

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 60 (2004) 12249-12260

Solvent effects on the oxidative free radical reactions of 2-amino-1,4-naphthoquinones

Chao-Ming Tseng, Yi-Lung Wu and Che-Ping Chuang*

Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan, ROC

Received 18 August 2004; accepted 5 October 2004

Available online 28 October 2004

Abstract—Solvent effects on the manganese (III) initiated oxidative free radical reactions of 2-amino-1,4-naphthoquinones are described. This free radical reaction provides a novel method for the synthesis of benzo[f]indole-4,9-diones, benzo[f]indole-2,4,9-triones, benzo[b]carbazole-6,11-diones and benzo[b]acridine-6,11-diones. High chemoselectivity was observed in different solvents. © 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon-carbon bond forming reactions mediated by radical have received considerable attention in organic synthesis during the last two decades.¹ Naturally occurring quinones such as mitosenes, kinamycins, murrayaquinones, etc. represent an important class of biologically significant natural products.² A common building block to these compounds is the indologuinone unit. The development of new synthetic methodologies for the synthesis of indolequinone ring system is therefore important.^{3,4} The oxidative free radical reaction mediated by metal salts has been developed into a versatile protocol for the formation of highly functionalized products from simple precursors.^{1d-f,5-7} Among these, manganese (III) acetate and cerium (IV) ammonium nitrate have been used most efficiently. The solvent effects play an important role in this oxidative free radical reaction.⁸ The free radical reaction of 1,4-naphthoquinones has been reported.^{6c-j,9} In this report, we wish to describe the solvent effects on the oxidative free radical reaction between 2-amino-1,4-naphthoquinones and carbonyl compounds.

2. Results and discussion

2.1. The oxidative free radical reactions of 2-(alkyl-amino)-1,4-naphthoquinones

We reported previously that the manganese (III) acetate mediated reaction between 2-(alkylamino)-1,4-naphthoquinones 1 and β -keto ester 2 (R²=OR) in acetic

* Corresponding author. Fax: +886 6 274 0552;

e-mail: cpchuang@mail.ncku.edu.tw

acid gave 3 and 4 (Eq. 1).^{6h} The product distributions are highly dependent on the substituents of β -keto ester 2. Indoles 3 and 4 were formed presumably via the reaction route outlined in Scheme 1. Initiation occurs with the manganese (III) acetate oxidation of 2 to produce radical 5. This radical intermediate 5 undergoes intermolecular addition to the quinone ring followed by oxidation to give 6, which undergoes either condensation to generate 3 (path a) or oxidation to produce radical 7 (path b). Radical 7 undergoes intramolecular cyclization followed by oxidation to produce 9, which subsequently undergoes alkyl group (R^{1}) migration to produce 4. On the contrary, when 1 and 2 were treated with cerium (IV) sulfate in methanol, indole 3 was obtained as the only product.^{6j} This different reaction behavior of intermediate **6** can be ascribed to the presence of cerium salt, which acts as a Lewis acid and the condensation rate of **6** was enhanced.¹⁰ Based on these results, we believe that the acidity of the reaction medium would affect the production distributions of this reaction. To test this hypothesis, this oxidative free radical reaction was performed in various solvents. When a solution of 2-(methylamino)-1,4-naphthoquinone (1a) in formic acid was treated with ethyl butyrylacetate (2a) and manganese (III) acetate at 0 °C for 30 min, 3a was obtained exclusively in 85% yield (Table 1, entry 1). Other β -keto ester 2 behaved similarly giving only the corresponding condensation product $\hat{3}$ (entries 2-5). It is well known that Brønsted acid can also catalyze the condensation reaction of carbonyl compounds. These results demonstrate that the higher acidity of formic acid enhances the condensation rate of 6 and path a is the only reaction route. We next performed this reaction in less acidic or neutral solvents. Treatment of 1a and 2a with manganese (III) acetate in CF₃CH₂OH at 80 °C for 16 h resulted in the formation of 3a (12%) and 4a (63%). Results of this reaction between 1a and 2a in different solvents are summarized in

Keywords: Manganese (III) acetate; Free radical; 2-Amino-1,4-naphthoquinones; Solvent effects.

^{0040–4020/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2004.10.029

Table 1 (entries 7–10). In all cases, it gave higher **4a/3a** ratio than those performed in acetic acid (entry 6). This could account for the rate of condensation (path a) decreasing as the acidity of reaction medium decreases and the oxidation of **6** to produce radical **7** became the major route (path b). The scope of this reaction was explored using a variety of β -keto esters and the results are also illustrated in Table 1 (entries 11–14). In all cases, **4** is the major product.

Manganese (III) acetate mediated free radical reaction between 2-(alkylamino)-1,4-naphthoquinone 1 and simple ketone 10 in acetic acid produced 11 as the only product (Eq. 2).⁶¹ Indole **11** was formed presumably via a similar reaction route as shown in Scheme 1 (path a). Due to the instability of 1 in acidic medium, we expected that the radical reaction between 1 and 10 in neutral solvents would give 11 in better result. Indeed, when 1a and acetone (10a) were reacted with manganese (III) acetate in acetonitrile at 80 °C for 39 h, **11a** was isolated in a better reaction yield (85%, Table 2, entry 1) than that performed in acetic acid (73%). The results of this reaction with a variety of simple ketones in different solvents are summarized in Table 2 (entries 1-11). In all cases, indole 11 was obtained in a better reaction yield than those performed in acetic acid. This reaction can also be performed with corresponding ketones as solvent and 11 was obtained in a similar (better) result. The regioselectivity of this reaction was also studied. With butanone (10e: $R^1 = H$, $R^2 = Me$, **11e** and **12a** were obtained in 37 and 57% yields, respectively (entry 12). These two products are derived from

Scheme 1.

Table 1. Free radical reactions between 2-(methylamino)-1,4-naphthoquinone (1a) and β -keto esters

Entry	β-Keto ester	Solvent time	Reaction	Product (yield (%))	
1	2a : $R^1 = n$ -Pr, $R^2 = OEt$	HCO ₂ H	30 min	3a (85)	
2	2b : $R^1 = i$ -Pr, $R^2 = OMe$	HCO ₂ H	30 min	3b (75)	
3	2c : $R^1 = Et$, $R^2 = OMe$	HCO ₂ H	30 min	3c (76)	
4	2d : $R^1 = ClCH_2$, $R^2 = OEt$	HCO ₂ H	30 min	3d (66)	
5	2e : $R^1 = MeOCH_2$, $R^2 = OMe$	HCO ₂ H	30 min	3e (63)	
6	2a : $R^1 = n$ -Pr, $R^2 = OEt$	HOAc	16 h	3a (54)	4a (21) ^a
7	2a : $R^1 = n$ -Pr, $R^2 = OEt$	CF ₃ CH ₂ OH	16 h	3a (12)	4a (63)
8	2a : $R^1 = n$ -Pr, $R^2 = OEt$	CH ₃ CN	16 h	3a (13)	4a (48)
9	2a : $R^1 = n$ -Pr, $R^2 = OEt$	C_6H_6	16 h	3a (8)	4a (56)
10	2a : $R^1 = n$ -Pr, $R^2 = OEt$	CHCl ₃	16 h	3a (8)	4a (52)
11	2b : $R^1 = i$ -Pr, $R^2 = OMe$	CF ₃ CH ₂ OH	16 h	3b (8)	4b (79)
12	2c : $R^1 = Et$, $R^2 = OMe$	CF ₃ CH ₂ OH	16 h	3c (11)	4c (62)
13	2d : $R^1 = ClCH_2$, $R^2 = OEt$	CF ₃ CH ₂ OH	16 h	3d (6)	4d (72)
14	2e : $R^1 = MeOCH_2$, $R^2 = OMe$	CF ₃ CH ₂ OH	16 h		4e (73)

^a The result has been reported previously.^{6h}

Entry	Ketone	Solvent	Reaction time	Product (yield (%)))
1	10a : $R^1 = H, R^2 = H$	CH ₃ CN	39 h	11a (85)	
2	10a : $R^1 = H, R^2 = H$	C_6H_6	42 h	11a (86)	
3	10a : $R^1 = H, R^2 = H$	CHCl ₃	16 h	11a (80)	
4	10a : $R^1 = H, R^2 = H$	HCO ₂ H	30 min	11a (0)	
5	10a : $R^1 = H$, $R^2 = H$	2	16 h	11a (90) ^a	
6	10b : $R^1 = Me$, $R^2 = Me$	CH ₃ CN	41 h	11b (72)	
7	10b : $R^1 = Me$, $R^2 = Me$	5	16 h	11b (91) ^a	
8	10c : $R^1 + R^2 = CH_2CH_2CH_2$	CH ₃ CN	16 h	11c (90)	
9	10c : $R^1 + R^2 = CH_2CH_2CH_2$		24 h	11c $(87)^{a}$	
10	10d : $R^1 + R^2 = CH_2CH_2$	CH ₃ CN	22 h	11d (38)	
11	10d : $R^1 + R^2 = CH_2CH_2$	5.5	26 h	11d $(38)^{a}$	
12	10e : $R^1 = H$, $R^2 = Me$	CH ₃ CN	21 h	11e (37) 12a (57)
13	10f : $R^1 = H$, $R^2 = i$ -Pr	CH ₃ CN	41 h	11f (70) 12b (17)

^a The reaction was performed in corresponding ketone.

the intermolecular addition of radical 13a and 14a. The regioselectivity increases as the size of R^2 increases (entry 13).

Unsaturated α' -keto radical can be generated regioselectively from the manganese (III) oxidation of α , β -unsaturated ketones.⁷ We next studied the free radical reaction of 2-(alkylamino)-1,4-naphthoquinone **1** with α , β -unsaturated ketone **15** (Eq. 3). Treatment of 2-(methylamino)-1,4naphthoquinone (**1a**) with *trans*-4-phenyl-3-buten-2-one

(15a) (4 equiv) and manganese (III) acetate (5 equiv) in acetonitrile at 80 °C for 43 h gave indole 16a in 31% yield (Table 3, entry 1). Using 10 equiv of 15a, the desired indole 16a was afforded in 58% yield (entry 2). We also performed this reaction in various solvents. In benzene, the yield of 16a is 52% (35 h, 80 °C). In CF₃CH₂OH, the reaction rate is much slower. After heated at 80 °C for 86 h, the yield of 16a is 35% based on 71% conversion of 1a. In acetic acid, it proceeded in a much faster reaction rate (26 h, 45 °C), however, 16a was obtained in a much poor yield (13%) and an uncharacterized product was also obtained. The results are summarized in Table 3 (entries 1–5). Best yields are obtained in acetonitrile. Indole 16a was generated via a similar reaction route as shown in Scheme 1 (path a). The scope of this oxidative annulation process with other 4-aryl-3-buten-2-one 15 are also illustrated in Table 3 (entries 6-10). To study the steric effect on the reactivity of enone 15, we also examined this reaction with 15f and 15g. On the reaction of 15f with 1a, indole 16f was produced though in a slower reaction rate. After heated for 71 h, 16f was obtained in 65% yield (entry 11). With 15g, indole 16g was also produced effectively via this oxidative annulation process (entry 12). These observations demonstrate that the bulkiness of substituent R⁴ has little effect on this reaction. In order to test the regioselectivity of this reaction, butenone 15i was allowed to react with 1a and 16i was obtained as the only product (entry 14). This

Table 3. Free radical reactions of 2-(methylamino)-1,4-naphthoquinone (1a) and α,β -unsaturated ketones

Entry	α,β-Unsaturated ketone	Solvent	Reaction time (h)	Product (yield(%))
1	15a : $R^1 = H$, $R^2 = C_6H_5$, $R^3 = H$, $R^4 = H$	CH ₃ CN	43	16a (31) ^a
2	15a : $R^1 = H$, $R^2 = C_6 H_5$, $R^3 = H$, $R^4 = H$	CH ₃ CN	41	16a (58)
3	15a : $R^1 = H$, $R^2 = C_6 H_5$, $R^3 = H$, $R^4 = H$	$C_6 H_6$	35	16a (52)
4	15a : $R^1 = H$, $R^2 = C_6 H_5$, $R^3 = H$, $R^4 = H$	HOAc	26	16a (13)
5	15a : $R^1 = H$, $R^2 = C_6 H_5$, $R^3 = H$, $R^4 = H$	CF ₃ CH ₂ OH	86	16a $(35)^{b}$
6	15b : $R^1 = H$, $R^2 = 4$ -Cl(C ₆ H ₄), $R^3 = H$, $R^4 = H$	CH ₃ CN	45	16b (63)
7	15b : $R^1 = H$, $R^2 = 4$ -Cl(C ₆ H ₄), $R^3 = H$, $R^4 = H$	C_6H_6	24	16b (39)
8	15c : $R^1 = H$, $R^2 = 4$ -MeO ₂ C(C ₆ H ₄), $R^3 = H$, $R^4 = H$	CH ₃ CN	46	16c (64)
9	15d : $R^1 = H$, $R^2 = 4$ -MeO(C ₆ H ₄), $R^3 = H$, $R^4 = H$	CH ₃ CN	66	16d (37)
10	15e : $R^1 = H$, $R^2 = 2$ -thienyl, $R^3 = H$, $R^4 = H$	CH ₃ CN	45	16e (59)
11	15f : $R^1 = H$, $R^2 = C_6 H_5$, $R^3 = H$, $R^4 = Me$	CH ₃ CN	71	16f (65)
12	15g : $R^1 = H$, $R^2 = C_6H_5$, $R^3 = H$, $R^4 = i$ -Pr	CH ₃ CN	64	16g (68)
13	15h : $R^1 = H$, $R^2 = CO_2Me$, $R^3 = H$, $R^4 = H$	CH ₃ CN	17	16h (59)
14	15i : $R^1 = H$, $R^2 = Me$, $R^3 = Me$, $R^4 = H$	CH ₃ CN	28	16i (50)
15	15j : $R^1 = Me$, $R^2 = Me$, $R^3 = H$, $R^4 = H$	CH ₃ CN	68	16j (41)
16	15k : $R^1 + R^2 = CH_2CH_2CH_2CH_2$, $R^3 = H$, $R^4 = H$	CH ₃ CN	45	16k (32)
17	19a : $R^1 = Ph$	CH ₃ CN	40	20a (76)
18	19b : $R^1 = Et$	CH ₃ CN	17	20b (66)

^a The reaction was conducted with 4 equiv of **15a**.

^b Based on 71% conversion of 1a.

product **16i** was formed via the intermolecular addition of an α' -keto radical **17** to the quinone ring. No product derived from the addition of a γ -keto radical **18** to the quinone ring can be detected. Similarly, reaction of enones **15j** and **15k** with manganese (III) acetate gave annulation products **16j** and **16k**, respectively via the addition of a similar α' -keto radical (entries 15 and 16). Notably, butynone **19** behaved similarly, giving the corresponding annulation product **20** effectively (entries 17 and 18).

We also investigated this manganese (III) mediated radical reaction with 2-cyclohexenone **21** (Eq. 4). Reaction of 2-(methylamino)-1,4-naphthoquinone (**1a**) with 3-ethoxy-2-cyclohexenone (**21a**) and manganese (III) acetate in acetonitrile at 80 °C for 36 h provides **23a** in 66% yield (Table 4, entry 1). Carbazole **23a** was produced presumably from the dehydrogenation of **22a** (R^1 =H, R^2 =OEt, R^3 =H), which was formed via a similar reaction route outlined in Scheme 1 (path a). With other 3-ethoxy-2-cyclohexenone

21, the corresponding carbazole 23 was afforded effectively under identical conditions (entries 3-6). As shown in Table 4, benzene proved superior to acetonitrile as a reaction solvent. With 3-methyl-2-cyclohexenone (21d), in contrast to 22a, the dehydrogenation of 22f ($R^1 = H, R^2 =$ Me, $R^3 = H$) proceeded in a much slower reaction rate. After heating in benzene for 16 h, carbazoles 22f and 23f were obtained in 45 and 43% yields, respectively (entry 7). The different behavior between 22a and 22f suggests that the strong electron donating ethoxy group enhances the dehydrogenation rate of 22a. Since the separation of 22f and 23f was problematic, the reaction mixture of 22f and 23f was heated further for another 99 h with another 2 equiv of manganese (III) acetate and 23f was afforded in 66% yield (entry 8). The reaction yield of 23f can be improved significantly to 79% by heating the crude product mixture of 22f and 23f directly with DDQ for 1 h (entry 9). Other 3-substituted cyclohexenones (21e, 21f) behaved similarly, giving the corresponding product mixture of 22 and 23, and again this crude product mixture could be converted to 23 effectively by heating further with DDQ (entries 10 and 11). With 3-unsubstituted 2-cyclohexenone 21, carbazole 23 was formed in poor yield and no 22 could be detected (entries 12–15). When cyclohexenones 24 and 26, bearing geminal dimethyl group, were allowed to react with 1, dihydrocarbazoles 25 and 27 were obtained (entries 16 and 17).

Table 4. Free radical reactions of 2-(alkylamino)-1,4-naphthoquinone 1 and 2-cyclohexenones

Entry	Quinone	2-Cyclohexenone	Solvent	Reaction time (h)	Product (yield(%))
1	1a: R = Me	21a : $R^1 = H$, $R^2 = OEt$, $R^3 = H$	CH ₃ CN	36	23a (66)
2	1b: R = Et	21a : $R^1 = H$, $R^2 = OEt$, $R^3 = H$	C ₆ H ₆	26	23b (87)
3	1a: R = Me	21b : $R^1 = H$, $R^2 = OEt$, $R^3 = Me$	CH ₃ CN	43	23c (47)
4	1b: R = Et	21b : $R^1 = H$, $R^2 = OEt$, $R^3 = Me$	C_6H_6	24	23d (62)
5	1a: R = Me	21c : $R^1 = H$, $R^2 = OEt$, $R^3 = Ph$	CH ₃ CN	49	23e (66)
6	1a: R = Me	21c : $R^1 = H$, $R^2 = OEt$, $R^3 = Ph$	$C_6 H_6$	39	23e (72)
7	1b: R = Et	21d : $R^1 = H$, $R^2 = Me$, $R^3 = H$	C_6H_6	16	22f (45) 23f (43)
8	1b: R = Et	21d : $R^1 = H$, $R^2 = Me$, $R^3 = H$	C_6H_6	16	23f $(66)^{a}$
9	1b: R = Et	21d : $R^1 = H$, $R^2 = Me$, $R^3 = H$	C_6H_6	16	23f $(79)^{b}$
10	1a: R = Me	21e : $R^1 = H$, $R^2 = Me$, $R^3 = Me$	C ₆ H ₆	19	$23g(70)^{b}$
11	1a: R = Me	21f : $R^1 = Cl$, $R^2 = Me$, $R^3 = H$	C ₆ H ₆	72	23h $(56)^{b}$
12	1a: R = Me	21g : $R^1 = H$, $R^2 = H$, $R^3 = H$	CH ₃ CN	53	23i (19)
13	1b : R = Et	21g : $R^1 = H$, $R^2 = H$, $R^3 = H$	C_6H_6	39	23i (0)
14	1a: R = Me	21h : $R^1 = Cl$, $R^2 = H$, $R^3 = H$	CH ₃ CN	68	23k (20)
15	1a: R = Me	21h : $R^1 = Cl$, $R^2 = H$, $R^3 = H$	$C_6 H_6$	34	23k (23)
16	1a: R = Me	24	C ₆ H ₆	23	25 (76)
17	1b: R = Et	26	C_6H_6	17	27 (57)

 a The reaction mixture was reacted further with another 2 equiv of Mn(OAc)_{3} for 99 h.

^b The crude product was heated further with 1 equiv of DDQ for 1 h.

2.2. The oxidative free radical reactions of 2-(anilino)-1,4-naphthoquinones

Manganese (III) mediated free radical reaction between 2-(anilino)-1,4-naphthoquinone (28) and β -dicarbonyl compound 2 in acetic acid produced 29 and 30 (Eq. 5).^{6h} In all cases, acridine 30 is the major product. A possible mechanism for this reaction is shown in Scheme 2. Oxidation of the β -dicarbonyl compound 2 by manganese (III) acetate oxidation produces radical 5. This radical intermediate 5 undergoes intermolecular addition to the quinone ring followed by oxidation to give 31, which undergoes either condensation to produce 29 (path a) or oxidation to generate radical 32 (path b). This radical 32 undergoes further intramolecular cyclization followed by aromatization to give 33. Quinone 33 undergoes retro Claisen condensation followed by aromatization to produce 30. On the contrary, in the reaction between 28 and 2 mediated by cerium (IV) sulfate, indole 29 was obtained as the only product.^{6j} This is presumably due to the Lewis acidity of cerium salt, which enhances the condensation rate of 31 (path a). Based on these results, we expected that the chemoselectivity of this reaction would be affected by the acidity of the solvent. In agreement with this expectation, when 2-(anilino)-1,4-naphthoquinone (28) was reacted with ethyl butyrylacetate (2a) and manganese (III) acetate in 80% aqueous formic acid at 0 °C, 29a was obtained as the only product in 66% yield and no trace of 30a could be isolated (Table 5, entry 1). This can be ascribed to the higher acidity of formic acid, which promotes the condensation of **31**. These reaction conditions were then applied to other β-dicarbonyl compounds and the corresponding 29 was isolated as the only product. Steric hindrance plays an important role in the final outcome of this reaction. In most cases, the reaction yield decreases as the size of R^1 and R^2 increases (entries 1-6) and the condensation reaction occurs only on the less hindered carbonyl group of the 1,3-diones (entries 7-9). We next studied this reaction in less acidic or neutral solvents. Treatment of 28 with 2a and manganese (III) acetate in CF₃CH₂OH at 80 °C resulted in the formation of 30a (64%) and no trace of 29a could be found (entry 10). This again is presumably due to the rate of condensation (path a) decreases as the acidity of reaction medium decreases and the oxidation of $31 (\rightarrow 32)$ occurred (path b). In attempt to investigate the range of solvents compatible with this reaction, this manganese (III) mediated reaction between 28 and 2a was performed in various solvents. As shown in Table 5 (entry 10-13), it gave best results in CF₃CH₂OH. This investigation was extended to a number of other β -dicarbonyl compounds and the results are

Table 5. Free radical reactions between 2-(anilino)-1,4-naphthoquinone (28) and β -dicarbonyl compounds

Entry	β-Dicarbonyl compound	Solvent	Reaction time	Product (yield(%))
1	2a : $R^1 = n$ -Pr, $R^2 = OEt$	HCO ₂ H	30 min	29a (66)
2	2b : $R^1 = i$ -Pr, $R^2 = Ome$	HCO ₂ H	3.5 h	29b (15)
3	2f : $R^1 = Me$, $R^2 = OEt$	HCO ₂ H	30 min	29c (71)
4	2g : $R^1 = Me$, $R^2 = Me$	HCO ₂ H	30 min	29d (76)
5	2h : $R^1 = Et$, $R^2 = Et$	HCO ₂ H	30 min	29e (77)
6	2i : $R^1 - i_{-}Pr$, $R^2 - i_{-}Pr$	HCO ₂ H	5 b	29f (0)
7 8	21. R^{-1} - 1 , R^{-1} - 1 2j. R^{1} =Me, R^{2} =Ph 2k. R^{1} =Me, R^{2} = <i>i</i> -Bu	HCO ₂ H HCO ₂ H HCO ₂ H	30 min 1 h	29g (68) 29h (50)
9	21 : $R^{1} = Me$, $R^{2} = t$ -Bu	HCO ₂ H	3.5 h	29i (17)
10	2a : $R^{1} = n$ -Pr, $R^{2} = OEt$	CF ₃ CH ₂ OH	48 h	30a (64)
11	2a : $R^{1} = n$ -Pr, $R^{2} = OEt$	CH ₃ CN	42 h	30a (46)
12	2a : $R^1 = n$ -Pr, $R^2 = OEt$	C ₆ H ₆	47 h	30a (48)
13	2a : $R^1 = n$ -Pr, $R^2 = OEt$	CHCl ₃	42 h	30a (46)
14	2f : $R^1 = Me$, $R^2 = OEt$	CF ₂ CH ₂ OH	39 h	30a (66)
15	2g : $R^1 = Me$, $R^2 = Me$	CF ₃ CH ₂ OH	23 h	30b (69)
16	2h : $R^1 = Et$, $R^2 = Et$	CF ₃ CH ₂ OH	23 h	30c (56)
17	2i : $R^1 = i$ -Pr, $R^2 = i$ -Pr	CF ₃ CH ₂ OH	23 h	30d (57)

also summarized in Table 5 (entries 14–17). It shows the same selectivity, in all cases, acridine **30** was obtained as the only product.

In conclusion, carbon radical can be generated from the manganese (III) acetate oxidation of carbonyl compounds and it undergoes efficient addition to the C–C double bond of 2-amino-1,4-naphthoquinones. This free radical reaction provides a novel method for the synthesis of benzo[*f*]indole-4,9-diones, benzo[*f*]indole-2,4,9-triones, benzo[*b*]carbazole-6,11-diones and benzo[*b*]acridine-6,11-diones. With β -dicarbonyl compounds, by changing the solvent, these products can be generated in high chemoselectivities. With simple ketones and α , β -unsaturated ketones, these reactions gave better results in neutral solvents.

3. Experimental

Melting points are uncorrected. Infrared spectra were taken with a Hitachi 260-30 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX-400 or AVANCE 300 spectrometer. Chemical shifts are reported in ppm relative to TMS as internal reference. Elemental analyses were performed with Heraeus CHN-Rapid Analyzer. Analytical thin-layer chromatography was performed with precoated silica gel 60 F-254 plates (0.25 mm thick) from EM Laboratories and visualized by UV. The reaction mixture was purified by column chromatography over EM

Scheme 2.

Laboratories silica gel (70–230 mesh). The starting 2-amino-1,4-naphthoquinone $1,^{11}$ 28,^{4c} enones 21b,^{12a} 21c,^{12a} 21f^{12b} and 21h^{12b} were synthesized according to literature procedure. The spectra data of 3a,^{6j} 3b,^{6j} 3d,^{6h} 3e,^{6j} 4a,^{6h} 4d,^{6h} 11b–f,⁶ⁱ 12a,⁶ⁱ 12b,⁶ⁱ 29a,^{6j} 29c,^{6j} 29d,^{6j} 29g,^{6j} and 30a^{6h} have been reported.

3.1. Typical experimental procedure for the reaction between 2-(methylamino)-1,4-naphthoquinone (1a) and β-keto esters in formic acid

A mixture of 152 mg (0.81 mmol) of 2-(methylamino)-1,4naphthoquinone (**1a**), 508 mg (3.22 mmol) of ethyl butyrylacetate (**2a**) and 1.29 g (4.81 mmol) of Mn(OAc)₃ in 10 mL of formic acid was stirred at 0 °C for 30 min. The reaction mixture was diluted with 100 mL of ethyl acetate, washed with 50 mL of saturated aqueous sodium bisulfite, three 50 mL portions of water, 50 mL of saturated aqueous sodium bicarbonate, dried (Na₂SO₄), The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography on silica (20 g) using dichloromethane–hexane (2:1) as eluent, followed by crystallization (ethyl acetate–hexane) to give 224 mg (85%) of **3a**.

3.2. Typical experimental procedure for the reaction between 2-(methylamino)-1,4-naphthoquinone (1a) and β -keto esters in less acidic or neutral solvent

A mixture of 150 mg (0.80 mmol) of 2-(methylamino)-1,4naphthoquinone (1a), 520 mg (3.29 mmol) of ethyl butyrylacetate (2a) and 1.29 g (4.81 mmol) of Mn(OAc)₃ in 10 mL of CF₃CH₂OH was heated at 80 °C for 16 h. The reaction mixture was diluted with 100 mL of ethyl acetate, washed with 50 mL of saturated aqueous sodium bisulfite, three 50 mL portions of water, dried (Na₂SO₄), and concentrated in vacuo. The residue was chromatographed over 20 g of silica gel (eluted with 1:15 ethyl acetate–hexane and then 1:12 ethyl acetate–hexane) followed by crystallization (ethyl acetate–hexane) to give 174 mg (63%) of 4a and 32 mg (12%) of 3a.

3.2.1. 2-Ethyl-4,9-dihydro-3-(methoxycarbonyl)-1methyl-4,9-dioxo-1*H***-benzo[***f***]indole 3c. Yellow needles; mp 119–120 °C; IR (CHCl₃) 1715, 1660, 1600, 1505,** 1275 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.26 (t, J= 7.6 Hz, 3H, CH₃), 2.89 (q, J=7.6 Hz, 2H, CH₂), 3.96 (s, 3H, OCH₃), 4.07 (s, 3H, NCH₃), 7.63–7.70 (m, 2H, ArH), 8.08– 8.17 (m, 2H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 13.3 (q), 18.2 (t), 32.8 (q), 52.1 (q), 112.8 (s), 125.6 (s), 126.1 (d), 126.7 (d), 130.5 (s), 132.9 (d), 133.1 (s), 133.3 (d), 133.8 (s), 147.5 (s), 165.0 (s), 176.4 (s), 179.5 (s). Anal. Calcd for C₁₇H₁₅NO₄: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.64; H, 5.15; N, 4.71.

3.2.2. 2,3,4,9-Tetrahydro-3-isopropyl-3-(methoxycarbonyl)-1-methyl-2,4,9-trioxo-1*H***-benzo[***f***]indole 4b. Orange crystals; mp 153–154 °C; IR (CHCl₃) 2975, 1760, 1675, 1595, 1275, 1240 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 1.02 (d,** *J***=6.9 Hz, 3H, CH₃), 1.03 (d,** *J***=6.9 Hz, 3H, CH₃), 3.06 (septet,** *J***=6.9 Hz, 1H, CH), 3.55 (s, 3H, NCH₃), 3.71 (s, 3H, OCH₃), 7.73 (td,** *J***=7.3, 1.4 Hz, 1H, ArH), 7.78 (td,** *J***=7.3, 1.4 Hz, 1H, ArH), 8.09 (dd,** *J***=7.3, 1.4 Hz, 1H, ArH), 8.11 (dd,** *J***=7.3, 1.4 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) \delta 17.0 (q), 18.8 (q), 28.9 (q), 33.6 (d), 53.1 (q), 64.9 (s), 125.2 (s), 126.3 (d), 126.5 (d), 131.5 (s), 132.3 (s), 178.5 (s). Anal. Calcd for C₁₈H₁₇NO₅: C, 66.05; H, 5.23; N, 4.28. Found: C, 65.99; H, 5.26; N, 4.29.**

3.2.3. 3-Ethyl-2,3,4,9-tetrahydro-3-(methoxycarbonyl)-1-methyl-2,4,9-trioxo-1*H***-benzo[f]indole 4c.** Yellow crystals; mp 155–156 °C; IR (CHCl₃) 1760, 1675, 1600, 1240, 1390 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 0.74 (t, *J*= 7.5 Hz, 3H, CH₃), 2.40–2.58 (m, 2H, CH₂), 3.56 (s, 3H, NCH₃), 3.71 (s, 3H, OCH₃), 7.74 (td, *J*=7.4, 1.6 Hz, 1H, ArH), 7.79 (td, *J*=7.4, 1.6 Hz, 1H, ArH), 8.09 (dd, *J*=7.4, 1.6 Hz, 1H, ArH), 8.13 (dd, *J*=7.4, 1.6 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 8.3 (q), 26.3 (t), 29.0 (q), 53.3 (q), 61.0 (s), 125.6 (s), 126.3 (d), 126.5 (d), 131.7 (s), 132.1 (s), 133.2 (d), 134.6 (d), 147.4 (s), 166.7 (s), 174.8 (s), 178.3 (s), 178.4 (s). Anal. Calcd for C₁₇H₁₅NO₅: C, 65.17; H, 4.83; N, 4.47. Found: C, 65.10; H, 4.85; N, 4.42.

3.2.4. 2,3,4,9-Tetrahydro-3-(methoxycarbonyl)-3-(methoxymethyl)-1-methyl-2,4,9-trioxo-1*H***-benzo[***f***]indole 4e. Yellow crystals; mp 207–208 °C; IR (CHCl₃) 3015, 1760, 1730, 1650, 1240 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) \delta 3.25 (s, 3H, OCH₃), 3.55 (s, 3H, NCH₃), 3.72 (s, 3H, OCH₃), 4.21 (d,** *J***=8.6 Hz, 1H, OCH), 4.33 (d,** *J***=8.6 Hz, 1H,**

12255

OCH), 7.70–7.82 (m, 2H, ArH), 8.05–8.15 (m, 2H, ArH); ¹³C NMR (75.5 MHz, CDCl₃) δ 29.2 (q), 53.4 (q), 59.4 (q), 60.8 (s), 72.3 (t), 124.5 (s), 126.1 (d), 126.5 (d), 131.8 (s), 132.2 (s), 133.2 (d), 134.5 (d), 147.9 (s), 164.8 (s), 173.8 (s), 178.4 (s), 178.6 (s). Anal. Calcd for C₁₇H₁₅NO₆: C, 62.00; H, 4.59; N, 4.25. Found: C, 62.29; H, 4.63; N, 4.20.

3.3. Typical experimental procedure for the reaction between 2-(methylamino)-1,4-naphthoquinone (1a) and simple ketones

A mixture of 118 mg (0.63 mmol) of 2-(methylamino)-1,4naphthoquinone (1a), 375 mg (6.47 mmol) of acetone (10a) and 1.03 g (3.84 mmol) of Mn(OAc)₃ in 10 mL of CH₃CN was heated at 80 °C for 16 h, followed by the addition of 1.04 g (3.88 mmol) of Mn(OAc)₃. The reaction mixture heated for another 23 h and then diluted with 100 mL of ethyl acetate, washed with 50 mL of saturated aqueous sodium bisulfite, three 50 mL portions of water, dried (Na₂SO₄), The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography on silica (20 g) using dichloromethane– hexane (1:1) as eluent, followed by crystallization (ethyl acetate–hexane) to give 121 mg (85%) of **11a**.

3.3.1. 4,9-Dihydro-1,2-dimethyl-4,9-dioxo-1*H***-benzo**[*f*]**indole 11a.** Yellow crystals; mp 236–237 °C; IR (CHCl₃) 1650, 1600, 1500, 1485, 1250 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.32 (s, 3H, ArCH₃), 4.00 (s, 3H, NCH₃), 6.52 (s, 1H, ArH), 7.60–7.70 (m, 2H, ArH), 8.09–8.17 (m, 2H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 12.2 (q), 32.6 (q), 107.2 (d), 126.28 (d), 126.32 (d), 128.2 (s), 130.6 (s), 132.7 (d), 132.9 (d), 133.5 (s), 134.2 (s), 139.9 (s), 175.6 (s), 181.1 (s). Anal. Calcd for C₁₄H₁₁NO₂: C, 74.65; H, 4.92; N, 6.22. Found: C, 74.64; H, 4.94; N, 6.25.

3.4. Typical experimental procedure for the reaction between 2-(methylamino)-1,4-naphthoquinone (1a) and α , β -unsaturated ketones

A mixture of 101 mg (0.54 mmol) of 2-(methylamino)-1,4naphthoquinone (1a), 782 mg (5.35 mmol) of *trans*-4phenyl-3-buten-2-one (15a) and 717 mg (2.67 mmol) of Mn(OAc)₃ in 10 mL of CH₃CN was heated at 80 °C for 24 h, followed by the addition of 287 mg (1.07 mmol) of Mn(OAc)₃. The reaction mixture heated for another 17 h and then diluted with 100 mL of ethyl acetate, washed with 50 mL of saturated aqueous sodium bisulfite, three 50 mL portions of water, dried (Na₂SO₄), and concentrated in vacuo. The residue was chromatographed over 20 g of silica gel (eluted with 2:1 dichloromethane–hexane) followed by crystallization (ethyl acetate–hexane) to give 97 mg (58%) of 16a.

3.5. Typical experimental procedure for the reaction between 2-(methylamino)-1,4-naphthoquinone (1a) and α , β -unsaturated ketones followed by DDQ oxidation

A mixture of 120 mg (0.60 mmol) of 2-(ethylamino)-1,4naphthoquinone (**1b**), 658 mg (5.98 mmol) of 3-methyl-2cyclohexenone (**21d**) and 801 mg (2.99 mmol) of manganese (III) acetate in 10 mL of benzene was heated at 80 $^{\circ}$ C for 16 h. The reaction mixture was diluted with 100 mL of ethyl acetate, washed with 50 mL of saturated aqueous sodium bisulfite, three 50 mL portions of water, dried (Na₂SO₄). The solvent was evaporated under reduced pressure and the crude product mixture of **22f** and **23f** was then heated at 80 °C with DDQ (136 mg, 0.60 mmol) in 10 mL of benzene for another 1 h. The reaction mixture was diluted with 100 mL of ethyl acetate, washed with three 50 mL portions of water and dried (Na₂SO₄). The solvent was evaporated under reduced pressure and the crude product was purified by column chromatography on silica (20 g) using dichloromethane–hexane (2:1) as eluent, followed by crystallization (ethyl acetate–hexane) to give **23f** (135 mg, 79%).

3.5.1. 4,9-Dihydro-1-methyl-(*E***)-4,9-dioxo-2-styryl-1***H***benzo[***f***]indole 16a.** Red needles; mp 205–206 °C; IR (CHCl₃) 3010, 2955, 1645, 1595, 1470 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.11 (s, 3H, NCH₃), 6.90 (d, *J* = 16.1 Hz, 1H, =CH), 6.97 (s, 1H, ArH), 7.14 (d, *J* = 16.1 Hz, 1H, =CH), 7.28–7.35 (m, 1H, ArH), 7.35–7.42 (m, 2H, ArH), 7.45–7.54 (m, 2H, ArH), 7.54–7.68 (m, 2H, ArH), 8.06–8.17(m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 32.7 (q), 105.4 (d), 114.1 (d), 126.3 (2×d), 126.8 (2×d), 128.6 (s), 128.7 (d), 128.9 (2×d), 130.8 (s), 132.7 (d), 133.1 (d), 133.4 (s), 134.1 (d), 134.5 (s), 136.1 (s), 141.1 (s), 175.5 (s), 180.8 (s). Anal. Calcd for C₂₁H₁₅NO₂: C, 80.49; H, 4.82; N, 4.47. Found: C, 80.28; H, 4.83; N, 4.49.

3.5.2. (*E*)-2-[2-(4-Chlorophenyl)vinyl]-4,9-dihydro-1methyl-4,9-dioxo-1*H*-benzo[*f*]indole 16b. Red crystals; mp 264–265 °C; IR (CHCl₃) 2930, 1730, 1650, 1595, 1495 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.19 (s, 3H, NCH₃), 6.96 (d, *J*=16.1 Hz, 1H, =CH), 7.05 (s, 1H, ArH), 7.16 (d, *J*=16.1 Hz, 1H, =CH), 7.36 (d, *J*=8.5 Hz, 2H, ArH), 7.45 (d, *J*=8.5 Hz, 2H, ArH), 7.63–7.72 (m, 2H, ArH), 8.12–8.20 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 32.8 (q), 105.6 (d), 114.8 (d), 126.5 (2×d), 127.9 (2×d), 128.7 (s), 129.1 (2×d), 131.0 (s), 132.8 (d), 132.9 (d), 133.2 (d), 133.5 (s), 134.47 (s), 134.54 (s), 134.6 (s), 140.8 (s), 175.7 (s), 181.0 (s). Anal. Calcd for C₂₁H₁₄CINO₂: C, 72.52; H, 4.06; N, 4.03. Found: C, 72.30; H, 4.14; N, 3.98.

3.5.3. 4,9-Dihydro-(*E*)**-2-[2-(4-methoxycarbonylphenyl)-vinyl]-1-methyl-4,9-dioxo-1***H***-benzo[***f***]indole 16c.** Orange needles; mp 208–209 °C; IR (CHCl₃) 1720, 1670, 1645, 1410, 1285 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.94 (s, 3H, OCH₃), 4.20 (s, 3H, NCH₃), 7.089 (d, *J*=16.1 Hz, 1H, =CH), 7.093 (s, 1H, ArH), 7.23 (d, *J*=16.1 Hz, 1H, =CH), 7.57 (d, *J*=8.3 Hz, 2H, ArH), 7.62–7.73 (m, 2H, ArH), 8.05 (d, *J*=8.3 Hz, 2H, ArH), 8.14–8.20 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 32.8 (q), 52.2 (q), 106.0 (d), 116.6 (d), 126.5 (2×d), 126.6 (2×d), 128.7 (s), 129.9 (s), 130.1(s), 130.17 (2×d), 131.2 (s), 132.7 (d), 133.0 (d), 133.2 (d), 133.4 (s), 134.5 (s), 140.4 (s), 166.6 (s), 175.8 (s), 180.9 (s). Anal. Calcd for C₂₃H₁₇NO₄: C, 74.38; H, 4.61; N, 3.77. Found: C, 74.18; H, 4.64; N, 3.70.

3.5.4. 4,9-Dihydro-(*E*)-**2-[2-(4-methoxyphenyl)vinyl]-1methyl-4,9-dioxo-1***H***-benzo[***f***]indole 16d. Red needles; mp 207–208 °C; IR (CHCl₃) 3010, 2960, 1645, 1510, 1465 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 3.85 (s, 3H, OCH₃), 4.16 (s, 3H, NCH₃), 6.83 (d,** *J***=16.0 Hz, 1H,** =CH), 6.92 (d, J=8.7 Hz, 2H, ArH), 7.00 (s, 1H, ArH), 7.16 (d, J=16.0 Hz, 1H, =CH), 7.46 (d, J=8.7 Hz, 2H, ArH), 7.61–7.70 (m, 2H, ArH), 8.12–8.16 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 32.7 (q), 55.4 (q), 105.0 (d), 112.0 (d), 114.3 (2×d), 126.4 (2×d), 128.2 (2×d), 128.8 (s), 128.9 (s), 130.6 (s), 132.7 (d), 133.1 (d), 133.5 (s), 133.9 (d), 134.6 (s), 141.7 (s), 160.2 (s), 175.4 (s), 181.1 (s). Anal. Calcd for C₂₂H₁₇NO₃: C, 76.95; H, 4.99; N, 4.08. Found: C, 76.67; H, 5.04; N, 4.02.

3.5.5. 4,9-Dihydro-1-methyl-4,9-dioxo-(*E*)-**2**-(**2**-thieylvinyl)-1*H*-benzo[*f*]indole 16e. Red needles; mp 215–216 °C; IR (CHCl₃) 3015, 2955, 1645, 1595, 1410 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.14 (s, 3H, NCH₃), 6.74 (d, *J*=15.9 Hz, 1H, =CH), 6.98 (s, 1H, ArH), 7.04 (dd, *J*=4.6, 3.6 Hz, 1H, ArH), 7.14 (d, *J*=3.6 Hz, 1H, ArH), 7.28 (d, *J*=4.6 Hz, 1H, ArH), 7.30 (d, *J*=15.9 Hz, 1H, =CH), 7.60–7.69 (m, 2H, ArH), 8.10–8.16 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 32.7 (q), 105.3 (d), 113.5 (d), 125.9 (d), 126.4 (2×d), 127.0 (d), 128.0 (2×d), 128.7 (s), 130.8 (s), 132.8 (d), 133.1 (d), 133.4 (s), 134.6 (s), 140.8 (s), 141.6 (s), 175.5 (s), 180.9 (s). Anal. Calcd for C₁₉H₁₃NO₂S: C, 71.45; H, 4.10; N, 4.39. Found: C, 71.41; H, 4.11; N, 4.44.

3.5.6. 4,9-Dihydro-1,3-dimethyl-4,9-dioxo-(*E*)-**2**-styryl-**1***H*-benzo[*f*]indole 16f. Red crystals; mp 218–219 °C; IR (CHCl₃) 3015, 2950, 1645, 1595, 1495, 1465 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.60 (s, 3H, ArCH₃), 4.14 (s, 3H, NCH₃), 6.93 (d, *J*=16.5 Hz, 1H, =CH), 6.99 (d, *J*= 16.5 Hz, 1H, =CH), 7.30–7.37 (m, 1H, ArH), 7.37–7.44 (m, 2H, ArH), 7.49–7.53 (m, 2H, ArH), 7.60–7.68 (m, 2H, ArH), 8.10–8.17 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 11.7 (q), 33.5 (q), 115.1 (d), 121.4 (s), 125.7 (s), 126.1 (d), 126.2 (d), 126.6 (2×d), 128.7 (d), 128.9 (2×d), 130.0 (s), 132.76 (d), 132.82 (d), 134.0 (s), 134.3 (s), 135.7 (d), 136.5 (s), 138.1 (s), 175.7 (s), 182.2 (s). Anal. Calcd for C₂₂H₁₇NO₂: C, 80.71; H, 5.23; N, 4.28. Found: C, 80.68; H, 5.24; N, 4.29.

3.5.7. 4,9-Dihydro-3-isopropyl-1-methyl-4,9-dioxo-(*E*)-**2styryl-1***H***-benzo**[*f*]**indole 16g.** Red needles; mp 165– 166 °C; IR (CHCl₃) 3010, 1590, 1460, 1410, 1360 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (d, *J*=7.1 Hz, 6H, 2× CH₃), 3.54 (septet, *J*=7.1 Hz, 1H, CH), 4.11 (s, 3H, NCH₃), 6.82 (d, *J*=17.7 Hz, 1H, =CH), 6.96 (d, *J*=17.7 Hz, 1H, =CH), 7.32–7.38 (m, 1H, ArH), 7.39–7.45 (m, 2H, ArH), 7.52–7.56 (m, 2H, ArH), 7.64–7.68 (m, 2H, ArH), 8.12– 8.20 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 21.1 (2×q), 25.9 (d), 34.3 (q), 115.9 (d), 125.1 (s), 125.9 (d), 126.6 (d), 126.7 (2×d), 128.8 (d), 128.9 (2×d), 131.4 (s), 132.3 (s), 132.7 (d), 132.9 (d), 133.8 (s), 134.3 (s), 136.1 (s), 137.3 (d), 137.6 (s), 176.2 (s), 181.1 (s). Anal. Calcd for C₂₄H₂₁NO₂: C, 81.10; H, 5.96; N, 3.94. Found: C, 81.14; H, 6.00; N, 3.91.

3.5.8. 4,9-Dihydro-(*E*)-**2-[2-(methoxycarbonyl)vinyl]-1methyl-4,9-dioxo-1***H*-benzo[*f*]indole 16h. Yellow crystals; mp 248–249 °C; IR (CHCl₃) 3015, 2955, 1730, 1655, 1440 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H, OCH₃), 4.19 (s, 3H, NCH₃), 6.51 (d, *J*=15.8 Hz, 1H, =CH), 7.16 (s, 1H, ArH), 7.65 (d, *J*=15.8 Hz, 1H, =CH), 7.68–7.73 (m, 2H, ArH), 8.12–8.20 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 32.9 (q), 52.0 (q), 108.5 (d), 121.4 (d), 126.64 (d),126.66 (d), 128.3 (s), 130.0 (d), 132.4 (s), 133.32 (d), 133.36 (d), 133.40 (s), 134.3 (s), 137.4 (s), 166.6 (s), 176.3 (s), 180.5 (s). Anal. Calcd for $C_{17}H_{13}NO_4$: C, 69.15; H, 4.44; N, 4.74. Found: C, 69.01; H, 4.51; N, 4.72.

3.5.9. 4,9-Dihydro-1-methyl-2-(2-methyl-1-propenyl)-**4,9-dioxo-1***H***-benzo[***f***]indole 16i. Orange needles; mp 159–160 °C; IR (CHCl₃) 3010, 2925, 1650, 1595, 1470 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 1.94 (s, 3H, CH₃), 2.00 (s, 3H, CH₃), 3.99 (s, 3H, NCH₃), 6.01 (s, 1H, =CH), 6.66 (s, 1H, ArH), 7.60–7.68 (m, 2H, ArH), 8.09– 8.15 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) \delta 20.4 (q), 27.1 (q), 32.8 (q), 108.0 (d), 112.4 (d), 126.2 (2×d), 128.1 (s), 129.7 (s), 132.6 (d), 132.9 (d), 133.5 (s), 134.4 (s), 140.3 (s), 143.2 (s), 175.6 (s), 181.1 (s). Anal. Calcd for C₁₇H₁₅NO₂: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.93; H, 5.80; N, 5.28.**

3.5.10. 4,9-Dihydro-1-methyl-(*E***)-2-(1-methyl-1-propenyl)-4,9-dioxo-1***H*-benzo[*f*]indole 16j. Orange needles; mp 101–102 °C; IR (CHCl₃) 3010, 1655, 1595, 1475, 1445 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.85 (d, *J* = 6.5 Hz, 3H, CH₃), 1.98 (d, *J*=1.3 Hz, 3H, CH₃), 3.99 (s, 3H, NCH₃), 5.78 (qq, *J*=6.5, 1.3 Hz, 1H, =CH), 6.58 (s, 1H, ArH), 7.61–7.70 (m, 2H, ArH), 8.10–8.18 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 14.2 (q), 16.9 (q), 34.5 (q), 106.7 (d), 126.0 (s), 126.30 (d), 126.34 (d), 128.2 (s), 130.1 (d), 130.7 (s), 132.7 (d), 133.0 (d), 133.6 (s), 134.4 (s), 147.2 (s), 175.9 (s), 181.2 (s). Anal. Calcd for C₁₇H₁₅NO₂: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.94; H, 5.77; N, 5.30.

3.5.11. 2-(1-Cyclohexenyl)-4,9-dihydro-1-methyl-4,9-dioxo-1*H***-benzo[***f***]indole 16k. Yellow needles; mp 155–156 °C; IR (CHCl₃) 3010, 2940, 1650, 1455, 1340 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 1.67–1.74 (m, 2H, CH₂), 1.74–1.83 (m, 2H, CH₂), 2.22–2.31 (m, 4H, CH₂), 4.00 (s, 3H, NCH₃), 5.96 (s, 1H, =CH), 6.58 (s, 1H, ArH), 7.61–7.67 (m, 2H, ArH), 8.09–8.15 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) \delta 21.6 (t), 22.5 (t), 25.5 (t), 29.0 (t), 34.5 (q), 106.5 (d), 126.2 (2×d), 128.06 (s), 128.09 (s), 130.7 (s), 131.9 (d), 132.6 (d), 132.9 (d), 133.5 (s), 134.3 (s), 145.8 (s), 175.7 (s), 181.1 (s). Anal. Calcd for C₁₉H₁₇NO₂: C, 78.33; H, 5.88; N, 4.81. Found: C, 78.29; H, 5.90; N, 4.82.**

3.5.12. 4,9-Dihydro-1-methyl-4,9-dioxo-2-(phenylethy-nyl)-1*H***-benzo[***f***]indole 20a.** Orange needles; mp 193–194 °C; IR (CHCl₃) 3010, 1660, 1595, 1480, 1465 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.15 (s, 3H, NCH₃), 6.97 (s, 1H, ArH), 7.36–7.41 (m, 3H, ArH), 7.52–7.57 (m, 2H, ArH), 7.63–7.68 (m, 2H, ArH), 8.09–8.18 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 34.3 (q), 78.5 (s), 97.9 (s), 112.8 (d), 121.6 (s), 125.2 (s), 126.4 (d), 126.6 (d), 127.8 (s), 128.5 (2×d), 129.3 (d), 131.0 (s), 131.6 (2×d), 133.1 (2×d), 133.5 (s), 134.0 (s), 175.6 (s), 180.3 (s). Anal. Calcd for C₂₁H₁₃NO₂: C, 81.01; H, 4.21; N, 4.50. Found: C, 80.94; H, 4.27; N, 4.50.

3.5.13. 2-(Butyn-1-yl)-4,9-dihydro-1-methyl-4,9-dioxo-*1H*-benzo[*f*]indole 20b. Yellow needles; mp 192–193 °C; IR (CHCl₃) 3010, 2990, 1660, 1595, 1465 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.28 (t, *J*=7.5 Hz, 3H, CH₃), 2.51 (q, *J*=7.5 Hz, 2H, CH₂), 4.05 (d, *J*=1.9 Hz, 3H, NCH₃), 6.80 (d, *J*=1.9 Hz,1H, ArH), 7.61–7.68 (m, 2H, ArH), 8.07–8.16 (m, 2H, ArH); 13 C NMR (75.4 MHz, CDCl₃) δ 13.3 (t), 13.5 (q), 34.1 (q), 69.5 (s), 101.1 (s), 111.9 (d), 126.0 (s), 126.4 (d), 126.5 (d), 127.6 (s), 130.4 (s), 132.95 (d), 133.02 (d), 133.6 (s), 134.0 (s), 175.5 (s), 180.4 (s). Anal. Calcd for C₁₇H₁₃NO₂: C, 77.55; H, 4.98; N, 5.32. Found: C, 77.22; H, 5.09; N, 5.30.

3.5.14. 5-Ethyl-1,2,6,11-tetrahydro-3-methyl-6,11-dioxo-*5H*-benzo[*b*]carbazole **22f.** Red crystals; mp 195–196 °C; IR(CHCl₃) 2985, 2930, 1635, 1595, 1575, 1475 cm⁻¹; ¹H NMR(400 MHz, CDCl₃) δ 1.40 (t, *J*=7.2 Hz, 3H, CH₃), 1.97 (s, 3H, CH₃), 2.39 (t, *J*=8.7 Hz, 2H, CH₂), 3.08 (t, *J*= 8.7 Hz, 2H, CH₂), 4.46 (q, *J*=7.2 Hz, 2H, NCH₂), 6.15 (s, 1H, ==CH), 7.56–7.66 (m, 2H, ArH), 8.06–8.13 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 15.9 (q), 20.1 (t), 24.3 (q), 29.5 (t), 40.2 (t), 110.2 (d), 118.7 (s), 124.6 (s), 125.9 (2×d), 128.1 (s), 132.1 (d), 132.8 (d), 133.9 (s), 134.9 (s), 138.5 (s), 143.7 (s), 174.0 (s), 182.4 (s). Anal. Calcd for C₁₉H₁₇NO₂: C, 78.33; H, 5.88; N, 4.81. Found: C, 78.32; H, 5.89; N, 4.84.

3.5.15. 3-Ethoxy-6,11-dihydro-5-methyl-6,11-dioxo-5*H***benzo[***b***]carbazole 23a. Orange needles; mp 233–234 °C; IR (CHCl₃) 2990, 1655, 1625, 1595, 1480 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 1.48 (t,** *J***=7.0 Hz, 3H, CH₃), 4.11 (q,** *J***=7.0 Hz, 2H, OCH₂), 4.18 (s, 3H, NCH₃), 6.75 (d,** *J***= 2.1 Hz, 1H, ArH), 7.01 (dd,** *J***=8.9, 2.1 Hz, 1H, ArH), 7.62– 7.72 (m, 2H, ArH), 8.10–8.20 (m, 2H, ArH), 8.27 (d,** *J***= 8.9 Hz, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) \delta 14.8 (q), 31.9 (q), 63.9 (t), 93.2 (d), 116.0 (d), 118.0 (s), 119.3 (s), 124.6 (d), 126.1 (d), 126.3 (d), 132.7 (d), 133.4 (d), 133.7 (s), 134.0 (s), 134.5(s), 141.5 (s), 159.6 (s), 178.4 (s), 181.3 (s). Anal. Calcd for C₁₉H₁₅NO₃: C, 74.74; H, 4.95; N, 4.59. Found: C, 74.77; H, 4.91; N, 4.57.**

3.5.16. 3-Ethoxy-5-ethyl-6,11-dihydro-6,11-dioxo-5Hbenzo[b]carbazole 23b. Orange needles; mp 190–191 °C; IR (CHCl₃) 2990, 1655, 1625, 1505, 1475 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (t, J=7.2 Hz, 3H, CH₃), 1.44 (t, J=7.0 Hz, 3H, CH₃), 4.03 (q, J=7.0 Hz, 2H, OCH₂), 4.60 (q, J=7.2 Hz, 2H, NCH₂), 6.66 (d, J=2.1 Hz, 1H, ArH), 6.92 (dd, J = 8.8, 2.1 Hz, 1H, ArH), 7.60 (td, J = 7.2, 1.7 Hz)1H, ArH), 7.64 (td, J=7.2, 1.7 Hz, 1H, ArH), 8.05 (dd, J=7.2, 1.7 Hz, 1H, ArH), 8.10 (dd, J=7.2, 1.7 Hz, 1H, ArH), 8.19 (d, J=8.8 Hz, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 14.7 (q), 14.9 (q), 40.1 (t), 63.7 (t), 93.1 (d), 115.6 (d), 118.0 (s), 119.2 (s), 124.5 (d), 125.9 (d), 126.1 (d), 132.6 (d), 133.2 (d), 133.6 (s), 133.7 (s), 133.8 (s), 140.3 (s), 159.3 (s), 177.8 (s), 181.2 (s). Anal. Calcd for C₂₀H₁₇NO₃: C, 75.22; H, 5.37; N, 4.39. Found: C, 75.19; H, 5.42; N, 4.37.

3.5.17. 3-Ethoxy-6,11-dihydro-1,5-dimethyl-6,11-dioxo-*5H*-benzo[*b*]carbazole 23c. Red needles; mp 227–228 °C; IR (CHCl₃) 2925, 1655, 1615, 1595, 1495 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.47 (t, *J*=6.9 Hz, 3H, CH₃), 2.94 (s, 3H, ArCH₃), 4.08 (q, *J*=6.9 Hz, 2H, OCH₂), 4.16 (s, 3H, NCH₃), 6.53 (s, 1H, ArH), 6.75 (s, 1H, ArH), 7.59–7.69 (m, 2H, ArH), 8.04–8.17 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 14.8 (q), 23.7 (q), 32.1 (q), 63.7 (t), 90.3 (d), 117.2 (d), 118.0 (s), 120.7 (s), 125.7 (d), 126.5 (d), 132.4 (d), 133.0 (s), 133.4 (d), 134.4 (s), 134.9 (s), 136.8 (s), 142.3 (s), 159.2 (s), 178.7 (s), 180.1 (s). Anal. Calcd for C₂₀H₁₇NO₃: C, 75.22; H, 5.37; N, 4.39. Found: C, 75.07; H, 5.39; N, 4.40.

3.5.18. 3-Ethoxy-5-ethyl-6.11-dihydro-1-methyl-6.11dioxo-5H-benzo[b]carbazole 23d. Red crystals; mp 168-169 °C; IR (CHCl₃) 2985, 2930, 1655, 1615, 1595, 1495 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.45 (t, J= 7.2 Hz, 3H, CH₃), 1.47 (t, J = 7.0 Hz, 3H, CH₃), 2.95 (s, 3H, ArCH₃), 4.09 (q, *J*=7.0 Hz, 2H, OCH₂), 4.70 (q, *J*=7.2 Hz, 2H, NCH₂), 6.58 (d, J=2.0 Hz, 1H, ArH), 6.74–6.80 (m, 1H, ArH), 7.63 (td, J=7.3, 1.6 Hz, 1H, ArH), 7.67 (td, J= 7.3, 1.6 Hz, 1H, ArH), 8.09 (dd, J = 7.3, 1.6 Hz, 1H, ArH), 8.15 (dd, J=7.3, 1.6 Hz, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 14.7 (q), 14.8 (q), 23.7 (q), 40.2 (t), 63.7 (t), 90.3 (d), 117.0 (d), 118.3 (s), 120.9 (s), 125.7 (d), 126.5 (d), 132.4 (d), 133.0 (s), 133.4 (d), 134.36 (s), 134.38 (s), 136.9 (s), 141.2 (s), 159.2 (s), 178.3 (s), 180.2 (s). Anal. Calcd for C₂₁H₁₀NO₃: C, 75.66; H, 5.74; N, 4.20. Found: C, 75.45; H, 5.77; N, 4.15.

3.5.19. 3-Ethoxy-6,11-dihydro-5-methyl-6,11-dioxo-1phenyl-5*H***-benzo[***b***]carbazole 23e. Red crystals; mp 246–247 °C; IR (CHCl₃) 3010, 1655, 1615, 1495, 1480 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) \delta 1.46 (t,** *J***= 7.0 Hz, 3H, CH₃), 4.12 (q,** *J***=7.0 Hz, 2H, OCH₂), 4.24 (s, 3H, NCH₃), 6.77 (d,** *J***=2.0 Hz, 1H, ArH), 6.93 (d,** *J***= 2.0 Hz, 1H, ArH), 7.35–7.40 (m, 2H, ArH), 7.43–7.48 (m, 3H, ArH), 7.57–7.62 (m, 2H, ArH), 7.95–7.99 (m, 1H, ArH), 8.06–8.11 (m, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) \delta 14.8 (q), 32.2 (q), 64.0 (t), 92.3 (d), 116.2 (s), 117.6 (d), 120.2 (s), 125.7 (d), 126.7 (d), 127.2 (d), 127.4 (2×d), 128.8 (2×d), 132.2 (d), 132.9 (s), 133.4 (d), 134.5 (s), 135.5 (s), 140.3 (s), 142.1 (s), 142.4 (s), 158.8 (s), 178.8 (s), 178.9 (s). Anal. Calcd for C₂₅H₁₉NO₃: C, 78.72; H, 5.02; N, 3.67. Found: C, 78.71; H, 5.11; N, 3.60.**

3.5.20. 5-Ethyl-6,11-dihydro-3-methyl-6,11-dioxo-5*H***-benzo**[*b*]**carbazole 23f.** Orange crystals; mp 223–224 °C; IR (CHCl₃) 2930, 1655, 1625, 1595, 1475 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.48 (t, *J*=7.1 Hz, 3H, CH₃), 2.50 (s, 3H, ArCH₃), 4.72 (q, *J*=7.1 Hz, 2H, NCH₂), 7.20 (d, *J*= 8.1 Hz, 1H, ArH), 7.21 (s, 1H, ArH), 7.63–7.72 (m, 2H, ArH), 8.13 (d, *J*=7.2 Hz, 1H, ArH), 8.18 (d, *J*=7.2 Hz, 1H, ArH), 8.29 (d, *J*=8.1 Hz, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 15.2 (q), 22.3 (q), 40.1 (t), 110.4 (d), 119.1(s), 122.0 (s), 123.5 (d), 126.2 (d), 126.3 (d), 126.6 (d), 132.7 (d), 133.6 (d), 133.7 (s), 134.12 (s), 134.13 (s), 137.8 (s), 139.5 (s), 178.7 (s), 181.2 (s). Anal. Calcd for C₁₉H₁₅NO₂: C, 78.87; H, 5.23; N, 4.84. Found: C, 78.86; H, 5.25; N, 4.84.

3.5.21. 6,11-Dihydro-1,3,5-trimethyl-6,11-dioxo-5H-benzo[b]carbazole 23g. Orange needles; mp 247–248 °C; IR (CHCl₃) 3010, 1655, 1620, 1595, 1495, 1480 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.43 (s, 3H, ArCH₃), 2.96 (s, 3H, ArCH₃), 4.18 (s, 3H, NCH₃), 6.94 (s, 1H, ArH), 7.00 (s, 1H, ArH), 7.60–7.73 (m, 2H, ArH), 8.10 (d, *J*=7.3 Hz, 1H, ArH), 8.17 (d, *J*=7.3 Hz, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 21.9 (q), 23.5 (q), 32.1 (q), 107.8 (d), 120.3 (s), 121.6 (s), 125.7 (d), 126.6 (d), 128.2 (d), 132.4 (d), 133.0 (s), 133.6 (d), 134.5 (s), 135.1 (s), 135.3 (s), 137.8 (s), 141.3 (s), 179.3 (s), 180.0 (s). Anal. Calcd for C₁₉H₁₅NO₂: C, 78.87; H, 5.23; N, 4.84. Found: C, 78.92; H, 5.28; N, 4.87. **3.5.22. 4-Chloro-6,11-dihydro-3,5-dimethyl-6,11-dioxo-***5H*-benzo[*b*]carbazole **23h.** Orange needles; mp 269–270 °C; IR (CHCl₃) 3065, 2915, 1660, 1520, 1465, 1250 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 2.52 (s, 3H, ArCH₃), 4.70 (s, 3H, NCH₃), 7.25 (d, *J*=8.2 Hz, 1H, ArH), 7.65–7.79 (m, 2H, ArH), 8.12–8.25 (m, 2H, ArH), 8.31 (d, *J*=8.2 Hz, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 20.7 (q), 35.5 (q), 118.2 (s), 118.9 (s), 121.7 (d), 125.1 (s), 126.1 (d), 126.7 (d), 127.8 (d), 131.7 (s), 133.0 (d), 133.7 (d+s), 135.5 (s), 136.1 (s), 136.5 (s), 179.0 (s), 181.1 (s). Anal. Calcd for C₁₈H₁₂CINO₂: C, 69.80; H, 3.90; N, 4.52. Found: C, 69.67; H, 3.97; N, 4.52.

3.5.23. 6,11-Dihydro-5-methyl-6,11-dioxo-5*H***-benzo[***b***]carbazole 23i.** Yellow needles; mp 213–214 °C; IR (CHCl₃) 3015, 2925, 1660, 1595, 1480 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.19 (s, 3H, NCH₃), 7.30–7.45 (m, 3H, ArH), 7.64 (td, *J*=7.4, 1.5 Hz, 1H, ArH), 7.69 (td, *J*=7.4, 1.5 Hz, 1H, ArH), 8.10 (dd, *J*=7.4, 1.5 Hz, 1H, ArH), 8.16 (dd, *J*=7.4, 1.5 Hz, 1H, ArH), 8.38 (d, *J*=8.0 Hz, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 31.9 (q), 110.7 (d), 118.6 (s), 123.7 (d), 123.8 (s), 124.4 (d), 126.1 (d), 126.3 (d), 127.1 (d), 132.7 (d), 133.4 (s), 133.6 (d), 134.0 (s), 135.0 (s), 139.8 (s), 179.0 (s), 180.9 (s). Anal. Calcd for C₁₇H₁₁NO₂: C, 78.15; H, 4.24; N, 5.36. Found: C, 78.16; H, 4.25; N, 5.36.

3.5.24. 4-Chloro-6,11-dihydro-5-methyl-6,11-dioxo-5*H***-benzo**[*b*]**carbazole 23k.** Yellow needles; mp 225–226 °C; IR (CHCl₃) 3015, 2925, 1665, 1600, 1470 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 4.62 (s, 3H, NCH₃), 7.21 (t, *J*=7.8 Hz, 1H, ArH), 7.34 (d, *J*=7.8 Hz, 1H, ArH), 7.63–7.74 (m, 2H, ArH), 8.07–8.18 (m, 2H, ArH), 8.37 (d, *J*=7.8 Hz, 1H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 35.1 (q), 118.5 (s), 118.7 (s), 122.5 (d), 124.8 (d), 126.1 (d), 126.6 (d), 126.8 (s), 129.0 (d), 132.9 (d), 133.5 (s), 133.6 (s), 133.8 (d), 135.2 (s), 135.7 (s), 178.9 (s), 180.7 (s). Anal. Calcd for C₁₇H₁₀CINO₂: C, 69.05; H, 3.41; N, 4.74. Found: C, 68.82; H, 3.37; N, 4.71.

3.5.25. 1,2,6,11-Tetrahydro-1,1,3,5-tetramethyl-6,11dioxo-5H-benzo[b]carbazole 25. Red needles; mp 152– 153 °C; IR (CHCl₃) 3010, 2915, 1640, 1590, 1410 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.44 (s, 6H, 2×CH₃), 1.98 (s, 3H, CH₃), 2.28 (s, 2H, CH₂), 4.03 (s, 3H, NCH₃), 6.19 (s, 1H, ==CH), 7.59–7.64 (m, 2H, ArH), 8.07–8.13 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 24.2 (q), 27.7 (2×q), 32.5 (q), 33.1 (s), 47.5 (t), 109.4 (d), 124.7 (s), 125.6 (d), 126.4 (d), 127.6 (s), 130.0 (s), 132.4 (d), 132.6 (d), 134.1 (s), 134.2 (s), 138.7 (s), 142.6 (s), 175.1 (s), 181.3 (s). Anal. Calcd for C₂₀H₁₉NO₂: C, 78.66; H, 6.27; N, 4.59. Found: C, 78.70; H, 6.27; N, 4.62.

3.5.26. 5-Ethyl-1,2,6,11-tetrahydro-2,2-dimethyl-6,11dioxo-5*H*-benzo[*b*]carbazole **27.** Orange crystals; mp 142–143 °C; IR (CHCl₃) 2970, 2930, 1640, 1595, 1480 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.14 (s, 6H, 2×CH₃), 1.42 (t, *J*=7.2 Hz, 3H, CH₃), 3.01 (s, 2H, CH₂), 4.52 (q, *J*=7.2 Hz, 2H, NCH₂), 5.94 (d, *J*=10.0 Hz, 1H, =CH), 6.32 (d, *J*=10.0 Hz, 1H, =CH), 7.60–7.70 (m, 2H, ArH), 8.09–8.17 (m, 2H, ArH); ¹³C NMR (75.4 MHz, CDCl₃) δ 16.1 (q), 28.5 (q), 28.6 (q), 33.6 (s), 34.9 (t), 40.5 (t), 112.3 (d), 120.0 (s), 125.3 (s), 126.1 (2×d), 128.8 (s), 132.4 (d), 132.9 (d), 133.8 (s), 134.8 (s), 136.5 (s), 144.0 (d), 174.6 (s), 182.4 (s). Anal. Calcd for $C_{20}H_{19}NO_2$: C, 78.66; H, 6.27; N, 4.59. Found: C, 78.25; H, 6.28; N, 4.55.

3.6. Typical experimental procedure for the reaction between 2-(anilino)-1,4-naphthoquinone (28) and β-dicarbonyl compounds in formic acid

A mixture of 151 mg (0.61 mmol) of 2-(anilino)-1,4naphthoquinone (**28**), 383 mg (2.42 mmol) of ethyl butyrylacetate (**2a**) and 646 mg (2.41 mmol) of $Mn(OAc)_3$ in 10 mL of 80% aqueous formic acid was stirred at 0 °C for 30 min. The reaction mixture was diluted with 100 mL of ethyl acetate, washed with 50 mL of saturated aqueous sodium bisulfite, three 50 mL portions of water, 50 mL of saturated aqueous sodium bicarbonate, dried (Na₂SO₄), and concentrated in vacuo. The residue was chromatographed over 20 g of silica gel (eluted with 2:1 dichloromethanehexane) followed by crystallization (ethyl acetate-hexane) to give 155 mg (66%) of **29a**.

3.6.1. 4,9-Dihydro-2-isopropyl-3-(methoxycarbonyl)-4,9dioxo-1-phenyl-1*H***-benzo[***f***]indole 29b.** Yellow powders; mp 210–211 °C; IR (CHCl₃) 1730, 1665, 1595, 1290, 1240 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.24 (d, *J*= 7.1 Hz, 6H, 2×CH₃), 2.81 (septet, *J*=7.1 Hz, 1H, CH), 4.03 (s, 3H, OCH₃), 7.28–7.34 (m, 2H, ArH), 7.55–7.60 (m, 3H, ArH), 7.62 (td, *J*=7.2, 1.6 Hz, 1H, ArH), 7.66 (td, *J*= 7.2, 1.6 Hz, 1H, ArH), 7.94–7.99 (m, 1H, ArH), 8.13 (dd, *J*=7.2, 1.6 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 21.4 (2×q), 26.1 (d), 52.7 (q), 113.2 (s), 125.9 (s), 126.3 (d), 126.5 (d), 127.5 (2×d), 129.5 (2×d), 129.7 (d), 130.0 (s), 133.2 (2×d), 133.3 (s), 133.4 (s), 136.8 (s), 148.4 (s), 166.4 (s), 174.6 (s), 180.1 (s). Anal. Calcd for C₂₃H₁₉NO₄: C, 73.98; H, 5.13; N, 3.75. Found: C, 74.04; H, 5.18; N, 3.74.

3.6.2. 2-Ethyl-4,9-dihydro-4,9-dioxo-1-phenyl-3-propionyl-1*H***-benzo[***f***]indole 29e.** Yellow powders; mp 120– 121 °C; IR (CHCl₃) 1660, 1600, 1495, 1465, 1270 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.02 (t, *J*=7.5 Hz, 3H, CH₃), 1.26 (t, *J*=7.3 Hz, 3H, CH₃), 2.56 (q, *J*=7.5 Hz, 2H, CH₂), 3.16 (q, *J*=7.3 Hz, 2H, CH₂), 7.25–7.35 (m, 2H, ArH), 7.54–7.61 (m, 3H, ArH), 7.64 (td, *J*=7.6, 1.4 Hz, 1H, ArH), 7.68 (td, *J*=7.6, 1.4 Hz, 1H, ArH), 7.98 (dd, *J*=7.6, 1.4 Hz, 1H, ArH), 8.16 (dd, *J*=7.6, 1.4 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 8.6 (q), 14.4 (q), 18.3 (t), 37.0 (t), 122.2 (s), 125.2 (s), 126.2 (d), 126.7 (d), 127.3 (2×d), 129.5 (2×d), 129.6 (d), 130.8 (s), 133.2 (s), 133.3 (2×d), 133.5 (s), 136.8 (s), 147.2 (s), 174.9 (s), 181.0 (s), 202.8 (s). Anal. Calcd for C₂₃H₁₉NO₃: C, 77.29; H, 5.36; N, 3.92. Found: C, 77.02; H, 5.35; N, 3.97.

3.6.3. 4,9-Dihydro-3-isovaleryl-2-methyl-4,9-dioxo-1phenyl-1*H*-benzo[*f*]indole 29h. Pale yellow powders; mp 151–152 °C; IR (CHCl₃) 2960, 1660, 1595, 1500, 1285 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.01 (d, *J* = 6.8 Hz, 6H, 2×CH₃), 2.16 (s, 3H, ArCH₃), 2.27 (septet, *J* = 6.8 Hz, 1H, CH), 3.08 (d, *J*=6.8 Hz, 2H, CH₂), 7.27–7.32 (m, 2H, ArH), 7.55–7.60 (m, 3H, ArH), 7.64 (td, *J*=7.4, 1.5 Hz, 1H, ArH), 7.69 (td, *J*=7.4, 1.5 Hz, 1H, ArH), 7.99 (dd, *J*=7.4, 1.5 Hz, 1H, ArH), 8.18 (dd, *J*=7.4, 1.5 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 11.6 (q), 22.7

12259

 $(2 \times q)$, 25.4 (d), 52.5 (t), 123.1 (s), 125.0 (s), 126.2 (d), 126.8 (d), 127.1 (2×d), 129.6 (3×d), 130.9 (s), 133.1 (s), 133.27 (d), 133.31 (d), 133.5 (s), 136.9 (s), 141.8 (s), 174.9 (s), 180.8 (s), 202.2 (s). Anal. Calcd for C₂₄H₂₁NO₃: C, 77.61; H, 5.70; N, 3.77. Found: C, 77.56; H, 5.77; N, 3.73.

3.6.4. 4,9-Dihydro-2-methyl-4,9-dioxo-1-phenyl-3-pivaloyl-1*H***-benzo[***f***]indole 29i.** Yellow powders; mp 155– 156 °C; IR (CHCl₃) 1660, 1595, 1505, 1430, 1280 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.34 (s, 9H, 3×CH₃), 2.03 (s, 3H, ArCH₃), 7.29–7.33 (m, 2H, ArH), 7.54–7.60 (m, 3H, ArH), 7.63 (td, *J*=7.4, 2.0 Hz, 1H, ArH), 7.66 (td, *J*=7.4, 2.0 Hz, 1H, ArH), 7.98–8.19 (m, 1H, ArH), 8.14–8.56 (m, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 11.6 (q), 27.1 (3×q), 45.9 (s), 122.4 (s), 126.2 (s), 126.4 (d), 126.5 (d), 127.2 (2×d), 129.5 (3×d), 130.4 (s), 133.1 (d), 133.3 (d), 133.6 (s), 136.3 (s), 136.9 (s), 174.6 (s), 180.6 (s), 211.6 (s). Anal. Calcd for C₂₄H₂₁NO₃: C, 77.61; H, 5.70; N, 3.77. Found: C, 77.62; H, 5.69; N, 3.77.

3.7. Typical experimental procedure for the reaction between 2-(anilino)-1,4-naphthoquinone (28) and β-dicarbonyl compounds in less acidic or neutral solvent

A mixture of 151 mg (0.61 mmol) of 2-(anilino)-1,4naphthoquinone (**28**), 390 mg (2.47 mmol) of ethyl butyrylacetate (**2a**) and 969 g (3.61 mmol) of $Mn(OAc)_3$ in 10 mL of CF₃CH₂OH was heated at 80 °C for 24 h, followed by the addition of 971 mg (3.62 mmol) of $Mn(OAc)_3$. The reaction mixture was heated for another 24 h and then diluted with 100 mL of ethyl acetate, washed with 50 mL of saturated aqueous sodium bisulfite, three 50 mL portions of water, dried (Na₂SO₄), and concentrated in vacuo. The residue was chromatographed over 20 g of silica gel (eluted with dichloromethane) followed by crystallization (chloroform– hexane) to give 129 mg (64%) of **30a**.

3.7.1. 12-Acetyl-6,11-dihydro-6,11-dioxo-benzo[*b*]acridine **30b.** Pale yellow powders; mp 314–315 °C; IR (CHCl₃) 1690, 1600, 1335, 1310, 1255 cm⁻¹; ¹H NMR (400 MHz, CF₃COOD) δ 3.06 (s, 3H, CH₃), 8.11–8.22 (m, 2H, ArH), 8.30–8.41 (m, 2H, ArH), 8.53–8.64 (m, 3H, ArH), 8.88 (d, *J*=8.7 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CF₃COOD) δ 30.9 (q), 123.0 (s), 123.1 (d), 127.8 (d), 127.9 (s), 129.5 (d), 129.6 (d), 131.8 (s), 133.0 (s), 135.0 (d), 137.4 (d), 138.8 (d), 140.4 (s), 141.4 (d), 141.6 (s), 159.9 (s), 176.2 (s), 179.5 (s), 205.6 (s). Anal. Calcd for C₁₉H₁₁NO₃: C, 75.74; H, 3.68; N, 4.65. Found: C, 75.52; H, 3.68; N, 4.67.

3.7.2. 6,11-Dihydro-6,11-dioxo-12-propionyl-benzo[*b***]acridine 30c.** Pale yellow powders; mp 218–219 °C; IR (CHCl₃) 1690, 1595, 1550, 1335, 1260 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 1.49 (t, *J*=7.1 Hz, 3H, CH₃), 2.67– 2.83 (m, 1H, CH₂), 3.06–3.23 (m, 1H, CH₂), 7.76–7.96 (m, 4H, ArH), 7.97–8.04 (m, 1H, ArH), 8.29–8.35 (m, 1H, ArH), 8.47–8.51 (m, 1H, ArH), 8.54 (d, *J*=8.8 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, CDCl₃) δ 7.8 (q), 37.6 (t), 122.7 (s), 125.0 (s), 126.0 (d), 127.8 (d), 128.3 (d), 130.7 (d), 132.1 (d), 133.2 (s), 133.5 (d), 134.0 (s), 134.9 (d), 135.1 (d), 147.7 (s), 150.1 (s), 151.6 (s), 181.2 (s), 182.6 (s), 206.0 (s). Anal. Calcd for C₂₀H₁₃NO₃: C, 76.18; H, 4.16; N, 4.44. Found: C, 76.23; H, 4.12; N, 4.42. **3.7.3. 6,11-Dihydro-12-isobutyryl-6,11-dioxo-benzo**[*b*]acridine **30d.** Pale yellow powders; mp 229–230 °C; IR (CHCl₃) 1690, 1600, 1335, 1255, 1105 cm⁻¹; ¹H NMR (400 MHz, C₂D₂Cl₄) δ 1.12 (d, *J*=6.9 Hz, 3H, CH₃), 1.35 (d, *J*=6.9 Hz, 3H, CH₃), 3.00 (septet, *J*=6.9 Hz, 1H, CH), 7.71–7.88 (m, 4H, ArH), 7.96 (t, *J*=7.5 Hz, 1H, ArH), 8.24–8.29 (m, 1H, ArH), 8.34–8.40 (m, 1H, ArH), 8.43 (d, *J*=8.5 Hz, 1H, ArH); ¹³C NMR (100.6 MHz, C₂D₂Cl₄) δ 18.1 (q), 19.0 (q), 42.4 (d), 123.5 (s), 125.5 (s), 127.0 (d), 127.9 (d), 128.3 (d), 130.8 (d), 131.9 (d), 133.2 (s), 133.9 (d), 135.2 (d), 135.4 (d), 147.7 (s), 149.9 (s), 151.3 (s), 181.4 (s), 182.8 (s), 209.4 (s). Anal. Calcd for C₂₁H₁₅NO₃: C, 76.58; H, 4.59; N, 4.25. Found: C, 76.49; H, 4.63; N, 4.11.

Acknowledgements

We are grateful to the National Science Council of the ROC for financial support (Grant No. NSC-92-2113-M-006-008).

References and notes

- (a) Hart, D. J. Science 1984, 223, 883. (b) Neumann, W. P. Synthesis 1987, 665. (c) Curran, D. P. Synthesis 1988, 417 see alsp p 489. (d) Melikyan, G. G. Synthesis 1993, 833. (e) Iqbal, J.; Bhatia, B.; Nayyar, N. K. Chem. Rev. 1994, 94, 519. (f) Snider, B. B. Chem. Rev. 1996, 96, 339.
- (a) The Chemistry of Functional Groups: The Chemistry of The Quinoid Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1988. (b) Thomson, R. H. Natural Occurring Quinones IV: Recent Advances; Chapman & Hall: London, 1997.
- (a) Shaw, K. J.; Luly, J. R.; Rapoport, H. J. Org. Chem. 1985, 50, 4515. (b) Murphy, W. S.; O'Sullivan, P. J. Tetrahedron Lett. 1992, 33, 531. (c) O'Sullivan, P. J.; Moreno, R.; Murphy, W. S. Tetrahedron Lett. 1992, 33, 535.
- 4. (a) Yogo, M.; Ito, C.; Furukawa, H. *Chem. Pharm. Bull.* 1991, *39*, 328. (b) Bittner, S.; Krief, P.; Massil, T. *Synthesis* 1991, 215. (c) Knölker, H.-J.; O'Sullivan, N. *Tetrahedron* 1994, *50*, 10893. (d) Åkermark, B.; Oslob, J. D.; Heuschert, U. *Tetrahedron Lett.* 1995, *36*, 1325. (e) Echavarran, A. M.; Tamayo, N.; De Frutos, O.; Garcia, A. *Tetrahedron* 1997, *50*, 16835.
- (a) Oumar-Mahamat, H.; Moustrou, C.; Surzur, J.-M.; Berstrand, M. P. *J. Org. Chem.* **1989**, *54*, 5684. (b) Snider, B. B.; Wan, B. Y. F.; Buckman, B. O.; Foxman, B. M. *J. Org. Chem.* **1991**, *56*, 328.
- 6. (a) Citterio, A.; Sebastiano, R.; Carvayal, M. C. J. Org. Chem.
 1991, 56, 5335. (b) Citterio, A.; Sebastiano, R.; Nicolini, M. Tetrahedron 1993, 49, 7743. (c) Chuang, C.-P.; Wang, S.-F. Tetrahedron Lett. 1994, 35, 4365. (d) Chuang, C.-P.; Wang, S.-F. J. Chin. Chem. Soc. 1997, 44, 271. (e) Chuang, C.-P.; Wang, S.-F. Tetrahedron 1998, 54, 10043. (f) Chuang, C.-P.; Wang, S.-F. Heterocycles 1999, 50, 489. (g) Chuang, C.-P.; Wu, Y.-L.; Jiang, M.-C. Tetrahedron 1999, 55, 11229. (h) Jiang, M.-C.; Chuang, C.-P. J. Org. Chem. 2000, 65, 5409. (i) Wu, Y.-L.; Chuang, C.-P.; Lin, P.-Y. Tetrahedron 2001, 57, 5543. (j) Tseng, C.-C.; Wu, Y.-L.; Chuang, C.-P. Tetrahedron 2002, 57, 7625.
- 7. (a) Williams, G. J.; Hunter, N. R. Can. J. Chem. 1976, 54,

3830. (b) Demir, A. S.; Jeganathan, A. Synthesis 1992, 235.
(c) Snider, B. B.; Han, L.; Xie, C. J. Org. Chem. 1997, 62, 6978. (d) Tanyeli, C.; Sezen, B. Tetrahedron Lett. 2000, 41, 7973. (e) Tanyeli, C.; Ozdemirhan, D.; Sezen, B. Tetrahedron 2002, 58, 9983.

- (a) Snider, B. B.; Merritt, J. E.; Dombroski, M. A.; Buckman, B. O. J. Org. Chem. **1991**, 56, 5544. (b) Snider, B. B.; McCarthy, B. A. J. Org. Chem. **1993**, 58, 6217. (c) Ishibashi, H.; Toyao, A.; Takeda, Y. Synlett **1999**, 1468. (d) Liao, Y.-J.; Wu, Y.-L.; Chuang, C.-P. Tetrahedron **2003**, 59, 3511. Also see: Ref. 6d–g.
- (a) Jacobsen, N.; Torsell, K. Acta Chem. Scand. 1973, 27, 3211. (b) Brown, P. M.; Thomson, R. H. J. Chem. Soc., Perkin Trans. 1 1976, 997. (c) Citterio, A.; Arnoldi, A.; Minisci, F. J. Org. Chem. 1979, 44, 2674. (d) Citterio, A.; Vismara, E.;

Bernardi, R. J. Chem. Res. (S) **1983**, 88. (e) Citterio, A.; Vismara, E.; Bernardi, R. J. Chem. Res. (M) **1983**, 876. (f) Williams, D. R.; Clark, M. P. Tetrahedron Lett. **1998**, 39, 7629.

- Similar rate enhancement by cerium salt has been reported. See: (a) Imamoto, T.; Sugiura, Y.; Takiyama, N. *Tetrahedron Lett.* **1984**, *25*, 4233. (b) Imamoto, T.; Takiyama, N.; Nakamura, K. *Tetrahedron Lett.* **1985**, *26*, 4763.
- Kobayashi, K.; Suzuki, M.; Takeuchi, H.; Konishi, A.; Sakurai, H.; Suginome, H. J. Chem. Soc., Perkin Trans. 1 1994, 1099.
- (a) Takahashi, K.; Tanaka, T.; Suzuki, T.; Hirama, M. *Tetrahedron* **1994**, *50*, 1327. (b) Montalban, A. G.; Wittenberg, L.-O.; McKillop, A. *Tetrahedron Lett.* **1999**, *40*, 5893.