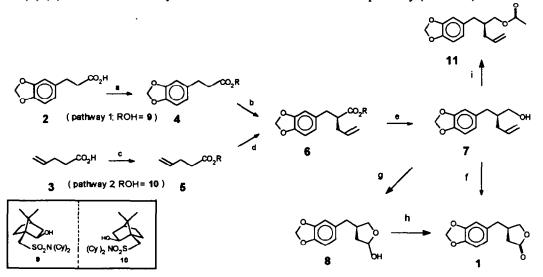


0957-4166(94)00169-3


ENANTIOSELECTIVE SYNTHESIS OF (R)-(+)- β -PIPERONYL- γ -BUTYROLACTONE

- a Escola Tecnica Federal de Química Rio de janeiro, RJ, Brazil.
- b Nucleo de Pesquisas de Produtos Naturais Universidade Federal do Rio de Janeiro Centro de Ciencias da Saude, Bloco H, Ilha da Cidade Universitaria . 21941 Rio de Janeiro, RJ, Brazil.
- ^C Departamento de Quimica Organica, Instituto de Quimica, Universidade Federal Fluminense, Niteroi, RJ, Brazil.

Abstract: Lactone (R)-(+)-1, was prepared from (2S)-(-)-2-allyl-[3',4'-(methylenedioxy)phenyl] propan-1-ol (7). This intermediate was synthesized by two complementary pathways, using as the key steps the diastereoselective alkylation of esters 4 and 5, respectively.

The (R)-(+)- β -piperonyl- γ -butyrolactone (1) and related lactones have been used as key intermediates for the synthesis of naturally occurring lignans.¹ These intermediates have been obtained optically pure or with high enantiomeric excess by resolution of synthetic precursors², by manipulation of homochiral starting materials³ and by asymmetric synthesis.⁴

In this report we describe two complementary synthetic pathways for the enantioselective synthesis of (R)-(+)-1, based on the alkylation of homochiral esters 4 and 5 respectively (scheme 1).

scheme 1: a) oxalyl chloride, benzene; AgCN, then compound 9, 80°C, 4 h, 65%, b) LDA, THF, ~ 78°C, then allyl bromide, 60%; c) oxalyl chloride, benzene; AgCN, then compound 10, 80°C, 4h, 96%; d) LDA, THF, - 78°C, then piperonyl iodide, 62%; e) LiAlH₄, THF, 0°C, 82%; f) NaIO₄, KMnO₄ cat., t-BuOH, H₂O, pH 8, 17 h, 64%; g) O₃, CH₂Cl₂, - 78°C, Me₂S, 52%; h) CrO₃, pyridine, CH₂Cl₂, 72%; i)Ac₂O, pyridine, 94%.

The easily accessible carboxylic acids 2^5 and 3^6 were used as starting materials in pathways 1 and 2, respectively. These compounds were transformed into the corresponding acyl chlorides and these intermediates were esterified with homochiral enantiomeric alcohols 9 and 10.⁷ The resulting esters 4 and 5 were kinetically deprotonated (LDA, THF, -78° C) leading probably to the corresponding E-enolates. The enolate derived from 4 was alkylated with allyl bromide (pathway 1, step b) and that derived from 5 was alkylated with piperonyl iodide (pathway 2, step d). The alkylated ester 6 was obtained, in both cases, in similar chemical yields but a better diastereoselection was observed in step d (94% d.e. versus 78% d.e.). This difference could be attributed to the greater bulky of piperonyl iodide.

The ester 6 obtained in pathway 2 (94% d.e.), was reduced to the homoallylic alcohol 7. The ¹H-NMR of its acetate derivative 11 was recorded in the presence of $Eu(hfc)_{3.}$ ⁸ The e.e. obtained (86%) was similar to that one observed for the corresponding ester 6.

Compound 7 was transformed into the desired lactone 1 either by ozonolysis followed by oxidation of the hemiketal intermediate (steps g, h)⁹ or by a one pot oxidation in the presence of catalytic potassium permanganate and sodium periodate (step f).¹⁰

Acknowledgments: International Foundation for Science (Sweden), National Research Council of Brazil (CNPq) for finantial support and to Dr. A. J. R. da Silva and E. Miguez for NMR spectra.

References and notes:

- 1. Whiting, D.A., Nat. Prod. Rep., 1990, 7, 349.
- 2. Brown, E.; Daugan, A., Tetrahedron, 1989, 45, 141.
- Tomioka, K.; Koga, K., Tetrahedron Lett., 1979, 35, 3315.
 Tomioka, K.; Mizuguchi, H.; Koga, K., Chem. Pharm. Bull., 1982, 30, 4313.
 Tomioka, K.; Ishiguro, T.; Koga, K., Chem. Pharm. Bull., 1985, 33, 609.
- Posner, G.H., Kogan, T.P.; Frye, L.L.; Haines, S.R., Tetrahedron Lett. 1984, 25, 2627. Kosugi, H.; Tagami, K.; Takahashi, A.; Kanna, H.; Uda, H., J. Chem. Soc. Perkin trans I, 1989, 935. Shao, L.; Miyata, S.; Muramatsu, H.; Kawano, H.; Ishii, Y.; Saburi, M.; Uchida, Y., J. Chem. Soc. Perkin trans I, 1990, 1441. Morimoto, T.; Chiba, M.; Achiwa, K., Tetrahedron, 1993, 49, 1793.
- 5. Barreiro, E.J.; Costa, P.R.R.; Coelho, F.A.S.; Farias, F.M.C., J. Chem. Research (S), 1985, 220; J. Chem. Research (M), 1985, 2301.
- 6. Compound 3 was purchased from Aldrich Chem. Co. and was used without purification.
- 7. Oppolzer, W., Tetrahedron, 1987, 43, 1969.
- In the presence of one equivalent of (+)-Eu(hfc)₃ some olefinic and aromatic hydrogens of (±)-11 and (S)-(-)-11 were resolved.
- 9. Tomioka, K.; Mizuguchi, H.; Koga, K., Tetrahedron Lett., 1978, 47, 4687.
- 10.Leumieux, R.U.; von Rudloff, E., Can. J. Chem., 1955, 33, 1701, [α]_D, ¹H-NMR and ¹³C-NMR of (R)-(+)-1 are in agreement with those described in the literature (see ref. 2).

(Received in UK 9 May 1994)