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The catalytic conversion of amides to ketones is highly desirable
yet challenging in organic synthesis. We report herein the first
Ni/bis-NHC-catalyzed cross-coupling of N-acylpyrrole-type amides
with arylboronic esters to deliver diarylketones. This method is
enabled by a new chelating bis-NHC ligand. The reaction tolerates
diverse functional groups on both arylamides and arylboronic
esters partners including sensitive ester and ketone groups.

Amide (N-mono acylamines) is a ubiquitous functional group in
chemistry, biology, and material science.! Through the amide
bond, different c.-amino acids are linked to form proteins, the
cornerstone of life. In organic synthesis, amides are easily
available? and serve as versatile starting materials and
intermediates.® Moreover, amidyl groups serve as protecting
groups of amines and directing groups for C-H
functionalization. The above-mentioned chemical and
biochemical functions of amides rely on their high stability.
The latter is due to the strong resonance effects between the
vicinal nitrogen lone pair and the vacant m*c-o orbital. The
carbon-nitrogen bond of amides thus possesses partial double

bond character and displays high C-N bond dissociation energy.

Thus common unactivated amides are poor electrophiles
reluctant to nucleophilic addition. As a result, the
chemoselective and catalytic transformation of amides with C-
C bon formation is underdeveloped despite it being in high
demanding.

Although many chemoselective methods for the direct
transformation of amides with C-C bond formation have
appeared in recent vyears,”’ catalytic functionalization of
amides are rare. In this context, Dixon reported the first
partially catalytic reductive nitro-Mannich cyclization.”?
Subsequently, catalytic reductive functionalizations of amides,
including fully catalytic ones, have been reported by groups of

Department of Chemistry, College of Chemistry and Chemical Engineering, and
Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen,

@ Fujian 361005, P. R. China. E-mail: pghuang@xmu.edu.cn; Tel: +86-592-2182240
T Dedicated to Professor Li-He Zhang on the occasion of his 80t birthday.

1 Electronic Supplementary Information (ESI) available: experimental procedures
compounds characterization data, screened ligands, 'H and 13C NMR spectra of
obtained compounds. See DOI: 10.1039/x0xx00000x

This journal is © The Royal Society of Chemistry 20xx

a) Garg/ Houk's catalytic transformation of amides to esters
(C-O bond formation)

R20H (1.2 equiv)

R Serdoma 9 2
R °
Ar” N Ar)kORz Ph)kph
ph  toluene, 80°C, 12 h 12%

R, R?= alkyl

b) Imides or N-acylimide-type compounds for catalytic C-C
bond formation

1 Lo
-Me/ B
A S\-Me/ Bn ANy P ANy P

|
11 Boc 12 Ts 1-3 Ms
O O (0]
v_0O
Ar)\j‘lij -8 )k .Boc
oc
o n )\G
1.4 n=0,1

c) This work: catalytic transformation of amide to ketones
(C-C bond formation)
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Scheme 1. Catalytic transformations of amides, imides, acylimides, and sulfonamide
analogues via metal-catalyzed C-N activation

Chida and Sato,”®<Huang,’d Adolfsson,’¢&" and Dixon.’f

On the other hand, in 2015, Garg and Houk® pioneered the
nickel-catalyzed activation of amide C—N bonds for the
conversion of amides to esters (Scheme 1a). However,
attempted extension of this methodology to convert amides to
ketones using carbon nucleophiles afforded disappointing
results (cf. Scheme 1a).° To tackle the problem of low
reactivity of amides, indirect tactics were instead developed.
Those methods convert the amides to imide- or to N-
acylimide-type compounds I-1 — 1-6 (Scheme 1b)%° before
executing the metal-catalyzed coupling reactions.

In view of the importance and challenging of the catalytic
conversion of amides to ketones in organic synthesis, and in
connection with our interest in the direct transformation of
amides,3462dei7d e decided to investigate the catalytic
transformation of N-acylpyrroles!! (Scheme 1c). The latter are
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advantageous alternatives!'? to the well-known Weinreb amides'?
because of the enhanced electrophilicity, ease availability, and
increased synthetic potential.!* Regarding the catalyst, while
palladium-catalysis has gained tremendous attention in the past
half-century for cross-coupling reactions including the Suzuki-
coupling,’® the use of earth abundant first-row transition metals
such as nickel in catalysis has emerged as a new frontier.}* We
reasoned that a combination of the employment of more reactive
N-acylpyrroles as the carbonyl donor with the use of novel Ni/bis-
dentate NHC complex4=d:15bc 35 the catalyst would overcome the
problem (Scheme 1c). An investigation along this line has been
undertaken and the results are reported herein. 16

We chose the coupling of N-benzoylpyrrole 1a with 4-
methoxyphenylboronic acid neopentylglycol ester [4-MeOPhB(nep)]
2a as a prototype reaction for reaction optimization. At the outset
of our investigation, phosphines (Table S1, entries 5-7) and bi-
pyridine (Table S1, entry 8) were examined as ligands (For the
structures of ligands L2-L6 and L9 see: Table S1 in ESI). The failure
lead us to turn our attention to NHC!P< ligands. Chiral NHC
precursor L1-HCI (10 mol %), prepared previously in our
laboratory,*” was used in combination with Ni(COD); (10 mol %) as
the catalyst. To our delight, the reaction proceeded under mild
conditions [K3PO4, H,0 (2.0 equiv), toluene, 60 °C, 20 h] to deliver
diarylketone 3aa in 30% yield (Table 1). After screening several NHC
precursors (Table S1, entries 11-15), we focused on the chelating
bis-NHC ligands L7—L8 (Table 1). Pleasantly, the employment of the
known ligand L7*8 furnished ketone 3aa in 86% yield. In searching
for an optimal NHC ligand, the hitherto unknown L8-2HCI was

discovered and synthesized in gram-scale by a three-step procedure.

The use of L8-2HCl as a ligand precursor in the reaction boosted the
yield of 3aa to 94%.

Table 1. Screening of NHC ligands?®

3-carboxamide also reacted to yield the corresponding coupling
products 3pa, 3qa and 3ra in 69%, 54% and #3% ydeld; respectivelyC

Table 2. N-acylpyrrole substrate scope®
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9 |solated yields. For the structures of ligands L2—-L6 and L9, see: Table S1 in ESI.

With the optimal catalytic system defined, the scope of N-

acylpyrrole 1 was surveyed (Table 2). The coupling reaction of para-,

meta-, and ortho-toluamides produced the corresponding ketones
3ba, 3ca, and 3da in 92%, 93%, and 53% vyield, respectively. The
reduced vyield from ortho-toluamide compared with those from
para- and meta-toluamides suggested that the reaction was
sensitive to steric hindrance. The reaction tolerated both electron-
donating (3ba—3ga) and electron-withdrawing groups (3ha—3ma).
Moreover, in the presence of other tertiary (3ka and 3la) and acidic
hydrogen-containing secondary (3ma) amidyl groups, the reactions
proceeded chemoselectively at the N-acylpyrrole. The reaction also
tolerated basic amino groups (3na and 3o0a) although the yields are
only modest. 2-Naphthamide, furan-3-carboxamide and thiophene-

2| J. Name., 2012, 00, 1-3
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9 Reaction conditions: 1a—r (0.24 mmol), 2a (0.48 mmol), Ni(COD): (10 mol%),
L8:2HCI (10 mol%), K3POa (2.0 equiv), H20 (2.0 equiv), toluene (0.5 M), 60 °C, 20 h.
Isolated yields. ? T = 80 °C.

Next, the scope of arylboronic ester 2 was examined (Table 3).
The coupling reaction worked well with phenylboronic ester
which gave benzophenone (3ab) in 90% vyield. Effective
nucleophilic partners cover arylboronic esters bearing
electron-donating groups such as p-Me (3ac), p-tBu (3ad) and
0-MeO (3ae) or electron-withdrawing groups including F (3af),
CF3 (3ag), ester (3ah) and ketone (3ai) at the para-position of
the aryl moiety. The beneficial effect of the electron-donating
group at the para-position can be attributed to the enhanced
nucleophilicity of the corresponding arylboronic esters. The
compatibility of coupling reaction with esters and ketones is
noteworthy. The reaction also tolerated 2-naphthyl (3aj) and
3-furyl (3ak) groups, as well as basic heterocycle such as 1-
methyl-1H-pyrazole (3al) and 2-methoxypyridine (3am).

The good functional group tolerance is important for
applications in organic synthesis, while the ability to incorporate
F, CFs; and heterocycles are significant for developing medicinal
agents.'?

As a further demonstrate synthetic utility of the reaction, gram-
scale synthesis was examined. The gram-scale reactions of 1a with
2n, and 1h with 2f proceeded smoothly to give 3an and 3hf in 70%
and 71% yield, respectively (Scheme 2). Moreover, the high-yielding
coupling of 1g with 2n to yield a potent microtubule inhibitor 3gn?°
revealed the potential of the method in medicinal chemistry.
N-Acylpyrroles are accessible by several methods.'! Among them,
Evan’s method starting from 1,1’-carbonyldipyrrole (4) is flexible
and versatile.'*® Merging Evan’s synthesis of N-acylpyrroles with our

This journal is © The Royal Society of Chemistry 20xx
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coupling reaction provided a convenient and convergent synthetic
approach to diarylketones from the “C;” source 4 (Scheme 3).

Table 3. Scope of arylboronic ester?
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Scheme 2. Gram-scale synthesis and synthetic application.
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subsequent amide coupling. For example, the coupling,of the amide
1sa, which was obtained from 1s/1t throughoSuzuli Zoaptingy a%ith
functionalized heteroarylboronic ester 2m afforded biarylketones 6
in good overall yield (Scheme 4).
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Scheme 4. Synthesis of birayl ketones through orthogonal Suzuki coupling and amide
activation. @ Ni(COD), (10 mol%), L8:2HCI (10 mol%). ® from 1s. ¢ from 1t.
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Scheme 3. Convergent synthesis of diarylketones.
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Ni(COD)/L8<2HCI (10 mol%)

K3PO4/H,0 (2.0 equiv)
toluene, 60 °C, 20 h

The higher reactivity of N-acylpyrroles toward Ni-catalyzed C-N
activation compared with common amides can be attributed to the
heteroaromaticity effect. The lone pair of the amidyl nitrogen in N-
acylpyrroles is engaged in the formation of the pyrrole aromatic
ring system, which reduces its participation in the interaction with
n*c-o orbital. Without this delocalization, N-acylpyrroles display
comparable electrophilic reactivity as ketones. This can be seen
from the remarkable stability of tetrahedral intermediates 12a from
nucleophilic additions to N-acylpyrroles and the corresponding
carbinol 12b.'® To confirm that this heteroaromaticity effect is
responsible for the observed high reactivity of N-acylpyrroles, the
coupling reactions of the relevant N-acylpyrrole-type amides!'* 7,
8,9, 10 and 11 were investigated (Table 4). Indeed, the reactions of
heteroaromatic N-acylindole 7 and N-acylcarbazole 8 produced
ketone 3aa in 95% and 94% vyield, respectively. In contrast, low
yields (24% and 15%) were obtained from non-heteroaromatic N-
benzoylindoline 10 and N,N-diphenylbenzamide 11. Sterically
hindered heteroaromatic N-benzoyl(2,5-dimethyl)pyrrole 9 also
served as an effective coupling partner providing the 3aa in 79%
yield.

Table 4. Ni-Catalyzed cross-coupling reactions of different type of amides.

To further expand the entrance to functionalized N-acylpyrroles,
the orthogonal Suzuki-coupling and amide-coupling using N-
acylpyrrole 1s/1t containing a C(aryl)-I/Br bond was investigated.
Pleasingly, under modified reaction conditions, our newly
developed catalytic system Ni/L8 was able to catalyze the Suzuki-
coupling reaction of 1s/1t with various phenyl boronic acids
without affecting the amide moiety (Scheme 4). This
chemoselective Suzuki-coupling provides a versatile avenue to
functionalized N-acylpyrroles and further to biarylketones through

This journal is © The Royal Society of Chemistry 20xx

Ni(COD). (10 mol%) o
9 (ne)® L8+2HCI (10 mol%)
R Ph
Ph NT O+
R 2a OMe | POJH (2.0 equiv) oM
(2.0 equiv) toluene, 60 °C, 20 h 3aa
Heteroaromatic @~~~ 7 TTTTTTTTTTTTN, TTTTTTITTTTTTTITTY Me

Lo i 1 @ ox
Non- Ph*@ LU @N/kgw
heteroaromatic ' P @ Po\=

In summary, we have achieved the first Ni-catalyzed coupling
reaction of N-acylpyrrole-type amides (N-acylpyrroles, N-
acylindole, N-acylcarbazole and N-acyl-2,5-dimethylpyrrole)
with arylboronic esters. The success of this method relies on
the discovery of a new chelating bis-NHC ligand. The Ni/bis-
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NHC catalytic system enables the activation of N-acylpyrrole-
type amides under mild conditions with high chemoselectivity
and functional group tolerance allowing access to
biraylketones bearing unprotected functional groups such as
ketones and esters, which are not compatible with traditional
conditions reactive Grignard or organolithium
reagents.
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we report the first Ni/bis-NHC-catalyzed cross-coupling of N-acylpyrrole-type amides with

arylboronic esters to deliver diarylketones.
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