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Asymmetric metal catalysis is one of the most active areas
in modern organic chemistry, and the number of novel ligands
for catalytic asymmetric transformations is growing rapidly.["
Among these compounds, planar chiral ferrocenes® are of
immense importance and some of them have already found
application in industrial processes.”l Often, ferrocenes are
superior to other metal  complexes,* although for some
catalyses it was found that a variation of the m-bound metal
fragment can be of benefit.P!

Recently, we developed a system for the enantioselective,
catalytic synthesis of diarylmethanol compounds from alde-
hydes by utilizing ferrocene 1! and a zinc species generated in
situ from ZnPh,/ZnEt, (Scheme 1).l Further optimization of
the process was expected to be possible by variation of the
metal - st-fragment of 2.1 °) Herein, we describe the synthesis
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Scheme 1. Enantioselective phenyl transfer onto aldehydes and catalyti-
cally active metal complexes.
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and application of novel cyrhetrene 3, which was found to be
superior in terms of both enantioselectivity and catalyst
loading in the phenyl transfer to a wide variety of alde-
hydes.['%]

Modifications of the metal — n-fragment of 2 were expected
to have an impact on the steric and electronic properties of the
catalyst. Assuming that decreased electron density on the
ligand would result in increased Lewis acidity of the catalyst,
we focussed our attention primarily on the synthesis of metal
tricarbonyl complexes.”! There, the electron-withdrawing
properties of the carbonyl groups would lower the electron
density on the metal center as well as on the remaining
cyclopentadienyl fragment bearing the stereogenic elements.
If these electronic changes are then efficiently transferred to
the catalytically active site and if the simultaneously occurring
steric modifications are not counterproductive, beneficial
effects in the catalysis could result. Due to its expected
chemical stability rthenium(i) complex 3 appeared to be the
complex of choice. To the best of our knowledge, #’-cyclo-
pentadienylrhenium(i)tricarbonyl complexes have not been
utilized in asymmetric catalysis, and only one nonracemic
planar chiral derivative has been described.!'" 12l Our synthesis
of 3 started from cyrhetrenyl carboxylic acid 4, which was
obtained in a straightforward manner from [Re,(CO),,] and
cyclopentadienyl carboxylic acid following an excellent, high-
yielding procedure published by Jaouen et al.l®l The cyrhe-
trenyl oxazoline 6!'l was synthesized in an analogous manner
to the corresponding ferrocene derivatives via amide 5, which
was cyclized using the Appel protocol (Scheme 2).1'1 Directed
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Scheme 2. Synthesis of complex 3.

ortho-metalation!'?! of 6 using nBulLi in diethyl ether(!”! and
subsequent quenching of the resulting lithiated species
with benzophenone led to diastereomeric products in
aratio of 9:1 in favor of the product with S,R, configuration.'¥]
All transformations give good to excellent yields, and the
compounds are crystalline and stable to air, light, and
moisture.['4!

To confirm the relative configuration of 3, the solid-state
structure of the cyrhetrenyl complex was determined by
single-crystal X-ray structure analysis.'* "] As depicted in
Figure 1 one phenyl group of 1 is equatorial, while the other
occupies an axial position with regard to the cyclopentadienyl
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Figure 1. Structure of 3 (ORTEP plot; ellipsoids plotted with 50%
probability).

backbone. The relative location of the fert-butyl group at the
oxazoline group is trans with respect to the axial phenyl group.
Overall, the structural features of cyrhetrene 3 are very
similar to those of ferrocene 1, which suggested its potential
use in catalysis.

The catalytic properties of 3 were explored in the asym-
metric phenyl transfer from organozinc compounds to alde-
hydes. Initial approaches by ourselves’" and others!'l using
diphenylzinc as phenyl source, encountered the difficulty that
the uncatalyzed background reaction with the substrate is
comparatively rapid, leading to a diminished enantioselectiv-
ity.?”l The use of diethylzinc as an additive had been shown to
be the key to significantly raise the enantiomeric exces-
ses.’> 1% The replacement of the CpFe moiety by the
Re(CO); fragment now led to a further improvement of this
transformation (Table 1).

For most examples, complex 3 shows higher enantioselec-
tivity than ferrocene 1. A significant increase was observed in
reactions with ortho-substituted aldehydes (Table 1, entries 2
and 7) which are now among the best substrates for this
transformation. Especially noteworthy is the result obtained
with 2,4,6-trimethylbenzaldehyde (Table 1, entry 7; 98 % ee),
which demonstrates that even ortho-disubstitution at the
aromatic aldehyde is well tolerated. The reactions with other
substrates follow trends that have previously been observed in
catalyses with 1: cinnamyl aldehyde displays lower levels of
enantioselection (Table 1, entry 8), and aliphatic aldehydes
are still somewhat problematic with respect to asymmetric
induction (Table 1, entries 5 and 6). In several cases, even a
catalyst loading of only 2 mol % of 3 was sufficient to achieve
high ee values similar to the ones obtained with 10 mol % of 1
(Table 1, entries 1, 3, 5, 8).2!

In summary, we have described the synthesis of the 7°-
cyclopentadienylrhenium(i)tricarbonyl complex 3 and dem-
onstrated its use in asymmetric catalysis. Compared to its
analogous ferrocene derivative, cyrehetrene 3 shows signifi-
cantly higher enantioselectivities in the catalyzed phenyl
transfer from a phenylzinc species to aromatic and aliphatic
aldehydes, leading to the currently most efficient approach for
this reaction. Further studies are directed towards the use of
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Table 1. Asymmetric phenyl transfer to various aldehydes.

1) ZnPh, (0.65 equiv),
ZnEt, (1.3 equiv),

)O]\ cat. 3, toluene, 10°C QH
&S olene, Ve,

R7H  2) workup R Ph

Entryl® Substrate ee of product [% P! Absolute
2 mol % 10 mol % config.
of 3 of 3 of alcoholld!

CHO
1 /O/ 9 98 (97) R
Ci

CHO
2 @: 83 96 (91) R
Br

3 / o\ cHO 95 95 (95) R
CHO
4 /©/ 85 99 (98) R
HsC
CHO
5 @N 76 83 (75) s
6 7 cHo 74 78 (78) s
CHs
CHO
7 80 98 (92) R
HaC CHg
CHO
8 m 88 92 (90) R
CHO
9 ©/ 93 98 (96) R

OCH;

[a] All reactions gave good to quantitative yields (>80% on a 0.25 mmol
scale). [b] Determined by HPLC using a chiral stationary phase. For exact
separation conditions see Supporting Information. [c] Values in parenthe-
ses represent ee values obtained with 10 mol% of ferrocene ligand 1.
[d] Determined by comparison of the order of peak elution during HPLC
with literature values, or tentatively assigned by assumption of an identical
reaction pathway (entries 4, 6, 7, 9).
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Individual Alumina Nanotubes**

Lin Pu,* Ximao Bao, Jianping Zou, and Duan Feng

Avid attention has been given to the preparation, proper-
ties, and applications of nanotubes of different materials.
Nanotubes composed of carbon,!!! tungsten disulfide (WS,),?!
boron nitride (BN),P! vanadium oxide [VO, 4(C;¢H;;NH,) |,
titanium dioxide (TiO,),”! and others, were studied during the
last decade. However, the reproducible usage of nanotubes in
electrical devices is complicated by the fact that the tubes exist
in different chiralities and diameters.®! Moreover, the raw
materials consist of dense networks of closely connected
nanotubes, and individual tubes are often obtained by ultra-
sonic agitation, which may introduce defects into the tubes.’]
Here we report on two easy and controlled electrochemical-
anodizing routes for the synthesis of individual alumina
nanotubes (ANTSs) in a single fabricating step. The structure
of ANTs provides clues to unraveling the mechanism of
nanotube growth and gives valuable hints on solving the long-
standing problem of the self-organization mechanism in the
porous anodization of aluminum.?-1

Two different preparation methods (Figure 1), designated
normal stepwise anodization (NSA) and lateral stepwise
anodization (LSA), were used to make ANTSs. The major
difference between these two arrangements is the position on
the sample (Al/Si) to which the potential difference U is
applied. For NSA, it is the bottom surface of the Si substrate,
and for LSA, the top surface of the Al metal film. This results
in completely different current paths for the two methods.
Note, however, that the orientation of the sample is not
important.

The transmission electron microscope (TEM) images in
Figure 2 show a general view of the ANTs. They are attached
to the anodic porous alumina (APA) mother film. In the TEM
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