
REGIOSPECIFIC SYNTHESIS OF α -(PHENYLTHIO)KETONES VIA RHODIUM(II) ACETATE CATALYSED ADDITION OF THIOPHENOL TO α -DIAZOKETONES M. Anthony McKervey and Piniti Ratananukul Department of Chemistry, University College, Cork, Ireland

<u>Summary</u> $\alpha\alpha$ -Addition of thiophenol to α -diazoketones is catalysed efficiently by rhodium(II) acetate in benzene solution at room temperature, offering a convenient regio-specific route to a variety of α -(phenylthio)ketones.

The versatility in synthesis of sulphur-containing substituents adjacent to the carbonyl group in aldehydes, ketones, carboxylic acids, esters, and lactones had led to the development of a number of useful transformations.¹ Most approaches to the introduction of sulphur-containing α -substituents involve either $S_N 2$ displacement of a halogen atom from an α -halo carbonyl compound² or direct sulphenylation of a preformed enolate with a dialkyl or diaryl disulphide.³ Since regiospecificity is frequently an important additional objective of the substitution process, the application of these methods requires access to regiodefined α -halo carbonyl compounds and enolates. We describe here a convenient alternative route which makes available a range of α -(phenylthio)ketones from non-ketonic precursors. The method is based on the insertion of α -diazocarbonyl compounds into acidic X-H bonds catalysed by transition metals. This reaction, which is formally an $\alpha\alpha$ -addition with displacement of nitrogen, is well established with alcohols under copper,⁵ palladium,⁶ and rhodium⁷ catalysis. We have found that thiophenol undergoes very efficient $\alpha\alpha$ -addition to a variety of α -diazoketones in the presence of catalytic amounts of rhodium(II) acetate in benzene solution at room temperature. Since many acyclic α -diazoketones (3) can be prepared in excellent Yield from acyl chlorides (1) and diazoalkanes (2), this route to α -(phenylthio)ketones (4) does not depend on the production of α -halo ketones or regiospecific enolates nor does it require the availability of the parent ketone. The following procedure is representative for the substrates summarised in the Table; the yields quoted refer to analytically pure products.

2509

2510

To a stirred solution of thiophenol (0.61g) in dry benzene (40 ml) containing rhodium(II) acetate (1 mg) was added a solution of diazoacetone (5) (0.42g) in dry benzene (10 ml) over 10 minutes at room temperature; nitrogen evolution was observed over the addition period. After an additional 25 minutes the solution was washed with 5% aqueous sodium hydroxide and water, then dried and concentrated to yield α -(phenylthio)acetone (0.79g,95%) of >95% purity by nmr. An analytically pure sample was obtained by distillation at 125-130^oC/0.75 mm Hg. The product crystallised on standing, mp 31-32^oC (1it.⁸ 33-34^oC).

Substrates (5)-(18) in the Table were prepared from the corresponding acyl chlorides and converted into the α -(phenylthio)ketones shown. Comparison of entries (5) and (11) shows that α -diazoketones derived from diazomethane and diazoethane produce adducts with comparable ease. Thus this route may be generally useful for

TABLE

α -Diazoketone		α -(Phenylthio)ketone	Yield
CH ₃ COCHN ₂ (5)		CH ₃ COCH ₂ SPh	84%
PhCOCHN ₂ (6)	>	PhCOCH ₂ SPh	72%
p-CH ₃ C ₆ H ₄ COCHN ₂ (7)		p-CH ₃ C ₆ H ₄ COCH ₂ SPh	79%
PhCH ₂ COCHN ₂ (8)	>	PhCH ₂ COCH ₂ SPh	76%
PhCH ₂ CH ₂ COCHN ₂ (9)		PhCH ₂ CH ₂ COCH ₂ SPh	73%
$PhCH_2CH_2CH_2COC(CH_3)N_2(10)$	>	- PhCH ₂ CH ₂ CH ₂ COCH(CH ₃)SPh	71%
$CH_3COC(CH_3)N_2(11)$		CH3COCH(CH3)SPh	83%
N_2 CHCO(CH ₂) ₄ COCHN ₂ (12)		PhSCH ₂ CO(CH ₂) ₄ COCH ₂ SPh	81%
N_2 CHCO(CH ₂) ₅ COCHN ₂ (13)		PhSCH ₂ CO(CH ₂) ₅ COCH ₂ SPh	86%
N_2 CHCO(CH ₂) ₆ COCHN ₂ (14)	>	PhSCH ₂ CO(CH ₂) ₆ COCH ₂ SPh	85%
N_2 CHCO(CH ₂) ₇ COCHN ₂ (15)		PhSCH ₂ CO(CH ₂) ₇ COCH ₂ SPh	88%
N_2 CHCO(CH ₂) ₈ COCHN ₂ (16)	>	PhSCH ₂ CO(CH ₂) ₈ COCH ₂ SPh	86%
N_2 CHCO(CH ₂) ₁₀ COCHN ₂ (17)	>	PhSCH ₂ CO(CH ₂) ₁₀ COCH ₂ SPh	88%
N_2 CHCO(CH ₂) ₁₂ COCHN ₂ (18)	>	PhSCH ₂ CO(CH ₂) ₁₂ COCH ₂ SPh	92%

regiospecific α -activation of methyl and ethyl ketones in situations where conventional regiospecific enolate formation is difficult or impossible. Entry (10) provides an illustrative example of the regiospecific introduction of an α -(phenylthio) substituent at a position that would be very difficult to functionalise regiospecifically if one were to start with the parent ketone, PhCH₂CH₂CH₂COCH₂CH₃. The method works equally well with difunctional α -diazoketones as is demonstrated by entries (12)-(18), each of which produced the appropriate $\alpha\omega$ -bis- α -(phenylthio)ketone in excellent yield. Cyclic α -diazoketones (19), (20), and (21)⁹ are also smoothly converted to α -(phenylthio)cycloalkanones¹⁰ using this simple catalytic procedure and the final entry, ethyl diazoacetate (22) illustrates the application of the method to the production of α -(phenylthio) esters.

REFERENCES

- For comprehensive reviews see B.M. Trost, Chem.Rev., 1978, <u>78</u>, 363, and Acc.Chem.Res., 1978, 11, 453.
- W.E. Truce and R. Knospe, J.Amer.Chem.Soc., 1955, <u>77</u>, 5063; R.L. Crumbie,
 B.S. Deol, J.E. Nemorin, and D.D. Ridley, Aus.J.Chem., 1978, <u>31</u>, 1965.

- 3. B.M. Trost and T.N. Salzmann, J.Amer.Chem.Soc., 1973, 95, 6840.
- For less direct ways of introducing sulphur-containing α-substituents see
 P. Blatcher and S. Warren, J.C.S. Perkin I, 1979, 1074, and D.J. Ager, Tetrahedron Letters, 1981, 2803.
- 5. P. Yates, J.Amer.Chem.Soc., 1952, 74, 5376.
- M. Takebayasi, T. Ibata, H. Kohara, and B.H. Kim, Bull.Chem.Soc.Jpn., 1967, <u>40</u>, 2392.
- P. Paulissen, H. Reimlinger, E. Hayez, A.J. Hubert, and Ph. Teyssie, Tetrahedron Letters, 1973, 2233.
- F. Takuo and T. Toshiyas, Nippon Kagaku Zasshi, 1969, <u>90</u>, 936 (Chem.Abstr., 1970, <u>72</u>, 44092x).
- Prepared by the procedure of M. Regitz, J. Ruter, and A. Leidhegener, Org.Syn., 1971, <u>51</u>, 86.
- Products were identified by their spectroscopic properties and all new compounds gave satisfactory analytical data on combustion.

(Received in UK 6 April 1982)