NEW METHOD FOR THE SYNTHESIS OF 1,2,8-TRIAZASPIRO[4.5]DECANE DERIVATIVES

V. A. Kovtunenko, L. M. Potikha, A. A. Mishchuk, and A. V. Turov

Keywords: ethyl isonicotinoyl acetate, 1,2,8-triazaspiro[4.5]decane, azo coupling, spirocyclization.

Only one method has been reported for the synthesis of 1,2,8-triazaspiro[4.5]decane derivatives based on the reaction of esters of 2-(4-piperidinylidene)acetic acid with alkylhydrazines, leading to compounds with high biological activity [1, 2]. Naito and Ninomiya [3] have reported that some N-alkylisonicotinoyl derivatives can form spirocondensed systems in the presence of bases. We have found that the reaction of 4-[(Z)-3-ethoxycarbonyl-1-hydroxy-1-propenyl]-1-methylpyridinium iodide (1) with aryldiazonium salts andsubsequent treatment of the reaction mixture with base leads to ethyl 1-aryl-8-methyl-4-oxo-1,2,8-triazaspiro-[4.5]deca-2,6,9-triene-3-carboxylates**2a-c**.

Formation of a spiro system is indicated, in particular, by the signal for the spiro atom C(5) at 76.5-76.7 ppm and the pattern for the ¹H NMR spectrum, which is characteristic for 1,4-dihydropyridines [3]. NOESY spectra and heteronuclear ¹H¹³C correlation spectra (HMQC and HMBC), which were taken in addition to ¹H and ¹³C NMR spectra, prove the structure of compound **2**. The experimental results are given in Table 1. The assignments made for the signals are shown in the scheme for compound **2a**; the HMBC and NOESY correlations, serving as the basis of these assignments, are indicated by arrows.

0009-3122/08/4408-1019©2008 Springer Science+Business Media, Inc.

Taras Shevchenko Kiev National University, Kiev 01033, Ukraine; e-mail: potikha_l@mail.ru. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1263-1265, August, 2008. Original article submitted May 22, 2008.

TABLE 1. ¹H¹³C Correlations for Compounds 2a and 2b

2a		2b	
Signal ¹ Η, δ, ppm	HMBC	Signal ¹ Η, δ, ppm	HMBC
7.51	140.3, 125.8, 118.6	7.47	161.9, 159.5, 136.7, 120.5
7.33	140.3, 129.1	7.03	161.9, 159.5, 136.7, 116.0
7.18	118.6	6.47	135.5, 95.7, 76.7, 41.6
6.45	135.3, 95.9, 76.5, 41.6	4.41	199.0, 161.9, 135.5, 95.7, 76.7,
			14.6
4.42	199.2, 162.0, 95.9, 76.5, 14.6	3.22	135.5, 95.7
3.22	135.3, 95.9	1.40	61.3
1.41	61.3		

The IR spectra were taken on a Pye-Unicam SP3-300 spectrometer with KBr plates. The ¹H and ¹³C NMR spectra were taken on a Varian Mercury 400 spectrometer at 400 and 100 MHz, respectively, in CDCl₃ using TMS as the internal standard. 4-[(Z)-3-ethoxycarbonyl-1-hydroxy-1-propenyl]-1-methylpyridinium iodide was prepared according to Bunting and Kanter [4].

Ethyl 1-Aryl-8-methyl-4-oxo-1,2,8-triazaspiro[4.5]deca-2,6,9-triene-3-carboxylates 2a-c. Aniline (3 mmol) and 21% aq. sodium nitrite (1 ml) were added with stirring to 2 N hydrochloric acid (5 ml) cooled to 0°C. The mixture was maintained for 30 min and, then, sodium acetate (1.3 g) and ethyl N-methylisonicotinoyl acetate **1** (1 g, 3 mmol) were added. The mixture was stirred for 2 h at room temperature and 10% aq. sodium hydroxide was added to bring the pH to 9. The crystalline precipitate formed was filtered off and washed with ethanol.

Ethyl Ester 2a was obtained in 54% yield (0.5 g); mp 199-201°C (ethyl acetate). IR spectrum, v, cm⁻¹: 1735 (C=O), 1685 (C=N), 1450, 1335 (C–O), 1155 (C–O), 1098, 755, 658. ¹H NMR spectrum, δ, ppm (*J*, Hz): 7.51 (2H, d, ${}^{3}J$ = 8.0, H-2', H-6'); 7.33 (2H, t, ${}^{3}J$ = 8.0, H-3', H-5'); 7.18 (1H, t, ${}^{3}J$ = 8.0, H-4'); 6.45 (2H, d, ${}^{3}J$ = 7.6, H-7, H-9); 4.42 (4H, m, CH₂CH₃, H-6, H-10); 3.22 (3H, s, N–CH₃); 1.41 (3H, t, ${}^{3}J$ = 7.0, CH₂CH₃). ¹³C NMR spectrum, δ, ppm: 199.2 (C-4); 162.0 (<u>C</u>O₂Et); 140.3 (C-1'); 135.3 (C-7, C-9); 129.1 (C-3, C-3', C-5'); 125.8 (C-4'); 118.6 (C-2', C-6'); 95.9 (C-6, C-10); 76.5 (C-5); 61.3 (CH₂); 41.6 (N–CH₃); 14.6 (C–<u>C</u>H₃). Found, %: C 65.51; H 5.45; N 13.52. C₁₇H₁₇N₃O₃. Calculated, %: C, 65.58; H 5.50; N 13.50.

Ethyl Ester 2b was obtained in 66% yield (0.65 g); mp 215-217°C (ethanol). IR spectrum, v, cm⁻¹: 1738 (C=O), 1685 (C=N), 1458, 1331 (C–O), 1231 (C–F), 1155 (C–O), 1098, 910, 840. ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.47 (2H, m, H-2', H-6'); 7.03 (2H, m, H-3', H-5'); 6.47 (2H, d, ${}^{3}J$ = 7.6, H-7, H-9); 4.41 (4H, m, CH₂Me, H-6, H-10); 3.22 (3H, s, N–CH₃); 1.40 (3H, t, ${}^{3}J$ = 7.0, CH₂CH₃). ¹³C NMR spectrum, δ , ppm: 199.0 (C-4); 161.9 (CO₂Et); 159.5 (C-4'); 136.7 (C-1'); 135.5 (C-7, C-9); 129.3 (C-3); 120.5 (C-2', C-6'); 116.1 (C-3', C-5'); 95.7 (C-6, C-10); 76.7 (C-5); 61.3 (CH₂); 41.6 (N–CH₃); 14.6 (C–CH₃). Found, %: C 61.95; H 4.83; N 12.78. C₁₇H₁₆FN₃O₃. Calculated, %: C 62.00; H 4.90; N 12.76.

Ethyl Ester 2c was obtained in 45% yield (0.47 g), mp 202-203°C (ethanol), IR spectrum, v, cm⁻¹: 1740 (C=O), 1685 (C=N), 1460, 1400, 1331 (C–O), 1160 (C–O), 1098, 910, 830. ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.43 (2H, d, ³*J* = 8.5, H-2', H-6'); 7.30 (2H, d, ³*J* = 8.5, H-3', H-5'); 6.40 (2H, d, ³*J* = 7.2, H-7, H-9); 4.42 (4H, m, C<u>H</u>₂Me); H-6, H-10); 3.23 (3H, s, N–CH₃); 1.40 (3H, t, ³*J* = 7.2, CH₂C<u>H</u>₃). ¹³C NMR spectrum, δ , ppm: 199.0 (C-4); 161.9 (<u>C</u>O₂Et); 138.9 (C-1'); 135.6 (C-7, C-9); 131.2 (C-4'); 129.8 (C-3); 129.3 (C-2', C-6'); 119.7 (C-3', C-5'); 95.7 (C-6, C-10); 76.5 (C-5); 61.5 (CH₂); 41.7 (N–CH₃); 14.7 (C-<u>C</u>H₃). Found, %: Cl 10.28; N 12.16. C₁₇H₁₆ClN₃O₃. Calculated, %: Cl 10.25; N 12.15.

REFERENCES

- 1. S. Tsukamoto, H. Nagaoka, S. Igarashi, F. Wanibuchi, K. Hidaka, and T. Tamura, *Chem. Pharm. Bull.*, **43**, 1523 (1995).
- P. W. Smith, A. W. J. Anthony, R. Bell, I. J. M. Beresford, P. M. Gore, A. B. McElroy, J. M. Pritchard, V. Saez, N. R. Taylor, R. L. Sheldrick, and P. Ward, J. Med. Chem., 38, 3772 (1995).
- 3. T. Naito and I. Ninomiya, *Heterocycles*, **15**, 735 (1981).
- 4. J. W. Bunting and J. P. Kanter, J. Am. Chem. Soc., 115, 11705 (1993).