to the suspension to dissolve the solidified copper species. (Caution! If a large volume of ammonia solution was added to the suspension, enol silvl ether 22 was converted into 20 rather than **21**.) The resulting mixture was extracted with EtOAc  $(3 \times 40 \text{ mL})$ . The combined organic layers were washed with brine (40 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained residue was dissolved in wet (reagent grade) THF (16 mL). TBAF (8.6 mL, 1.0 M in THF, 8.6 mmol) was added to the solution, and the resulting mixture was stirred for 24 h at r.t. The reaction was quenched with  $H_2O(20 \text{ mL})$  and extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine (20 mL), and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained crude residue was purified by flash column chromatography to give 20 (215.1 mg, 0.653 mmol, 27%) and 21 (566.9 mg, 1.72 mmol, 70%).

#### (2*R*,4a*R*,5*R*,8a*R*)-1-(4-Methoxybenzyl)-5-methyl-2-propyloctahydroquinolin-4-one (20)

Pale yellow oil;  $[\alpha]_D^{25} - 7.5$  (*c* 0.86, CHCl<sub>3</sub>).

IR (ATR): 2929, 2862, 1703, 1611, 1509, 1459, 1300, 1243, 1169, 1147, 1087, 1035, 822 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 0.81$  (t, J = 7.2 Hz, 3 H), 0.97 (d, J = 7.2 Hz, 3 H), 1.10–1.65 (m, 9 H), 1.91–1.99 (m, 1 H), 2.13 (dd, J = 2.0, 14.8 Hz, 1 H), 2.18 (dd, J = 3.6, 10.4 Hz, 1 H), 2.48–2.57 (m, 1 H), 2.62 (dd, J = 6.0, 14.8 Hz, 1 H), 2.92–3.00 (m, 1 H), 3.14 (dt, J = 3.1, 11.2 Hz, 1 H), 3.74 (d, J = 14.0 Hz, 1 H), 3.81 (d, J = 14.0 Hz, 1 H), 3.81 (s, 3 H), 6.83–6.88 (m, 2 H), 7.26–7.30 (m, 2 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>): δ = 13.8, 14.0, 19.6, 20.3, 27.1, 32.2, 32.5, 32.8, 42.6, 50.9, 52.9, 55.2, 55.2, 56.7, 113.6 (2 C), 129.3 (2 C), 132.7, 158.5, 210.4.

ESI-HRMS: m/z calcd for  $C_{21}H_{32}NO_2$  (M + H<sup>+</sup>): 330.2433; found: 330.2448.

## (2R,4aS,5R,8aR)-1-(4-Methoxybenzyl)-5-methyl-2-propyloctahydroquinolin-4-one (21)

Pale yellow oil;  $[\alpha]_D^{24}$  +27.3 (*c* 0.88, CHCl<sub>3</sub>).

IR (ATR): 2926, 2855, 1701, 1509, 1457, 1376, 1301, 1241, 1173, 1095, 1035, 828 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 0.81$  (d, J = 7.2 Hz, 3 H), 0.88 (t, J = 7.0 Hz, 3 H), 1.10–1.75 (m, 10 H), 2.23 (dd, J = 8.0, 13.4 Hz, 1 H), 2.25–2.35 (m, 1 H), 2.39 (dd, J = 4.0, 13.4 Hz, 1 H), 2.45–2.57 (m, 1 H), 3.05–3.21 (m, 2 H), 3.62 (d, J = 13.4 Hz, 1 H), 3.80 (d, J = 13.4 Hz, 1 H), 3.82 (s, 3 H), 6.81–6.95 (m, 2 H), 7.26–7.35 (m, 2 H).

 $^{13}\text{C}$  NMR (CDCl<sub>3</sub>):  $\delta$  = 14.1, 18.6, 19.4, 20.4, 27.6, 28.1, 30.4, 32.4, 44.0, 49.2, 55.1, 55.2, 55.2, 55.6, 113.7 (2 C), 129.3 (2 C), 132.1, 158.5, 212.0.

ESI-HRMS: m/z calcd for  $C_{21}H_{32}NO_2$  (M + H<sup>+</sup>): 330.2433; found: 330.2448.

#### (2R,4aS,5R,8aR)-Trifluoromethanesulfonic Acid 1-(4-Methoxybenzyl)-5-methyl-2-propyl-1,2,4a,5,6,7,8,8a-octahydroquinolin-4-yl Ester (23)

To a solution of *i*-Pr<sub>2</sub>NH (0.20 mL, 1.43 mmol) in THF (7.0 mL) at -78 °C was added *n*-BuLi (0.91 mL, 1.56 M in *n*-hexane, 1.42 mmol), and the reaction mixture was stirred at the same temperature. After 30 min, a THF solution of **21** (232.7 mg, 0.706 mmol in 4.0 mL of THF) was added to the solution, and the mixture was stirred at -78 °C. After 1 h, **18** (831.7 mg, 2.12 mmol) was added to the solution, and the resulting mixture was stirred at the same temperature for 30 min. After gradually warming to r.t., the mixture was stirred overnight, and quenched with ammonia solution (10 mL). The aqueous phase was extracted with EtOAc (3 × 15 mL) and the combined organic layers were washed with brine (20 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). After concentration in vacuo, the obtained crude residue was purified by flash column chromatography to give **23** (283.0 mg, 0.613 mmol, 87%) as a pale yellow oil;  $[\alpha]_D^{24}$  -44.8 (*c* 1.03, CHCl<sub>3</sub>).

IR (ATR): 2934, 1510, 1459, 1415, 1244, 1203, 1170, 1140, 1084, 1036, 948, 906, 853  $\rm cm^{-1}.$ 

<sup>1</sup>H NMR (CDCl<sub>3</sub>):  $\delta = 0.86$  (d, J = 7.2 Hz, 3 H), 0.88 (t, J = 7.0 Hz, 3 H), 1.15–1.57 (m, 7 H), 1.60–1.72 (m, 2 H), 2.22–2.35 (m, 1 H), 2.49–2.60 (m, 1 H), 2.95–3.05 (m, 1 H), 3.28–3.36 (m, 1 H), 3.41–3.55 (m, 1 H), 3.77–3.83 (m, 4 H), 3.85 (d, J = 13.6 Hz, 1 H), 5.64–5.66 (m, 1 H), 6.80–6.93 (m, 2 H), 7.18–7.26 (m, 2 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>): δ = 14.4, 17.4, 18.3, 19.0, 19.7, 28.3, 28.7, 34.1, 45.3, 51.0, 51.5, 55.0, 55.1, 113.7 (2 C), 118.6 (q, *J* = 318.9 Hz), 121.3, 129.0 (2 C), 131.6, 149.5, 158.5.

ESI-HRMS: m/z calcd for  $C_{22}H_{31}F_3NO_4S$  (M + H<sup>+</sup>): 462.1926; found: 462.1933.

#### (+)-2-epi-cis-195A

To a solution of **23** (35.1 mg, 0.076 mmol) in MeOH (1.5 mL) and 2 M HCl–MeOH (0.076 mL) was added Pd(OH)<sub>2</sub>/C (7.5 mg, 20 wt% Pd on carbon), and the reaction mixture was stirred under an H<sub>2</sub> atmosphere at r.t. After 24 h, the resulting mixture was filtered through a short pad of Celite, and the filtrate was evaporated under reduced pressure. The obtained crude residue was purified by flash column chromatography to give (+)-2-*epi*-cis-195A·HCl. The pure (+)-2-*epi*-cis-195A·HCl was dissolved in EtOAc (1.6 mL) and sat. aq NaHCO<sub>3</sub> (1.6 mL) was added to the solution. The resulting mixture was stirred at r.t. for 30 min. The aqueous phase was extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine (10 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). Evaporation of the organic solvent gave pure (+)-2-*epi*-cis-195A (13.7 mg, 0.0701 mmol, 93%) as pale brown oil; [ $\alpha$ ]<sub>D</sub><sup>22</sup> +18.1 (*c* 0.25, MeOH).

IR (ATR): 2926, 2871, 1457, 1379, 1287, 1238, 1163, 1029 cm<sup>-1</sup>.

<sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  = 0.91 (t, *J* = 6.6 Hz, 3 H), 1.00 (d, *J* = 7.2 Hz, 3 H), 1.08–1.90 (m, 16 H), 2.85–3.00 (m, 1 H), 2.95 (br s, 1 H), 3.21 (dt, *J* = 3.9, 10.8 Hz, 1 H).

<sup>13</sup>C NMR (CDCl<sub>3</sub>): δ = 14.1, 19.2, 19.2, 20.3, 24.9, 27.5, 28.1, 30.6, 32.5, 37.6, 41.3, 49.8, 50.3.

ESI-HRMS: m/z calcd for  $C_{13}H_{26}N$  (M + H<sup>+</sup>): 196.2065; found: 196.2048.

**Supporting Information** for this article is available online at http://www.thiem-connect.com/ejournal/toc/synthesis.

## Acknowledgment

This work was supported in part by Grant-in Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. We thank Mr. Takashi Fukuyama and Ms. Ruriko Hayasaki for their contributions in the early stage of this work. We also thank Dr. Ryo Takita at the University of Tokyo for his kind support with DFT calculations.

### References

- Daly, J. W.; Tokuyama, T.; Habermehl, G.; Karle, I. L.; Witkop, B. *Liebigs Ann. Chem.* **1969**, *729*, 198.
- (2) (a) Tokuyama, T.; Nishimori, N.; Karle, I. L.; Edwards, M. W.; Daly, J. W. *Tetrahedron* **1986**, *42*, 3453.
  (b) Tokuyama, T.; Tsujita, T.; Shimada, A.; Garraffo, H. M.; Spande, T. F.; Daly, J. W. *Tetrahedron* **1991**, *47*, 5401.
  (c) Garraffo, H. M.; Caceres, J.; Daly, J. W.; Spande, T. F.; Andriamaharavo, N. R.; Andriantsiferana, M. *J. Nat. Prod.* **1993**, *56*, 1016. (d) Daly, J. W.; Ware, N.; Saporito, R. A.; Spande, T. F.; Garraffo, H. M. *J. Nat. Prod.* **2009**, *72*, 1110.
- (3) Garraffo, H. M.; Spande, T. F.; Daly, J. W.; Baldessari, A.; Gros, E. G. J. Nat. Prod. 1993, 56, 357.
- (4) (a) Steffan, B. *Tetrahedron* 1991, 47, 8729. (b) Davis, R. A.; Carroll, A. R.; Quinn, R. J. J. Nat. Prod. 2002, 65, 454.
  (c) Wright, A. D.; Goclik, E.; König, G. M.; Kaminsky, R. J. Med. Chem. 2002, 45, 3067.
- (5) Kubanek, J.; Williams, D. E.; Dilip de Silva, E.; Allen, T.; Andersen, R. J. *Tetrahedron Lett.* **1995**, *36*, 6189.
- (6) (a) Jones, T. H.; Gorman, J. S. T.; Snelling, R. R.; Delabie, J. H. C.; Blum, M. S.; Garraffo, H.; Jain, P.; Daly, J. W.; Spande, T. F. *Chem. Ecol.* **1999**, *25*, 1179. (b) Daly, J. W.; Garraffo, H. M.; Jain, P.; Spande, T. F.; Snelling, R. R.; Jaramillo, C.; Rand, A. S. *J. Chem. Ecol.* **2000**, *26*, 73.
- (7) (a) Spande, T. F.; Jain, P.; Garraffo, H. M.; Pannell, L. K.; Yeh, H. J. C.; Daly, J. W.; Fukumoto, S.; Imamura, K.; Tokuyama, T.; Torres, J. A.; Snelling, R. R.; Jones, T. H. *J. Nat. Prod.* **1999**, *62*, 5. (b) Daly, J. W.; Spande, T. F.; Garraffo, H. M. J. Nat. Prod. **2005**, *68*, 1556.
- (8) (a) Daly, J. W.; Nishizawa, Y.; Edwards, M. W.; Waters, J. A.; Aronstam, R. S. *Neurochem. Res.* 1991, *16*, 489.
  (b) Daly, J. W.; Nishizawa, Y.; Padgett, W. L.; Tokuyama, T.; McCloskey, P. J.; Waykole, L.; Aronstam, R. S. *Neurochem. Res.* 1991, *16*, 1207.
- (9) Warnick, J. E.; Jessup, P. J.; Overman, L. E.; Eldefrawi, M. E.; Nimit, Y.; Daly, J. W.; Albuquerque, E. X. Mol. *Pharmacol.* **1982**, *22*, 565.
- (10) (a) Akashi, M.; Sato, Y.; Mori, M. J. Org. Chem. 2001, 66, 7873; and references cited therein. (b) Girard, N.; Hurvois, J.-P.; Moinet, C.; Toupet, L. Eur. J. Org. Chem. 2005, 2269. (c) Saeki, M.; Toyota, M. Tetrahedron Lett. 2010, 51, 4620.
- (11) (a) Oppolzer, W.; Flaskamp, E.; Bieber, L. W. *Helv. Chim. Acta* 2001, 84, 141; and references cited therein. (b) Amat, M.; Griera, R.; Fabregat, R.; Molins, E.; Bosch, J. *Angew. Chem. Int. Ed.* 2008, 47, 3348. (c) Lauzon, S.; Tremblay, F.; Gagnon, D.; Godbout, C.; Chabot, C.; Mercier-Shanks, C.; Perreault, S.; DeSeve, H.; Spino, C. J. Org. Chem. 2008, 73, 6239. (d) Amat, M.; Fabregat, R.; Griera, R.; Florindo, P.; Molins, E.; Bosch, J. J. Org. Chem. 2010, 75, 3797.
- (12) Dijk, E. W.; Panella, L.; Pinho, P.; Naasz, R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L. *Tetrahedron* **2004**, *60*, 9687.
- (13) (a) Neidhöfer, J.; Blechert, S. *Synthesis* 2004, 3047.
  (b) Holub, N.; Neidhöfer, J.; Blechert, S. *Org. Lett.* 2005, 7, 1227. (c) Weymann, M.; Schultz-Kukula, M.; Kunz, H. *Tetrahedron Lett.* 1998, *39*, 7835. (d) Fearnley, S. P.; Thongsornkleeb, C. *J. Org. Chem.* 2010, *75*, 933.
- (14) Comins, D. L.; Dehghani, A. J. Org. Chem. 1995, 60, 794.

- (15) (a) Fujimoto, R.; Kishi, Y. *Tetrahedron Lett.* **1981**, 22, 4197. See also: (b) Fujimoto, R.; Kishi, Y.; Blount, J. F. *J. Am. Chem. Soc.* **1980**, *102*, 7154. (c) Wei, L.-L.; Hsung, R. P.; Sklenicka, H. M.; Gerasyuto, A. I. *Angew. Chem. Int. Ed.* **2001**, *40*, 1516. (d) Santarem, M.; Vanucci-Bacqué, C.; Lhommet, G. J. Org. Chem. **2008**, *73*, 6466.
- (16) For other representative asymmetric syntheses of natural products with a bicyclic decahydroquinoline skeleton; Lepadins: (a) Toyooka, N.; Okumura, M.; Takahata, H. J. Org. Chem. 1999, 64, 2182. (b) Ozawa, T.; Aoyagi, S.; Kibayashi, C. Org. Lett. 2000, 2, 2955. (c) Pu, X.; Ma, D. Angew. Chem. Int. Ed. 2004, 43, 4222. (d) Niethe, A.; Fischer, D.; Blechert, S. J. Org. Chem. 2008, 73, 3088. (e) Li, G.; Hsung, R. P.; Slafer, B. W.; Sagamanova, I. K. Org. Lett. 2008, 10, 4991. (f) Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 13873. Luciduline: (g) Comins, D. L.; Brooks, C. A.; Al-awar, R. S.; Goehring, R. R. Org. Lett. 1999, 1, 229. Phlegmarines: (h) Comins, D. L.; Libby, A. H.; Al-awar, R. S.; Foti, C. J. J. Org. Chem. 1999, 64, 2184. (i) Wolfe, B. H.; Libby, A. H.; Al-awar, R. S.; Foti, C. J.; Comins, D. L. J. Org. Chem. 2010, 75, 8564. Lycoposerramines: (j) Tanaka, T.; Kogure, N.; Kitajima, M.; Takayama, H. J. Org. Chem. 2009, 74, 8675. Lycoperin A: (k) Nakamura, Y.; Burke, A. M.; Kotani, S.; Ziller, J. W.; Rychnovsky, S. D. Org. Lett. 2010, 12, 72.
- (17) For recent representative references for the stereoselective synthesis of functionalized decahydroquinolines, see:
  (a) Comins, D. L.; Ollinger, C. G. *Tetrahedron Lett.* 2001, 42, 4115. (b) Toyooka, N.; Okumura, M.; Nemoto, H. J. Org. Chem. 2002, 67, 6078. (c) Galbo, F. L.; Occhiato, E. G.; Guarna, A.; Faggi, C. J. Org. Chem. 2003, 68, 6360. (d) Gravier-Pelletier, C.; Maton, W.; Bertho, G.; Merrer, Y. L. *Tetrahedron* 2003, 59, 8721. (e) Banner, E. J.; Stevens, E. D.; Trudell, M. L. *Tetrahedron Lett.* 2004, 45, 4411. (f) Mena, M.; Bonjoch, J. *Tetrahedron* 2005, 61, 8264. (g) Comins, D. L.; Kuethe, J. T.; Miller, T. M.; Février, F. C.; Brooks, C. A. J. Org. Chem. 2005, 70, 5221. (h) Mena, M.; Bonjoch, J.; Gomez Pardo, D.; Cossy, J. J. Org. Chem. 2006, 71, 5930. (i) Diaba, F.; Ricou, E.; Bonjoch, J. Org. Lett. 2007, 9, 2633. (j) Rueping, M.; Antonchick, A. P.

Angew. Chem. Int. Ed. 2008, 47, 5836. (k) Huang, J.;
Bergmeier, S. C. Tetrahedron 2008, 64, 6434. (l) Amat, M.;
Fabregat, R.; Griera, R.; Bosch, J. J. Org. Chem. 2009, 74, 1794. (m) Guthmann, H.; Conole, D.; Wright, E.; Körber, K.; Barker, D.; Brimble, M. A. Eur. J. Org. Chem. 2009, 1944. (n) Heitbaum, M.; Fröhlich, R.; Glorius, F. Adv. Synth. Catal. 2010, 352, 357. (o) Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276.

- (18) Nemoto, T.; Matsumoto, T.; Masuda, T.; Hitomi, T.; Hatano, K.; Hamada, Y. J. Am. Chem. Soc. 2004, 126, 3690.
- (19) For reviews on DIAPHOX preligands in asymmetric transition-metal catalysis, see: (a) Nemoto, T. *Chem. Pharm. Bull.* **2008**, *56*, 1213. (b) Nemoto, T.; Hamada, Y. *Tetrahedron* **2011**, *67*, 667.
- (20) (a) Nemoto, T.; Masuda, T.; Akimoto, Y.; Fukuyama, T.; Hamada, Y. Org. Lett. 2005, 7, 4447. (b) Nemoto, T.; Fukuyama, T.; Yamamoto, E.; Tamura, S.; Fukuda, T.; Matsumoto, T.; Akimoto, Y.; Hamada, Y. Org. Lett. 2007, 9, 927. (c) Nemoto, T.; Tamura, S.; Sakamoto, T.; Hamada, Y. Tetrahedron: Asymmetry 2008, 19, 1751. (d) Nemoto, T.; Yamamoto, E.; Franzén, R.; Fukuyama, T.; Wu, R.; Fukamachi, T.; Kobayashi, H.; Hamada, Y. Org. Lett. 2010, 12, 872.
- (21) The M06-2X functional has been found to be reliable for weak dispersion interactions such as hydrogen-bonding interaction. The molecular energy calculation using B3LYP/ 6-31G\*\* indicated that 4b is 2.12 kcal/mol more stable than 4a. For the related references, see: (a) Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157. (b) Um, J. M.; Gutierrez, O.; Schoenebeck, F.; Houk, K. N.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 6001.
- (22) See Supporting Information for details.
- (23) The enantiomeric excess was determined by chiral HPLC analysis.
- (24) Comins, D. L.; Dehghani, A.; Foti, C. J.; Joseph, S. P. Org. Synth. 1997, 74, 77.
- (25) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841.
- (26) Graff, M.; Al Dilaimi, A.; Seguineau, P.; Rambaud, M.; Villieras, J. *Tetrahedron Lett.* **1986**, *27*, 1577.