Shoppee: Symmetrical Triad Prototropic Systems. Part IX. 37

13. Symmetrical Triad Prototropic Systems. Part IX. The Influence of Polynuclear Aryl Groups upon Mobility and Equilibrium in the αγ-Diarylmethyleneazomethine System.

By CHARLES W. SHOPPEE.

OWING to the capacity of aryl groups to confer on an attached carbon atom increased toleration for an ionic charge of either sign (\pm T effect), such groups are capable of activating both prototropic systems (I) (Shoppee, J., 1928, 2567; Ingold and Shoppee, J., 1929, 447) and anionotropic systems (II) (Burton and Ingold, J., 1928, 904; *Proc. Leeds Phil. Soc.*, 1929, 1, 421; Burton, J., 1928, 1650). The stabilisation of the electron septet in the formation of free radicals is referred to the same cause, and the further deduction is made

(Burton and Ingold) that polynuclear aryl groups should act more powerfully than phenyl in promoting dissociation into free radicals in the order: 9-phenanthryl> α -anthryl> α -naphthyl> β -naphthyl> β -diphenylyl> β -diphenylyl>phenyl. This serial order has been

confirmed in the four cases for which evidence is available, namely: α -naphthyl> β -naphthyl>p-diphenylyl>phenyl. Since the foregoing theoretical sequence is to be interpreted as representing capacity for duplex polar adjustment (\pm T), it might also prove to correspond to the order in which the groups concerned exhibit the effects designated + T and - T separately. This possibility, although not logically compulsory, is attractively simple and if true would mean that the order illustrated is that in which the groups facilitate first aromatic side-chain reactions requiring electron accession (Type A) and secondly those dependent on electron recession (Type B). Moreover, the same order would hold in relation to the conferment of anionotropic mobility, and yet again for the conferment of prototropic mobility.

As regards side-chain reactivity Ingold and Patel (J. Indian Chem. Soc., 1930, 95) have found that the velocity coefficients for acid hydrolysis of aryl methyl bromides (Type A), and for reduction of these compounds (Type B), conform to a sequence identical with that given above: α -naphthyl> β -naphthyl> β -diphenylyl>m-diphenylyl>phenyl. Moreover, Burton has shown recently (J., 1931, 760) that for the facilitation of anionotropy in the simple three-carbon system

$$Ar \cdot CH(OH) \cdot CH \cdot CH_2 \iff Ar \cdot CH \cdot CH \cdot CH_2 \cdot OH$$

the mobility sequence is α -naphthyl> β -naphthyl>phenyl.

The present paper completes the comparison instituted above and describes the effect of some polynuclear aryl groups on mobility (and equilibrium) in the methyleneazomethine prototropic system (III \rightleftharpoons IV).

(III.)
$$\operatorname{Ar}\cdot\operatorname{CH}:\operatorname{N}\cdot\operatorname{CH}_{2}\operatorname{Ph} \stackrel{k_{1}}{\rightleftharpoons} \operatorname{Ar}\cdot\operatorname{CH}_{2}\cdot\operatorname{N}:\operatorname{CHPh}$$
 (IV.)

(Ar = 9-phenanthryl, α -naphthyl, β -naphthyl, β -diphenylyl, and m-diphenylyl.)

Mobility.—The effect of the introduction of the variants Ar on the velocity of interconversion of the isomerides (III, IV) under standard conditions of temperature and catalysis is as follows:

With the exception of 9-phenanthryl (see below), the mobility sequence, which necessarily omits the phenyl group, is identical with that given by Ingold and Burton.

The low degree of mobility conferred by the 9-phenanthryl group is unexpected; although, owing to the largely one-sided nature of the equilibrium attained, only the velocity constants given by isomeride (III) could accurately be determined, there is no doubt that the true value is considerably less instead of being greater than that of the α-naphthyl group. This result indicates the operation of some de-activating influence, whose character may be polar or steric or both. Nothing is known with regard to the effect on mobility of steric influence (the term is used with full recognition of the fact that its origin must fundamentally be polar), but it may be presumed to cause considerable disturbance in cases of o-substitution (cf. phenanthryl, α-naphthyl), and further work on this field is projected. The expectation of polar disturbances arises from the circumstance that the tentative application of a \pm T-relation to reactions involving only electron accession or only electron recession is most likely to be true in the absence of an inductive effect and certain to be untrue as a generality in its presence. But the case of toluene shows that the lateral linking of an aromatic compound with a side chain must in general be the seat of a dipole moment, and must therefore constitute part of the path of an inductive effect. The degree of consistency demonstrated in this work and that already referred to can probably be interpreted as indicating that the inductive effect referred to is small in most cases: but there is no independent indication that this holds for phenanthrene derivatives, and it may be significant that the phenanthrene skeleton is the only structure here studied which is devoid of an axis of symmetry perpendicular to the lateral linking.

Equilibrium.—The equilibria attained by the system (III \rightleftharpoons IV), under the influence of either 0.145N- or 1.45N-alcoholic sodium ethoxide at 82° or 85° respectively, by introduction of the variants Ar are as follows:

Shoppee: Symmetrical Triad Prototropic Systems. Part IX. View 39 cle Online

Ar	9-Phenanthryl.	a-C ₁₀ H ₇ .	β -C ₁₀ H ₇ .	p-C ₆ H ₄ Ph.	$m-C_6H_4Ph$.
K	4.41	2.70	0.695	0.639	0.785
Isomeride (III) %	18.5	27:0	59.0	61.0	56.0

In preceding investigations on the effect of substitution on equilibrium, such substituents (m or p) were introduced at a relatively large distance from the seat of reaction; the various cases studied were therefore largely independent of steric influences, and suitable for direct comparison. Since we are now dealing with bulky groups, equivalent in two cases to the presence of an o-substituent, the numerical values tabulated above must reflect, to some degree at present unknown, the operation of steric influences. Nevertheless, the results place the groups, with the exception of m-diphenylyl, in the order theoretically deduced for radical stability.

A new synthesis of phenanthrene-9-carboxylic acid, which is convenient for the production of small quantities (25—50 g.), and the preparation of phenanthrene-9-aldehyde are described.

Stephen's method for the preparation of aldehydes (J., 1925, 127, 1874) fails with 4-cyanodiphenyl, more than 90% of which can be recovered. The alternative method of Sonn and Müller (Ber., 1919, 52, 1927), which involves reduction of the imino-chloride obtained by the action of phosphorus pentachloride on the anilide of diphenyl-4-carboxylic acid, affords some diphenyl-4-aldehyde, but the bulk of the material is unaffected. Both methods succeed with the more soluble compounds of the m-series; 3-cyanodiphenyl and the anilide of diphenyl-3-carboxylic acid each yield 40-50% of diphenyl-3-aldehyde, which furnishes the usual crystalline derivatives.

Attempts to prepare diphenyl-3-sulphonic acid, from which the difficultly obtainable 3-cyanodiphenyl might be producible, failed; sulphonation of 4-aminodiphenyl under various conditions gave, not the 3-sulphonic acid, but 4-aminodiphenyl-4'-sulphonic acid (Carnelley and Schleselman, J., 1886, 49, 380); the latter on deamination has now been shown to give diphenyl-4-sulphonic acid, which establishes its constitution.

EXPERIMENTAL.

The azomethines were prepared by methods already described (J., 1931, 1225; 1932, 703): if solid, they were recrystallised to const. m. p.; if liquid, repeatedly fractionated in a high vac. The azomethines described below are stable substances; β -naphthylidene- and 4-phenylbenzylidene-benzylamine, however, are photo-sensitive.

Interconversion of Tautomerides.—The standard conditions were: catalyst, 0·145N-alc. NaOEt; temp., 82°. The product was isolated as described (loc. cit.), and the progress of interconversion followed by thermal analysis of mixtures of p-nitrophenylhydrazones. The hydrazones obtained by fission of the isomerides (III) were used without further purification for the construction of temp.—composition diagrams. All such diagrams were of the two-branch type, and the products of the interconversion expts. strictly binary in character; all m. p.'s were determined under identical conditions in the same apparatus.

The following table gives the m. p.'s, yields obtained by fission of the azomethines with p-nitrophenylhydrazine acetate, and analytical data for the following aldehyde-p-nitrophenylhydrazones:

	М. р.	М. р.	Yield,	Found.		Calc.	
	(purif.).	(cruđe).	%.	С, %.	Н, %.	C, %.	Н, %.
Phenanthrene-9	265°	265°	101	73.9	4.45	73.9	4·4
a-Naphthyl	234.5	234	101			_	
β -Naphthyl	230	230	103	69.9	4.5	70.1	4.5
Diphenyl-4	216.5	216	102	72.0	4.8	71.9	4.8
Diphenyl-3	188	187.5	101.5	71.6	4.6	71.9	4.8

9-Phenanthryl Compounds.

Phenanthrene-9-carboxylic Acid.—9-Bromophenanthrene (b. p. $225^{\circ}/15$ mm., m. p. 63° ; Austin, J., 1908, 93, 1763) (77 g.) was dissolved in dry Et₂O (370 g.) and anisole (150 g.) and treated with Mg (7·2 g.), and the solution of 9-phenanthrylmagnesium bromide filtered into a flask containing dry CO₂ and stirred mechanically. After 4—5 hr., the CO₂ latterly being bubbled through the liquid, ice-water was added, followed by 2N-H₂SO₄, the mixture stirred for 1 hr., and the emulsion filtered. The ppt. was washed with a little Et₂O, dissolved in NH₂ aq.

and filtered into an excess of HCl aq. The phenanthrene-9-carboxylic acid obtained (25 g.) had m. p. 250—251° after one crystn. from EtOH (Found: C, 81·1; H, 4·6. Calc.: C, 81·1; H, 4·55%); 8 g. of crude acid were extracted from the ether—anisole liquor by NaOH aq.

9-Phenanthroyl chloride, prepared from the acid and SOCl₂ on the steam-bath, had b. p. $240^{\circ}/13$ mm. and separated from C₆H₆ in pale yellow needles, m. p. 102° (Found: C, $75\cdot3$; H, $3\cdot9$. C₁₅H₉OCl requires C, $74\cdot9$; H, $3\cdot8\%$). It was converted by boiling EtOH into the ethyl ester, m. p. 61° ; by MeOH into methyl phenanthrene-9-carboxylate, long needles, m. p. 115° , from MeOH (Found: C, $81\cdot2$; H, $5\cdot1$. C₁₆H₁₂O₂ requires C, $81\cdot4$; H, $5\cdot1\%$); by NH₃ in dry Et₂O into the amide, m. p. 226° ; and by aniline (2 mols.) in warm CHCl₃ into the anilide, m. p. 218° after crystn. from much EtOH or from acetone-ligroin (b. p. $60-80^{\circ}$) (Found: C, $84\cdot9$; H, $5\cdot1$. C₂₁H₁₅ON requires C, $84\cdot85$; H, $5\cdot1\%$).

Phenanthrene-9-aldehyde.—The anilide (10 g.) was treated with PCl₅ (7 g.) in C₂H₂Cl₄ at 140—150°, the POCl₃ removed under reduced press., and the iminochloride dissolved in C₂H₂Cl₄ and slowly added to SnCl₂ (28 g.) in ethereal HCl (250 c.c.) at 0°. After some hr. the orange aldimine stannichloride was washed with Et₂O and hydrolysed with hot 2N-HCl. Phenanthrene-9-aldehyde (6 g.) separated from ligroin (b. p. 60—80°) in rosettes of pale yellow prisms, m. p. 101° (Found: C, 87·6; H, 4·85. C₁₅H₁₀O requires C, 87·4; H, 4·9%). The semicarbazone had m. p. 222—222·5° after crystn. from MeOH or EtOH (Found: C, 72·5; H, 5·0. C₁₆H₁₃ON₃ requires C, 73·0; H, 5·0%). The aldehyde is converted by MeOH and a trace of HCl into an oily acetal (or semiacetal), which readily regenerates the aldehyde when boiled with an excess of 2N-HCl.

Oxidation of the aldehyde with 3% KMnO₄ aq. and Na₂CO₃ aq. gave phenanthrene-9-carboxylic acid, m. p. 250° after two crystns. from EtOH.

9-Phenanthrylidenebenzylamine (as III) separated from Et₂O-ligroin (b. p. 40—60°) in almost colourless, well-formed prisms, m. p. 72—72·5° (Found: C, 89·3; H, 5·8. $C_{22}H_{17}N$ requires C, 89·5; H, 5·8%). The phenanthrene-9-aldehyde used was obtained from the pure semicarbazone and $2N-H_2SO_4$.

Phenanthrene-9-aldoxime, prepared in good yield by Bamberger and Scheutz's method (Ber., 1901, 34, 2024), separated from dil. EtOH in colourless iridescent plates, m. p. 155° (Found: C, 81·5; H, 5·2. $C_{15}H_{11}ON$ requires C, 81·4; H, 5·0). With ethereal HCl, it gave a yellow hydrochloride, m. p. 126—127°. Dehydration of the oxime with boiling Ac₂O produced 9-cyanophenanthrene, needles from EtOH; m. p. 109° (Werner and Künz, Annalen, 1902, 321, 327, give m. p. 103°) (Found: C, 88·3; H, 4·5; N, 6·9. Calc.: C, 88·6; H, 4·5; N, 6·9%): this was hydrolysed by 50% H_2SO_4 and AcOH to phenanthrene-9-carboxylic acid, m. p. 250°.

9-Phenanthrylmethylamine.—Reduction of the oxime with 3% Na-Hg and AcOH yielded the base as a colourless solid, m. p. 107° after crystn. from Et₂O-ligroin (b. p. 40—60°) (Found: C, 86·8; H, 6·5. $C_{15}H_{13}N$ requires C, 87·0; H, 6·3%): picrate, needles from EtOH containing a little acetone, m. p. 241° (decomp.) (Found: C, 57·7; H, 3·7. $C_{21}H_{16}O_7N_4$ requires C, 57·8; H, 3·7%); benzoate, needles from CHCl₃-ligroin (b. p. 60—80°), m. p. 167° (Found: C, 80·3; H, 5·8. $C_{22}H_{19}O_2N$ requires C, 80·2; H, 5·8%); acetyl derivative, m. p. 182·5° after crystn. from Ac₂O and from EtOH (Found: C, 81·7; H, 6·4. $C_{17}H_{15}ON$ requires C, 81·9; H, 6·1%).

Benzylidene-9-phenanthrylmethylamine (as IV).—The azomethine separated from C_6H_6 -ligroin in radiating aggregates of colourless needles, m. p. $103\cdot5^\circ$ (Found : C, $89\cdot7$; H, $5\cdot8$. $C_{22}H_{17}N$ requires C, $89\cdot5$; H, $5\cdot8\%$).

Mixtures of phenanthrene-9-aldehyde- and benzaldehyde-p-nitrophenylhydrazones melted as follows (A denotes the latter):

Interconversion. (a) With N-NaOEt at 84°:

Isomeride (III) used.				Isomeride (IV) used.					
Time, hr. 1	Yield, %. 98 98	M. p. 185°* 185·5	Isomeride (IV), %. 81.5 81.5	Time, hr. 1	Yield, %. 100	M. p. 185°†	Isomeride (IV), %. 81.5		

* To 10·1 mg. of this equilibrium specimen, 1·0 mg. of phenanthrene-9-aldehyde-p-nitrophenyl-hydrazone was added; the mixture had m. p. 200° (calc., 199°).

† 10.3 Mg. of this equilibrium specimen and 1.4 mg. of phenanthrene-9-aldehyde-p-nitrophenyl-hydrazone gave a mixture, m. p. 201.5° (calc., 202°).

Equilibrium: IV (81.5%) == III (18.5%)

Shoppee: Symmetrical Triad Prototropic Systems. Part IX. View 4 Picle Online

The proximity of the eutectic (at 82.5% of isomeride IV) to the equilibrium point affects adversely the sharpness of the m. p.'s.

(b) With 0.145N-NaOEt at 82° :

Isomeride (III) used.

Isomeride (IV) used.

					/				
			Isomer-					Isomer-	`
Time,	Yield,		ide (IV),	$k_1 + k_2$	Time,	Yield,		ide (IV),	$k_1 + k_2$
min.	%.	М. р.	%.	hr.−1.	min.	%.	М. р.	%.	hr1.
0	101, 102	265°	0	_	120	100	185°	81.5	_
5		254254.5	14	2.26	40	101	182-183.5*	83	
10	98	245	26	2.30	15	100	184	85	
15	101	237.5	36	2.33	10	100	185.5	85.5	
20	102	233.5	41	2.10	5	99	187	92.5	
25	98	224.5	50	2.28	0	100	190	100	
30	98	221	$\bf 54$	2.18					
35	99	214-214 ·5		2.36					
40	99	210	65	2.39					
120	98	185	81.5		* T	his is ve	ery close to t	he eutect	tic.

Equilibrium: IV $(81.5\%) \rightleftharpoons III (18.5\%)$; $k_1 + k_2$ (mean of values derived from isomeride III) = 2.27 hr.⁻¹; $k_1/k_2 = 4.41$; $k_1 = 1.85$; $k_2 = 0.42$.

Owing to the one-sided nature of the equilibrium and to the form of the temp.—composition diagram, reliable vel. consts. are obtained only from isomeride (III).

β-Naphthyl Compounds.

β-Naphthanilide was converted by PCl₅ into the imino-chloride, which was reduced with SnCl₂ in ethereal HCl to yield β-naphthaldehyde, m. p. 59°.

β-Naphthylidenebenzylamine (as III) separated from EtOH in colourless plates, m. p. 83.5° (Found: C, 88.0; H, 6.05. C₁₈H₁₅N requires C, 88.1; H, 6.2%).

β-Naphthylmethylamine.—ω-Bromo-β-methylnaphthalene, m. p. 56°, b. p. 180—182°/20 mm., obtained by bromination of β-methylnaphthalene at 200°, condensed with potassium phthalimide (1 mol.) at 180° to give phthalo-β-naphthylmethylimide, m. p. 150—151°, needles from acetone–EtOH (Found: C, 79·7; H, 4·6. C₁₉H₁₃O₂N requires C, 79·4; H, 4·6%). Fission of the phthalimide with N₂H₄ produced β-naphthylmethylamine, m. p. 59—60°, b. p. 180°/24 mm: picrate, needles from EtOH, m. p. 230—231° (decomp.) (Found: C, 52·5; H, 3·8. C₁₇H₁₄O₇N₄ requires C, 52·8; H, 3·5%); benzoate, m. p. 163° after crystn. from CHCl₃-ligroin (Found: C, 76·8; H, 6·1. C₁₈H₁₇O₂N requires C, 77·4; H, 6·2%).

Benzylidene-β-naphthylmethylamine (as IV) separated from EtOH in colourless plates, m. p. 85.5° (Found: C, 88.0; H, 6.4%).

Mixtures of β -naphthaldehyde-p-nitrophenylhydrazone and benzaldehyde-p-nitrophenylhydrazone melted as follows (A denotes the latter):

Interconversion. (a) With 1.45N-NaOEt at 85°:

Isomeride	Time at 85° with			Isomeride
used.	NaOEt, hr.	Yield, %.	М. р.	(IV), %.
III	1	97.5	206·5°	41
IV	1	97	207	41

Equilibrium: IV $(41.0\%) \rightleftharpoons III (59.0\%)$.

(b) With 0.145N-NaOEt at 82°:

Isomeride (III) used. Isomeride (IV) used.

						\sim				
Time at 82°			Isomer-		Time at 82°			Isomer-		
with NaOEt,	Yield,		ide (IV),	$k_1 + k_2$	with NaOEt,	Yield,		ide (IV),	$k_1 + k_2$	
min.	%.	М.р.	%.	hr1.	min.	%.	M. p.	%.	hr1.	
0	103	230°	0		90	98	207°	41	_	
5	100.5	227	7.5	(2.42)	60	99	205	43	3.48	
7.5	100	225	12	`2·76	30	101	198	50	(3.76)	
10	100	223	16	2.96	20	100	185	61	3.24	
12.5	98	221.5	18.5	2.88	17.5	93.5	181	64	3.22	
15	101	220	22	3.08	10	101	172.5	73.5	3.22	
20	101	218	26	3.01	7.5	101	178	81.3	3.04	
30	100	214	$32 \cdot 3$	3.09	5.5	100	180.7	85.5	3.07	
60	98	208.5	39	3.01	5	100	181.5	86.5	3.11	
90	97	207	41		0	100	190	100		

Equilibrium : IV $(41.0\%) \rightleftharpoons$ III (59.0%); $k_1 + k_2$ (mean) = 3.08 hr. $^{-1}$; $k_1/k_2 = 0.695$; $k_1 = 1.26$; $k_2 = 1.82$.

a-Naphthyl Compounds.

 $\alpha\textsc{-Naphthaldehyde}$, prepared in the same way as the $\beta\textsc{-compound}$ and purified through the bisulphite compound, had b. p. $156^\circ/15\,\text{mm}$., $150^\circ/9\,\text{mm}$.

 β -Naphthylidenebenzylamine (as III) was obtained as a pale yellow oil, b. p. $208^{\circ}/0.4$ mm. (Found: C, 87.8; H, 6.0. $C_{18}H_{18}N$ requires C, 88.2; H, 6.2%).

Phthalo-β-naphthylimide, m. p. 175—176° after crystn. from acetone—EtOH (Found: C, 79·0; H, 4·6. C₁₉H₁₃O₂N requires C, 79·4; H, 4·6%), on fission with N₂H₄ gave β-naphthylmethylamine, b. p. 174—175°/19 mm.: picrate, needles, m. p. 227° (decomp.), from EtOH (Found: C, 52·9; H, 3·7. C₁₇H₁₄O₇N₄ requires C, 52·8; H, 3·5%); benzoate, rectangular plates, m. p. 142·5—143°, from CHCl₃-ligroin (b. p. 60—80°) (Found: C, 77·0; H, 6·15. C₁₈H₁₇O₂N requires C, 77·4; H, 6·15%).

Benzylidene- α -naphthylmethylamine (as IV) separated from EtOH in pearly plates, m. p. 55.5° (Found: C, 88.2; H, 6.2%).

Mixtures of α -naphthaldehyde- and benzaldehyde-p-nitrophenylhydrazone melted as follows (A denotes the latter):

Interconversion. (a) With 1.45N-NaOEt at 85°:

Isomeride	Time at 85° with			Isomeride
used.	NaOEt, hr.	Yield, %.	M. p.	(IV), %.
III	1	100	178·5°	73
IV	1	99	176	74

Equilibrium : IV $(73.0\%) \rightleftharpoons III (27.0\%)$.

The eutectic mixture contains 74% of isomeride (IV), and the coincidence of this with the equilibrium mixture renders difficult the determination of the m. p.'s of equilibrium specimens.

(b) With 0·145N-NaOEt at 82°. The isomeride (III) yielded somewhat variable constants as compared with (IV); since (III) is a liquid and therefore of uncertain purity, the constants given by (IV) are preferred.

	Time at 82°				$k_1 + k_1$	₂ , hr1.
Isomeride	with NaOEt,			Isomeride	Calc. from	Calc. by
used.	min.	Yield, %.	М. р.	(IV), %.	zero time.	time diff.
	(0	101, 102.5	234°	0	_	
	2·5 5	101	230	8	2.84	2.84
		97.5	226.5	15	2.76	3.10
	7.5	96	225	18	2.27	(1.27)
III	⟨ 10	96	223	22	$2 \cdot 15$	(1.81)
	12.5	98	$219 \cdot 2$	29	2.43	3.70
	15	100	216	35	2.60	3.35
	35	99	200	56.5	2.55	2.16
	(90	101	178.5	73		
	/ 90	99	176	74*		
	35	100	178	76	(3.76)	
	15	100	183	84.5	3.41	
	12.5	99	183.5	86	3.51	
IV	<i>{</i> 10	100	184.5	88	3.52	
	7.5	100	185.5	90.5	3.47	
	5	100	187	93.5	3.31	
	2.5	101, (103)	188, (188)	96.3	3.43	
	(0	100	190	100		

* This is also the eutectic mixture.

Equilibrium: IV $(73.0\%) \rightleftharpoons III (27.0\%)$; $k_1 + k_2$ (mean of values derived from isomeride IV) = 3.44 hr.⁻¹; $k_1/k_2 = 2.70$; $k_1 = 2.51$; $k_2 = 0.93$.

p-Diphenyl Compounds.

4-Aminodiphenyl (as hydrochloride) was smoothly converted (contrast Ferriss and Turner, J., 1920, 117, 1148; Gull and Turner, J., 1929, 498) by the Sandmeyer reaction into 4-cyanodiphenyl (yield, 45%), which was removed by steam at 110—120°, extracted and dried in Et₂O, and obtained as a water-clear liquid, b. p. 190—193°/20 mm., m. p. 86°.

Diphenyl-4-carboxyanilide, prepared from the acid chloride (b. p. $185-186^{\circ}/12$ mm., m. p. $107-108^{\circ}$ after crystn. from C_6H_6 -ligroin. Found: C, 72.8; H, 4.4. $C_{13}H_9$ OCl requires

Part IX. Article Online Shoppee: Symmetrical Triad Prototropic Systems.

C, 72.0; H, 4.2%) and hot aniline (2 mols.), formed colourless needles, m. p. 220°, from EtOH (Found: C, 84.0; H, 5.5. $C_{19}H_{15}ON$ requires C, 83.5; H, 5.5%).

Diphenyl-4-aldehyde was readily obtained by Hey's modification (J., 1931, 2476) of the Gattermann-Koch synthesis; m. p. 60° after crystn. from ligroin (b. p. 80-100°). The semicarbazone separated from EtOH in plates, m. p. 243° (decomp.) (Found: C, 70.3; H, 5.6. $C_{14}H_{13}ON_3$ requires C, 70.3; H, 5.5%).

4-Phenylbenzylidenebenzylamine (as III) separated in felted needles from Et.O-ligroin, CCl₄-ligroin, or MeOH; it melted at 52°, resolidified at 52-53°, and melted again at 60° (Found: C, 88-8; H, 6-3. $C_{20}H_{17}N$ requires C, 88-6; H, 6-3%).

Diphenyl-4-aldoxime was obtained quantitatively from alc. solutions of the aldehyde and NH₂·OH (Na₂CO₃); m. p. 150° (cf. Gattermann, Annalen, 1906, 347, 381). Dehydration with hot Ac₂O gave 4-cyanodiphenyl, m. p. 86°.

4-Phenylbenzylamine was readily obtained by reduction of the aldoxime with 3% Na–Hg and AcOH as a water-clear liquid, b. p. 195°/20 mm., solidifying to crystals, m. p. 53—54° (Found: C, 84.9; H, 7.2. C₁₃H₁₃N requires C, 85.2; H, 7.2%): picrate, leaflets, m. p. 218° (decomp.), from MeOH (Found: C, 55.3; H, 4.0. C₁₉H₁₅O₂N₃ requires C, 55.3; H, 3.9%); benzoate, felted needles, m. p. 151°, from CHCl₃ (Found: C, 78·5; H, 6·0. C₂₀H₁₉O₂N requires C, 78·7; H, 6.3%); acetyl derivative, plates, m. p. 182°, from Ac2O or MeOH (Found: C, 79.7; H, 6.7. $C_{15}H_{15}ON$ requires C, 80.0; H, 6.7%).

Benzylidene-4-phenylbenzylamine (as IV) crystallised from MeOH in pearly plates, m. p. 76° (Found: C, 88.75; H, 6.3%).

Mixtures of 4-phenylbenzaldehyde- and benzaldehyde-p-nitrophenylhydrazones melted as follows (A denotes the latter):

Interconversion. (a) With 1.45N-NaOEt at 85°:

someride	Time at 85° with			Isomeride
used.	NaOEt, hr.	Yield, %.	M. p.	(IV), %.
III	1	95.3	180°	39
IV	1	96	180	39

Equilibrium: IV $(39.0\%) \rightleftharpoons III (61.0\%)$.

(b) With 0.145N-NaOEt at 82°:

Isomeride (III) used.

Tsom	eride	(IV)	nsed

		~					\sim		
Time at 82°			Isomer-		Time at 82°			Isomer-	•
with NaOEt,	Yield,		ide (IV),	$k_1 + k_2$	with NaOEt.	Yield,		ide (IV),	$k_1 + k_2$
min.	%.	М. р.	%.	hr1.	min.	%.	M. p.	%.	ĥr.~¹. *
0	102	216°	0		90	96	180°	39	_
5	100	208.5	8.5	2.94	30	99	167	52	3.09
10	100	203	14.8	2.86	25	98	162.5	55.5	2.86
15	98	198.5	20	2.87	20		164	61.5	2.99
20	99	194.5	24	2.86	15	100	170.3	68	2.97
25	97	191	27.7	2.96	10	100	176.3	76	2.99
30	94.5	$189 \cdot 2$	29.7	2.86	5	101.5	181.5	83.5	(3.78)
90	95	180	39		0	100	190	100	`'

Equilibrium: IV (39.0%) \rightleftharpoons III (61.0%); $k_1 + k_2$ (mean) = 2.93 hr. -1; $k_1/k_2 = 0.639$; $k_1 = 1.14$; $k_2 = 1.79.$

4-Aminodiphenyl-4'-sulphonic Acid.—4-Aminodiphenyl (17 g.) was heated with H₂SO₄ (30 g.) at 170° for 4 hr., the melt poured into ice-water, and the 4-aminodiphenyl-4'-sulphonic acid (this is the sole product of sulphonation at 130—180°) purified as for sulphanilic acid (Thorpe and Whiteley, "Organic Chemical Analysis," p. 207); yield, 14.5 g. The acid separated from H₂O in iridescent plates, m. p. 270° (eventual decomp.) (Found: C, 58·0; H, 4·5; N, 5·4; S, 12.8. Calc.: C, 57.8; H, 4.5; N, 5.6; S, 12.8%).

Orientation.—The Na salt (5.5 g.), suspended in NaNO2 aq. (1.45 g. in 10 c.c. H2O), was slowly treated at 5° with 50% H₂SO₄ (40 c.c.); after 2 hr., the colourless diazonium complex was filtered off and washed with EtOH and Et₂O; it carbonised suddenly at 161°. The substance and an equal wt. of Zn dust were warmed in dry EtOH (N and acetaldehyde were evolved), and finally the solution was refluxed for 2 hr., filtered, and evaporated in vac. The residue was boiled with 2N-Na₂CO₃; from the filtered cooled extract, sodium diphenyl-4-sulphonate

separated. It was recrystallised from hot H₂O, dried at 110°, and heated with K₄Fe(CN)₆ (2 parts) in a current of CO₂. The distillate consisted of 4-cyanodiphenyl, m. p. 86°, and its polymeride: both were hydrolysed by 50% H₂SO₄ containing AcOH to diphenyl-4-carboxylic acid, m. p. and mixed m. p. 220—221°.

m-Diphenyl Compounds.

3-Cyanodiphenyl was prepared by the method of Gomberg and Bachmann (J. Amer. Chem. Soc., 1924, 46, 2339) or of Gomberg and Pernert (*ibid.*, 1926, 48, 1372). The tarry product of the coupling reaction from 3-cyanoaniline (75 g.), after removal of excess of C_6H_6 was distilled with steam (120°), an ethereal extract of the distillate dried (CaCl₂), and the oil in it fractionated: (i) b. p. $100-120^\circ/20$ mm. (3 g.), mainly benzonitrile; (ii) b. p. $180-189^\circ/20$ mm. (1·5 g.); (iii) b. p. $189-192^\circ/20$ mm. (11 g.), consisting of pure 3-cyanodiphenyl, solidified completely, and after crystn. from Et_2O -ligroin (b. p. $40-60^\circ$) had m. p. 48° . Fraction (ii) became partly solid after seeding, and gave a further small quantity of 3-cyanodiphenyl.

Diphenyl-3-aldehyde.—(a) 3-Cyanodiphenyl (11.5 g.) in Et₂O (25 c.c.) was added to $SnCl_2$ (18.5 g.) in Et₂O (150 c.c., saturated with HCl at 0°); after 12 hr., the stannichloride was washed

with Et,O and decomposed with hot H,O.

(b) Diphenyl-3-carboxyanilide, prepared by successive treatment of the acid with SOCl₂ and NH₂Ph (2 mols.), separated from EtOH in colourless needles, m. p. 184° (Found: C, 83·6; H, 5·6. C₁₉H₁₅ON requires C, 83·5; H, 5·5%). It (9 g.) was heated in C₂H₂Cl₄ with PCl₅ (7 g.) at 140° for 1 hr., POCl₃ and a part of the solvent removed in vac., and the iminochloride added to SnCl₂ (30 g.) in Et₂O (250 c.c., saturated with HCl at 0°); after 12 hr., the yellow stannichloride was separated and hydrolysed with 2N-HCl (50 c.c.).

The product from (a) or (b) was extracted and roughly dried in Et₂O, recovered, and converted into the bisulphite compound, which was colourless after being washed with EtOH and Et₂O. Regenerated from the bisulphite compound, diphenyl-3-aldehyde had b. p. 187—188°/21 mm. [(a) 4·5 g.: (b) 3 g.] (Found: C, 85·4; H, 5·55. C₁₃H₁₀O requires C, 85·7; H, 5·5%): semicarbazone, needles, m. p. 193°, from EtOH (Found: C, 70·3; H, 5·6. C₁₄H₁₃ON₃ requires C, 70·3; H, 5·5%); 2:4-dinitrophenylhydrazone (prepared according to Brady; J., 1931, 756), orange needles, m. p. 229°, from xylene (Found: C, 63·2; H, 4·0. C₁₉H₁₄O₄N₄ requires C, 63·0; H, 3·9%); oxime, a syrup, yielding a hydrochloride, m. p. 118—119°. Oxidation of the aldehyde with KMnO₄ and Na₂CO₃ gave the acid, m. p. and mixed m. p. 164° (Found: C, 78·8; H, 5·3. Calc.: C, 78·8; H, 5·1%).

3-Phenylbenzylidenebenzylamine (as III) was obtained as a faintly yellow oil, b. p. $224^{\circ}/1$ mm. (Found: C, 88·8; H, 6·35. $C_{20}H_{17}N$ requires C, 88·6; H, 6·3%).

3-Phenylbenzylamine.—3-Methyldiphenyl was prepared by Gomberg and Pernert's method (J. Amer. Chem. Soc., 1926, 48, 1372); the fraction (20 g.), b. p. 260-275°, from m-toluidine (107 g.) was dissolved in EtOH-HCl and treated with Zn dust to remove azo-compounds, and the product, after evapn. of EtOH, taken up in Et₂O, washed with 2N-H₂SO₄ and 2N-Na₂CO₃, dried, and distilled in vac.; the hydrocarbon (16 g.) was then obtained as a colourless liquid, b. p. 159—160°/27 mm. By bromination (1 mol. Br) at 195°, ω-bromo-3-methyldiphenyl was obtained as a straw-coloured liquid, b. p. 205-210°/24 mm., which crystallised; twice recryst. from ligroin (b. p. 40-60°), it formed colourless plates (15.5 g.), m. p. 57-58° (Found: C, 62.5; H, 4.5; Br, 33.4. Calc. for $C_{13}H_{11}Br: C$, 63.1; H, 4.5; Br, 32.4%). [It seems likely that the b. p. 150°/15 mm. given by Ingold and Patel (J. Indian Chem. Soc., 1930, 7, 107) relates to the hydrocarbon and not the ω -bromo-derivative.] Condensation with potassium phthalimide at 185° afforded phthalo-m-diphenylmethylimide, needles, m. p. 138°, from EtOH (Found: C, 80.4; H, 4.9; N, 4.4. $C_{21}H_{15}O_2N$ requires C, 80.5; H, 4.8; N, 4.5%), accompanied by a small quantity of phthalimide. Fission with N2H4 furnished 3-phenylbenzylamine hydrochloride, crystallising from H₂O in colourless plates. The base, b. p. 182°/18 mm., m. p. 29°, formed a picrate, yellow needles, m. p. 220° (decomp.), from MeOH (Found: C, 55·2; H, 4·2. C₁₉H₁₆O₇N₄ requires C, 55.3; H, 3.9%), and acetyl derivative, prisms, m. p. 115—116° (Found: C, 79.8; H, 6.6. $C_{15}H_{15}ON$ requires C, 80.0; H, 6.7%).

Benzylidene-3-phenylbenzylamine (as IV), which is hydrolysed by washing in Et₂O with cold 2% AcOH aq., was purified by passage of CO₂ through the dry Et₂O solution (cf. J., 1932, 703): it is a faintly yellow oil, b. p. 220°/1 mm. (Found: C, 88·3; H, 6·4%).

Mixtures of 3-phenylbenzaldehyde- and benzaldehyde-p-nitrophenylhydrazones melted as follows (A denotes the latter):

A. %	•••••	0	20.6	29.0	38.1	46 ·8	60.9	73.6	79.4	100
M. p.	18	87·5°	176°	170°	162°	150·5°	166·5°	176·5°	180°	190°

Interconversion. (a) With 1.45N-NaOEt at 85°:

Isomeride	Time at 85° with			Isomeride
used.	NaOEt, hr.	Yield, %.	M. p.	(IV) , $\frac{9}{9}$.
III	1	95	155°	44
IV	1.5	95	155*	44
	1.75	95	155	44

* To 4.5 mg. of this equilibrium specimen, 2.0 mg. of m-phenylbenzaldehyde-p-nitrophenylhydrazone were added; the mixture had m. p. $167\cdot5^{\circ}$: calc., 168° .

Equilibrium: IV $(44.0\%) \rightleftharpoons III (56.0\%)$.

(b) With 0.145N-NaOEt at 82°:

	Time at 82°	ne at 82°			$k_1 + k_2$, hr. ⁻¹ .	
Isomeride	with NaOEt,			Isomeride	Calc. from	Calc. by
\mathbf{used} .	min.	Yield, %.	М. р.	(IV) , $\frac{0}{10}$.	zero time.	time diff.
	, 0	101.5	187·5°	0		
	10	100.5	181	13	2.10	
	12.5	99	178.2	17	2.34	
	15	100	177	19	2.76	
	17.5	100	175.7	21	2.22	
	20	98.5	174	23.5	$2.\overline{28}$	
III	22.5	99	172.5	25.5	$2.\overline{30}$	
***	25	96	172	26	2.14	
	27.5	98	170.5	$\frac{28}{28}$	$2.\overline{21}$	
	30	98	169	29.5	$2.\overline{21}$	
	35	98	168	31.5	2.18	
	(90	95	155	44	2 10	
	· ·					
	_/ 90	95	155	44		
	35	100	162	57	2.50	2.26
	30	99	164·7	59.7	2.54	$2 \cdot 18$
	25.5	98	168	62.5	2.59	$2 \cdot 13$
IV	⟨ 20	99	171.5	67.5	2.73	(1.74)
	15	100	174	70.0	(3.06)	`2·11 [′]
	10	(102)	$177 \cdot 2$	75.0	(3.52)	(3.52)
	(0	100′	190	100		` <u> </u>

The average value of the constant $k_1 + k_2$ (calc. from zero time) for both (III) and (IV) is 2.33 hr.⁻¹, and that similarly calc. for (III) only is 2.22 hr.⁻¹; the average of the values for (III) and those calc. by time differences for (IV) is 2.21 hr.⁻¹.

Equilibrium: IV $(44\cdot0\%) \rightleftharpoons$ III $(56\cdot0\%)$; $k_1 + k_2$ (mean) = 2·33 hr.-1; $k_1/k_2 = 0.785$; $k_1 = 1\cdot02$; $k_2 = 1\cdot31$.

The author thanks the Royal Society for a grant.

THE UNIVERSITY, LEEDS.

[Received, October 29th, 1932.]