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Conjugated diene-containing fatty acids (rumenic and rumelenic acids) are major substrates for nitration
under physiological conditions. Their nitrated products are present in human urine. These nitrodiene-
containing lipid electrophiles contain a strongly electron-withdrawing pair of conjugated double bonds
amenable to nucleophilic attack in biological milieu, which affords them pluripotent signaling capabili-
ties. We report synthetic methods to obtain useful quantities of three main biological nitrated fatty acids
(9- and 12-nitro-conjugated linoleic acids and 9-nitro-conjugated linolenic acid) in six or seven steps
from commercially available starting materials, for biological evaluation of these naturally occurring
biomolecules.

� 2021 Published by Elsevier Ltd.
Conjugated fatty acids are common dietary components
enriched in dairy products composed mainly of rumenic acid (con-
jugated linoleic acid, 9,11-CLA) [1–4] and, to a lesser extent, rume-
lenic acid (conjugated a-linolenic acid, 9,11,15-CLNA). Under
normal physiological conditions, they are nitrated in the gastric
compartment [5–6] producing 9- and 12-nitrooctadeca-9,11-die-
noic acids (i.e., 9-NO2-CLA (5) and 12-NO2-CLA (11), Fig. 1), 9-
and 12-nitrooctadeca-9,11,15-trienoic acids (i.e., 9-NO2-CLNA
(15) and 12-NO2-CLNA), and are commonly detected in human
plasma and urine [6,7]. These electrophilic lipids participate in
Michael addition reactions with cysteine thiolates in vivo to regu-
late their enzymatic activity and function [8]. As naturally occur-
ring biomolecules with unusual electrophilic signaling activities,
we viewed it important to develop methods to obtain useful quan-
tities of single-regioisomer nitro conjugated linoleates and linole-
nates for biological and pharmacological evaluation.

Nitroalkene-containing fatty acids (nitrolipids, nitro fatty acids,
NO2-FA) have been of considerable recent interest owing to their
detection in plants and mammals, cell signaling, and pharmacolog-
ical value [9]. Initial work with nitro-oleic [10] (NO2-OA) and nitro-
linoleic [11,12] (NO2-LA) acids demonstrated the modulation of the
activity of key homeostatic and inflammatory regulatory proteins,
including PPAR-c [13], NFjB [14], Keap1-Nrf2 [15,16], and STING
[17] through reversible thia-Michael addition [18] of critical cys-
teine residues of these proteins to the nitroalkene [19]. Standards
for both compounds were initially produced by nonspecific meth-
ods that gave mixed regioisomers. The biological detection and sig-
naling effects motivated developing a synthetic strategy for
specific regioisomers, which we [20] and others [21–24] accom-
plished for several nitrated lipids. The evaluation of single-isomers
[13,25] have demonstrated differing activity in various biological
contexts, with some isomers being highly unstable [26]. Recent
work on the biological role of these NO2-FA has shown them to
have unique pluripotent effects on STING [17,27] and certain can-
cer cell types [28,29]. More definitive mechanisms of cell signaling
and gene expression responses should come from an ongoing
blinded, placebo-controlled evaluation of 10-nitro oleic acid in a
Phase II clinical trial for the treatment of obesity-related asthma
[30,31].

The highest yields for the physiological nitration of fatty acids
are obtained in the stomach during digestion and occurs almost
exclusively in fatty acids containing conjugated double bonds
[5,32]. Nitration is highly prevalent during gastric digestion given
the combination of saliva-derived nitrite in the acidic milieu and
the availability of dietary conjugated fatty acids, forming mainly
9-NO2-CLA and 12-NO2-CLA (Fig. 1: 5 and 11), each containing a
1-nitro-1,3-diene. The metabolism reported for other nitrated fatty
acids—a combination of enzymatic nitroalkene to nitroalkane
mers of
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Fig. 1. Structures of synthetic targets 9- and 12-NO2-CLA (5 and 11) and 9-NO2-
Rumelenic acid (15).
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reduction [33], addition to glutathione and metabolic b-oxidation
[34]—are also major inactivation and excretion mechanisms of
these compounds as evidenced by their presence in human urine
[7,32]. Nitrodienes [35] themselves are unusually reactive motifs
in biological systems; strongly electrophilic and prone to add to
available thiols by reversible kinetically and thermodynamically-
driven reactions [8].

A prior report on NO2-CLA synthesis included a direct biomi-
metic conversion of conjugated (9,11)-linoleic acid to nitro conju-
gated linoleic acid [36], which produced NO2-CLA as a mixture of
two positional isomers. The need to further evaluate the role of
specific NO2-CLA isomers motivates the synthesis of 9-NO2-CLA
(5) and 12-NO2-CLA (11), the two most common isomers of NO2-
CLA [5] found in vivo. Moreover, rumelenic acid is not commer-
cially available to be used as a substrate for biomimetic nitration
reactions. In this work, we describe our regiospecific synthesis of
the three major biologically-detectable nitro fatty acids.

The core of our synthetic design was the assembly of the nitro-
diene and protection/deprotection of the free fatty acid. The major
functional group is the nitrodiene (1-nitro-1,3-diene) moiety pre-
sent in both isomers, which would be the product of condensation
between a nitroalkane and an a,b-unsaturated aldehyde (Fig. 2).

Nitroalkenes are frequently produced from b-nitro-alcohols,
themselves the products of nitroaldol condensation between a pri-
mary nitroalkane and an aldehyde. Literature methods [37–39] for
nitroaldol-type reactions only infrequently used a,b-unsaturated
aldehydes, and were frequently reacted with high molar excess
of a simple nitroalkane (often nitromethane). The less common
nitrodiene has been formed by this approach but the intermediates
as well as the final product are noticeably less stable, and there are
additional side reactions available at each step of the synthesis,
such as the 1,4-conjugate addition as an unproductive side reaction
(see discussion below).

Previous work with nitro-fatty acids utilized allyl esters as pro-
tecting groups for the carboxylic acid, however to avoid potential
Fig. 2. Retrosynth
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complications with a nitrodiene under palladium-catalyzed condi-
tions this work instead utilized t-butyl esters which could be
removed under mild acidic conditions [40,41].

(9E,11E)-9-Nitrooctadeca-9,11-dienoic acid (5): Key interme-
diate t-butyl 9-nitrononanoate (1) was generated (Scheme 1) in
two steps from commercially available 9-bromononanoic acid.
The acid was esterified via oxalyl chloride activation to the acyl
chloride and subsequent addition of t-butanol in the presence of
catalytic DMAP (4-dimethylaminopyridine). Then, the primary
bromide of the resulting ester was displaced with silver nitrite in
ether over one to two weeks of stirring at room temperature.
Purification to remove unreacted starting material (and a nitrite
side product, not shown) afforded useful amounts of 1 in two steps,
40% overall yield. Nitroalkyl ester 1 was subsequently coupled to
commercially available 2-trans-nonenal (2) using triethylamine
(TEA) as both base and solvent, stirred at rt for two days then
cooled to �20 �C and stirred for two additional days. While many
literature methods use a large excess of nitroalkane, this was inef-
ficient for our purposes. The desired nitro-allyl alcohol 3 was iso-
lated in 35% yield after chromatographic purification without 1,4
addition product observed. Next, the allylic alcohol group was acti-
vated by exposure to trifluoroacetic anhydride (TFAA) in dichloro-
methane, yielding allylic trifluoroacetyl ester 4. Upon isolation of
crude 4 (95%), the activated trifluoroacetate group could be elimi-
nated by exposure to potassium acetate or propionate (yields 30–
40%); however, upon consideration that the efficiency could be
enhanced by increased solubility of the carboxylate salt, we tested
tetrabutylammonium acetate and obtained an 82% yield of the
desired nitrodiene ester, which was deprotected with neat formic
acid (51%) to afford free 9-nitro-conjugated linoleic acid (5).

(9E,11E)-12-Nitrooctadeca-9,11-dienoic acid (11): The key
unsaturated aldehyde starting material for 12-nitro isomer 11, t-
butyl (E)-11-oxo-undec-9-enoate (7), was obtained from 9-dece-
noic acid in four steps (Scheme 2). Free 9-decenoic acid was readily
esterified with t-butanol [42] then oxidized to a 9,10-diol in quan-
titative yield with catalytic osmium tetroxide and N-methylmor-
pholine N-oxide (NMO). Given the poor chromatographic
behavior of these polar intermediates, the crude diol was prefer-
ably used directly in the next step. Oxidative cleavage with sodium
metaperiodate afforded the much more tractable t-butyl 9-oxono-
nanoate (6) for a total of 45% yield over three steps. This nine-car-
bon aldehyde was then homologated to an eleven-carbon a,b
unsaturated aldehyde by a Wittig-type reaction with a stabilized
ylide (formylmethylene-triphenylphosphorane), which afforded
the desired 7 in 70% yield.

Unsaturated aldehyde ester 7 was subsequently condensed
with a two-fold excess of 1-nitroheptane (8) using TEA as base
and solvent (Scheme 2), affording purified nitro-allyl alcohol 9 in
36% yield. The allylic alcohol group was subsequently trifluo-
roacetylated (10, 77%) and then eliminated with tetrabutylammo-
nium acetate to give the desired nitrodiene ester in 84% yield.
Deprotection with neat formic acid produced the desired 12-nitro
conjugated linoleic acid 11 in an improved 79% yield.

The final individual NO2-CLA isomers 5 and 11were obtained in
overall yields of 5.6% and 5.5% over six and seven steps, respec-
tively. The products were identical in all spectroscopic respects
etic strategy.



Scheme 1. Reagents and conditions: a) (COCl)2, cat. DMF; then t-BuOH; b) AgNO2/
Et2O, 40% for two steps; c) TEA, 35%; d) TFAA/CH2Cl2, �20 �C, 95% (crd); e)
tetrabutylammonium acetate (Bu4NOAc)/Et2O, 82%; f) HCO2H, 51%.

Scheme 2. Reagents and conditions: a) t-BuOH/MgSO4/H2SO4 (cat.), 68%; b) i. OsO4

(cat.), NMO/Et2O, quant.; ii. NaIO4, 71%; c) PPh3=CHCHO, MeCN, 70%; d) TEA, 36%; e)
TFAA/CH2Cl2, 77% (crd); f) Bu4NOAc/Et2O, 84%; g) HCO2H, 79%.
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to the mixture produced by direct nitration of dienes [36]. As dis-
cussed in prior work (see Ref. [36]) the nitrodiene was assigned (E,
E) based on the a-proton downfield shift from (E)-nitroalkene (d
7.1 ppm) to d7.5 ppm as opposed to upfield (Z)-nitroalkene (d
5.6 ppm). Both positional isomers have the same relative configu-
ration and display nearly identical stereoscopic data, reflecting the
relative isolation of the nitrodiene moiety from the carboxylate or
methyl terminus.

Rumelenic acid (9Z,11E,15Z-octadecatrienoic acid) [43,44] is a
triene derived from a-linolenic acid and produced in the rumen
of several animals [45–46]. Rumelenic acid contains a (9Z,11E)
diene motif and its nitration products have been identified in
human urine, making it an attractive candidate to extend synthetic
approaches to include exemplary nitro conjugated linolenic acids
(Fig. 3).

(9E,11E,15Z)-9-Nitrooctadeca-9,11,15-trienoic acid (15):
Commercially available cis-4-heptenal was homologated to trans,
cis-2,6-nonadienal (12) in 59% yield by the same Wittig-type reac-
tion used to afford 7 (Scheme 3). This dienal 12 was condensed
with nitroalkyl ester 1 in TEA over 3–5 days. Nitro-allyl alcohol
13 was isolated in 36% yield after workup and chromatography.
Fig. 3. Naturally occurring (9Z,11E,15Z)-rumelenic acid containing a (9Z,11E)
conjugated diene.

Scheme 3. Reagents and conditions: a) Ph3P=CHCHO/MeCN, 59%; b) t-butyl 9-
nitrononanoate (1)/TEA, 36%; c) TFAA/CH2Cl2, 95% (crd); d) potassium propionate
with approx. 10 mol% Bu4NOAc/Et2O, 49%; e) HCO2H, 81%.
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It was activated as trifluoroacetyl ester 14 with TFAA (quantita-
tive), then the crude trifluoroacetyl ester eliminated with potas-
sium propionate (with a catalytic amount of
tetrabutylammonium acetate) to produce a 49% yield of the nitro-
diene-alkene. Finally, the ester was deprotected with neat formic
acid to afford free 9-nitro rumelenic acid 15 in 81% yield (8.0%
overall for five steps). The additional nonconjugated double bond
was unreactive to these conditions, and no bond migration or oxi-
dation was observed.

The three required steps, condensation, activation and elimina-
tion, were also screened on a model nitrodiene (3-nitrododeca-3,5-
diene) via condensation of readily available trans-2-nonenal (2)
and 1-nitropropane (Scheme 4; also see ESI).

Nitroaldol condensation via a 1,2-addition was optimally
accomplished using TEA as solvent and base, despite a typical
30–40% yield, with suppressed production of the potential 1,4-pro-
duct (Fig. 4: 5% or less detected by 1H NMR spectroscopy) and
without decomposition or need for large stoichiometric excesses
of the nitroalkane. A number of combined acylation/elimination
strategies for activation of the b-nitro-allylic alcohol intermediate
were explored, such as acetyl and mesyl adducts, which were
unsatisfactory either in formation or elimination. Instead, our
approach developed out of our previous nonspecific nitrodiene
syntheses [36] built on the prior work of Bloom and Mellor
[47,48], in which activated b-nitro trifluoroacetyl intermediates
Fig. 4. Stepwise synthesis of t

Fig. 5. Diastereomeric considerations in eliminat

Scheme 4. Reagents and conditions: a) TEA, 39%; b) TFAA/CH2Cl2

4

were reacted with mild carboxylate bases, and was incorporated
into the current design by converting the b-nitro alcohols to b-nitro
trifluoroacetates.

The b-nitro-alcohol intermediates were formed in a roughly 2:3
diastereomeric ratio (Fig. 4) as indicated by 1H NMR spectroscopy.
The major and minor diastereomers appear to be respectively syn-
or anti-orientation, and the resulting gauche interactions and opti-
mal orientation for E2 elimination (anti-elimination: leaving-group
alignment opposite the a-proton being lost) meant one diastere-
omer would eliminate quite rapidly while the other would be
forced into a slower E1cb pathway (Fig. 5). Possibly the trifluoroac-
etate intermediates could partially eliminate before isolation, as
the dr indicated relative loss of the more active minor (anti-)
diastereomer. Incomplete elimination step reaction mixtures con-
tained unreacted (syn-) diastereomer and (E,E) nitroalkenes. Since
both the starting material and products were base-sensitive, opti-
mizing the reaction conditions required encouraging the slower
but more abundant diastereomer to react before product decompo-
sition or hydrolysis became competitive. Note the (E,E) configura-
tion appears to be a thermodynamic product, favored over
potential alternative isomers (d 7.9 ppm) with a greater than
12:1 ratio by 1H NMR spectroscopy.

This approach produced the desired products in 5–6% overall
yields and shows potential scalability. Concerns about both the
bulk stability of the intermediates and final products encourages
he conjugated nitrodiene.

ion of b-nitro trifluoroacetate intermediates.

, 85% (crd); c) potassium propionate/Et2O, 45%. R = –C5H11.
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caution in large-scale synthesis. The products and intermediates
can decompose, oxidize or polymerize upon extended storage
without solvent. Particularly notable is the loss of the 5–6 ppm
region alkene peaks relative to other features by 1H NMR spec-
troscopy, that could be used to assess the integrity of the interme-
diate products. The nitroalcohol and nitro-trifluoroacetate
intermediates were reactive but less so than the nitrodiene. It is
recommended to move rapidly through the synthetic sequence to
minimize opportunities for decomposition. The nitrodiene-con-
taining compounds were sensitive to high concentration and ther-
mal conditions, including rotary evaporation to dryness at elevated
temperatures. Importantly, the nitrodienes are stable long-term in
dilute solution at low temperatures and the overall synthetic con-
ditions are mild, so this should be extendable to larger-scale work.

This synthetic approach provides additional value by being
amenable to isotopic labeling to generate mass spectrometry stan-
dards and support metabolic studies. Nonspecific nitration using
[15N]-nitrates yields single mass-unit difference mass spectrome-
try standards. Also, multiple commercially available deuterated
analogs of starting materials for 2 and 8 (e.g. heptanal and n-bro-
moheptane) allow for the synthesis of a variety of isotopomers
with significant and specific molecular weight variations. These
approaches could also be extended to several potential conjugated
diene nitro linolenic or other polyunsaturated fatty acids, as well as
non-naturally occurring isomers of variable chain length. Future
directions include the synthesis of isotopically labeled NO2-CLA
to support analytical method developments and clinical evaluation
and quantification of these species, mechanism and products of
thia-Michael addition to these nitrodienes, and characterization
of nitration products of additional related conjugated diene or tri-
ene (CLNA) containing fatty acids.
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