Collins and Davis.

1863

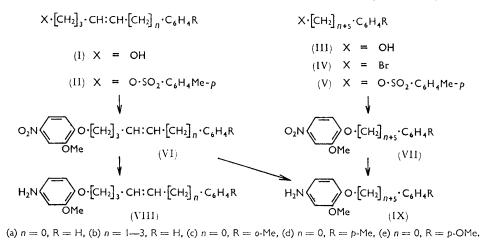
363. The Chemotherapy of Schistosomiasis. Part IV.¹ Some Ethers of 4-Amino-2-methoxyphenol.

By R. F. COLLINS and M. DAVIS.

Numerous alkyl and substituted alkyl ethers of 4-amino-2-methoxyphenol have been prepared, together with some related compounds and N-substituted derivatives. Many of the compounds are schistosomicides.

In earlier parts of this series 1.2,3 we have reported alkyl and substituted alkyl ethers of p-aminophenol which were effective against Schistosoma mansoni infections.^{4,5} Some of these compounds produced undesirable ocular effects in cats, but it was noted that this response, which was particularly marked with 1.5-di-(p-aminophenoxy)pentane, was absent with the o,o'-dimethoxy-derivative.⁴ Many more ethers of 4-amino-2-methoxyphenol (4-aminoguaiacol) have therefore been synthesised and tested biologically,⁶ the majority being alkyl ethers either unsubstituted or carrying substituents such as hydroxy, alkoxy, alkylthio, aryl, aryloxy, arylthio, arylsulphonyl, etc. For some of these compounds the effects of branching or unsaturation in the chain, and of substitution in the amino-group,

- Part III, Ashley, Collins, Davis, and Sirett, J., 1959, 3880.
 Ashley, Collins, Davis, and Sirett, J., 1958, 3298.


- ³ Ashley, Collins, Davis, and Sirett, J., 1959, 897.
 ⁴ Collins, Davis, Edge, and Hill, Brit. J. Pharmacol., 1958, 13, 238.
 ⁵ Collins, Davis, Edge, Hill, Reading, and Turnbull, Brit. J. Pharmacol., 1959, 14, 467.
- ⁶ Collins, Davis, Edge, Hill, and Weston, unpublished work.

Collins and Davis:

have been investigated and a few positional isomers and other related compounds, as well as some further ethers of p-aminophenol, have been prepared.

The general method of synthesis used was the condensation of potassium 2-methoxy-4nitrophenoxide⁷ (obtained almost quantitatively by refluxing 4-nitroveratrole with aqueous potassium hydroxide) with the appropriate chloride, bromide, or toluene-psulphonate, followed by reduction of the nitro-compound to the amine either catalytically or by using sodium sulphide. In some instances 4-acetamido-2-methoxyphenol⁸ was used and the condensation product was hydrolysed with acid.

As a homologous series of ω-phenylalkyl halides was required for this work, the Crombie-Harper synthesis^{9,10,11} using 2,3-dichlorotetrahydropyran and phenyl or phenylalkyl halides was employed and gave satisfactory overall yields of *trans-*w-phenylalk-4-en-1-ols (Ia—e). Catalytic reduction afforded the corresponding saturated alcohols (IIIa—e) which were converted into the bromides (IVa—d) or, in one instance, into the toluene-psulphonate (Ve). Condensation with potassium 2-methoxy-4-nitrophenoxide yielded the

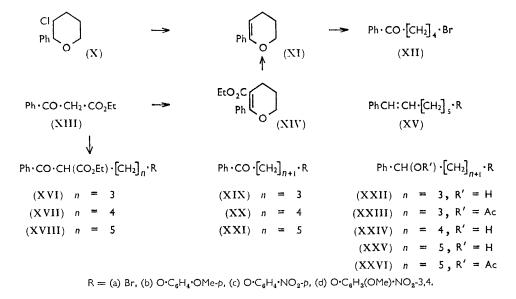
nitro-compounds (VII) which were reduced catalytically to the amines (IX). In an alternative procedure, the phenylalkenols (Ia, d, and e) were converted into the toluene-psulphonates (IIa, d, and e) and thence into the unsaturated nitroguaiacyl ethers (VI), which were reduced either catalytically to the saturated amines (IX) or with sodium sulphide to the unsaturated amine (VIII).

4-Benzoylbutyl bromide (XII) was first prepared by Perkin¹² from benzoylacetic ester (XIII) and 1,3-dibromopropane, the intermediate ethyl 5,6-dihydro-2-phenyl-4H-pyran-3carboxylate (XIV) being hydrolysed and decarboxylated to 3,4-dihydro-6-phenyl-2Hpyran (XI), which was then treated with hydrobromic acid. We have found that the key intermediate (XI) is formed in 78% yield by dehydrochlorination of the mixed cisand trans-isomers of 3-chlorotetrahydro-2-phenylpyran 13 (X) with sodamide in boiling toluene. The absence of a double-bond isomer of (XI) was shown by almost quantitative conversion of the product into 4-benzoylbutyl bromide. Riobé¹¹ obtained a mixture of two isomers on heating 3-chlorotetrahydro-2-methylpyran with potassium hydroxide in ethylene glycol, the proportion depending on whether the *cis*- or *trans*-chloro-compound

⁷ Pollecoff and Robinson, J., 1918, **113**, 645.

8

Heidelberger and Jacobs, J. Amer. Chem. Soc., 1919, 41, 1450. Crombie and Harper, J., 1950, 1707; Crombie, Gold, Harper, and Stokes, J., 1956, 136.

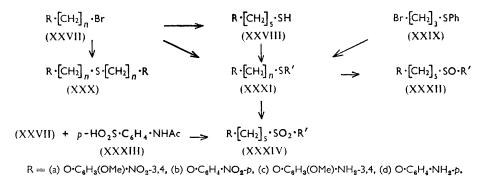

¹⁰ Ansell and Selleck, J., 1956, 1238; Ansell and Thomas, J., 1957, 3302.
 ¹¹ Riobé, Ann. Chim. (France), 1949, 4, 630.

¹² Perkin, J., 1887, **51**, 702; cf. Normant, Compt. rend., 1950, **231**, 909; Montaigne, Ann. Chim. (France), 1954, **9**, 310.

¹³ Paul, Compt. rend., 1944, 218, 122.

The Chemotherapy of Schistosomiasis. Part IV. [1961] 1865

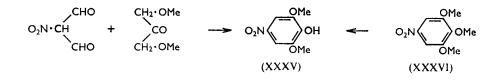
was used. Treatment of 3-bromo-2-ethyltetrahydropyran with sodamide in liquid ammonia has been investigated ¹⁴ as a route to hept-4-yn-1-ol. Two higher homologues of 4-benzoylbutyl bromide were prepared by a modification of Perkin's method. When benzoylacetic ester (XIII) was condensed with 4-p-methoxyphenoxybutyl bromide, and the intermediate ester (XVIIb) was subjected to ketonic hydrolysis, 1-benzoyl-5-p-methoxyphenoxypentane (XXb) was obtained; it was converted by aqueous hydrobromic acid


into 5-benzoylpentyl bromide (XXa). Later, it was found that condensation of benzoylacetic ester with an excess of 1,5-dibromopentane and treatment of the crude product (XVIIIa) with hydrobromic acid yielded 6-benzoylhexyl bromide (XXIa) directly.

Reaction of the appropriate benzoylalkyl bromide with potassium 2-methoxy-4nitrophenoxide or potassium p-nitrophenoxide afforded respectively the benzoyl alkyl ethers (XIXd), (XXId), (XIXc),¹ and (XXc). 4-Benzoyl-1-p-nitrophenoxybutane (XIXc) and 5-benzoyl-1-p-nitrophenoxypentane (XXc) were also obtained directly from benzoylacetic ester by condensation with 3-p-nitrophenoxypropyl bromide, or 4-p-nitrophenoxybutyl bromide, respectively, followed by alkaline hydrolysis of the intermediate esters (XVIc) and (XVIIc). Reduction of the nitro-ketones by the Meerwein–Ponndorf method, previously described 1 for the preparation of 5-p-nitrophenoxy-1-phenylpentane-1-ol (XXIIc), was employed for the nitro-alcohols (XXIId), (XXIVc), and XXVd). Treatment with acetic anhydride in the presence of sulphuric acid at room temperature gave the corresponding acetates (XXIIId) and (XXVId); at a higher temperature the unsaturated compound (XVd) was isolated.

Three methods were used for the preparation of nitroguaiacyl and nitrophenol ethers (XXXIa and XXXIb) containing sulphur in the chains, the most convenient being the condensation of the nitroguaiacyloxyalkyl or p-nitrophenoxyalkyl bromide (XXVIIa or XXVIIb) with sodium alkyl, arylalkyl, or aryl sulphide. In a second route, 5-(2-methoxy-4-nitrophenoxy)pentyl bromide (XXVIIa; n = 5) was converted successively into the thiouronium salt and the thiol (XXVIIIa), which was alkylated with methyl iodide. Another method is exemplified by the reaction of 1,3-dibromopropane with thiophenol to give 3-phenylthiopropyl bromide (XXIX) and subsequent condensation with potassium nitroguaiacyloxide. Corresponding sulphoxides (XXXIIb) and sulphones (XXXIVa

¹⁴ Eglinton, Jones, and Whiting, J., 1952, 2873.


and b) were obtained by oxidation with hydrogen peroxide in acetic acid, and one sulphone was prepared by condensation of the nitroguaiacyloxypentyl bromide (XXVIIa; n = 5) with p-acetamidobenzenesulphinic acid (XXXIII). The nitro-sulphones were reduced

to the amines (XXXIVc and d) catalytically, but chemical reduction was necessary for the amino-sulphides (XXXIc and d) and amino-sulphoxides (XXXIId). The diamine (XXXc) was formed when 5-(2-methoxy-4-nitrophenoxy) pentyl bromide (XXVIIa; n = 5) was heated with sodium sulphide.

Condensation of potassium 2-methoxy-4-nitrophenoxide with acetobromoglucose, followed by hydrolysis of the acetyl groups and reduction, afforded 4-amino-2-methoxyphenyl D-glucoside, presumably the β -isomer.¹⁵

To examine the effect of introducing a further methoxy-group at $C_{(6)}$ in the aminoguaiacyl ethers, 2,6-dimethoxy-4-nitrophenol (XXXV) was required. It seemed likely that the 2-methoxy-group of the known 5-nitropyrogallol trimethyl ether ¹⁶ (XXXVI)

would be sensitive to nucleophilic reagents and it was in fact preferentially attacked by aqueous alkali. The structure of the nitrophenol (XXXV) thus formed was confirmed by its independent synthesis from sodium nitromalondialdehyde and 1,3-dimethoxyacetone.¹⁷ Condensations using this sterically hindered phenol were sluggish and required extended reaction times.

The N-substituted amines were for the most part obtained by standard methods, which have been described in earlier papers.^{1,2}

EXPERIMENTAL

Light petroleum refers, except where stated, to the fraction of b. p. $40-60^{\circ}$.

Alcohols, bromides, and related compounds.

1-Phenylbut-3-yl Bromide.—Benzylideneacetone was reduced catalytically (Raney nickel) in ethanol to 4-phenylbutan-2-ol (92%), b. p. 119-121°/11 mm. (lit.,¹⁸ 127°/18 mm.), which

 ¹⁵ Koenigs and Knorr, Ber., 1901, **34**, 957.
 ¹⁶ Will, Ber., 1888, **21**, 602.
 ¹⁷ Jones and Kenner, J., 1931, 1842.
 ¹⁸ Jadot and Braine, Bull. Soc. roy. Sci. Liége, 1956, **25**, 62.

was refluxed for 20 hr. with 50% aqueous hydrobromic acid, giving the bromide (75% overall), b. p. 116°/10 mm. (lit.,¹⁹ 116—118°/14 mm.). 4-Phenylbutyl bromide was prepared by the method of Oae and VanderWerf.20

Harper-Crombie Method for the Preparation of Phenylalkyl Bromides.-(a) A Grignard reagent prepared from benzyl chloride (189.75 g., 1.5 moles) and magnesium (36.45 g., 1.5 g.-atoms) in ether (400 ml.) was cooled and stirred whilst a solution of 2,3-dichlorotetrahydropyran (from 86 g. of dihydropyran *) in ether (200 ml.) was added during 1 hr. The mixture was stirred for a further 5 hr., kept overnight, and decomposed with ammonium chloride solution until the magnesium hydroxide separated as an easily filtrable solid. The suspension was filtered through Hyflo Supercel, the solid was washed with ether, and the ethereal solutions were washed, dried, and distilled, giving a mixture (145.4 g., 67%), b. p. 148-178°/15 mm. (Found: Cl, 14.4. Calc. for C₁₂H₁₅ClO: Cl, 16.9%), containing both cis- and trans-2-benzyl-3chlorotetrahydropyran. Similar reactions were carried out with bromobenzene,¹³ phenethyl bromide,¹⁰ 3-phenylpropyl bromide, o-bromotoluene, p-bromotoluene, and p-bromoanisole, but in these cases the ethereal solutions were treated directly as in (b).

(b) 2-Benzyl-3-chlorotetrahydropyran (144 g. of crude mixture) was slowly added to a stirred (Hershberg wire stirrer) suspension of finely divided sodium (34.8 g.) in dry ether (500 ml.). Next day, the mixture was treated with ethanol (50 ml.), then water, and the washed and dried ethereal solution was distilled, giving the crude alcohol (107.7 g., 89.5%), b. p. 156-166°/12 mm. A redistilled sample of trans-6-phenylhex-4-en-1-ol had b. p. 152-157°/10 mm., $n_{\rm p}^{12}$ 1.5380 (Found: C, 81.5; H, 8.9. $C_{12}H_{16}$ O requires C, 81.8; H, 9.2%).

Similarly prepared (yields are for crude alcohol overall from dihydropyran) were trans-5phenylpent-4-en-1-ol (77%), b. p. $102^{\circ}/0.1$ mm., $165-170^{\circ}/21$ mm., $n_{\rm D}^{20}$ 1.5620 (lit.,¹¹ b. p. 153—157°/13 mm., $n_{\rm D}^{17}$ 1.5640); trans-7-phenylhept-4-en-1-ol (51%), b. p. 100—105°/0.03 mm., $n_{\rm p}$ 1·5260 (lit.,¹⁰ b. p. 110—118°/0·7 mm.); trans-8-*phenyloct*-4-*en*-1-*ol* (81%), b. p. 190—194°/15 mm., $n_{\rm p}$ ¹⁹ 1·5240 (Found: C, 82·5; H, 9·7. C₁₄H₂₀O requires C, 82·3; H, 9·9%); trans-5-o-tolylpent-4-en-1-ol (49%), b. p. 162-170°/15 mm., np 1.5505 (Found: C, 81.7; H, 9.25. C₁₂H₁₆O requires C, 81.8; H, 9.1%); trans-5-p-tolylpent-4-en-1-ol (78%), m. p. 40-42°, b. p. 155-173°/14 mm. (Found: C, 82.3; H, 8.9%); and trans-5-p-methoxyphenylpent-4-en-1-ol (71%), m. p. 74-75° (Found: C, 75·1; H, 8·4. C₁₂H₁₆O₂ requires C, 75·0; H, 8·3%).

(c) Catalytic reduction of the unsaturated alcohols (Raney nickel) gave respectively 5-phenylpentanol (87%), b. p. 133-144°/11 mm., 6-phenylhexanol (93%), b. p. 157-167°/13 mm. (lit.,²¹ b. p. 160—161°/13 mm.); 7-phenylheptanol (65%), b. p. 125—135°/0·02 mm., n_p 1·5135 (lit.,²¹ b. p. 142—145°/7 mm.); 8-phenyloctanol (81%), b. p. 185—189°/12 mm., n_p¹⁹ 1.5080 (Found: C, 81.9; H, 10.5. C₁₄H₂₂O requires C, 81.5; H, 10.75%); 5-0-tolylpentanol (86%), b. p. 155-156°/13 mm., n_p 1.5225 (Found: C, 80.9; H, 9.6. C₁₂H₁₈O requires C, 81.0; H, 10·1%); 5-p-tolylpentanol (95%), b. p. 159-162°/14 mm. (lit., 22 b. p. 158-159°/11 mm.); and 5-p-methoxyphenylpentanol (94%), b. p. 110-115°/0.03 mm. (Found: C, 74.5; H, 9.25. $C_{12}H_{18}O_2$ requires C, 74.2; H, 9.3%).

(d) The saturated alcohols were converted into the bromides by treatment with 50%aqueous hydrobromic acid (2 ml./g.) and concentrated sulphuric acid (0.67 ml./g.) at 100° for 20 hr. The following were obtained: 5-phenylpentyl bromide, 6-phenylhexyl bromide (used without purification); ²⁰ 7-phenylheptyl bromide, b. p. 110-114°/0.05 mm. (lit.,²¹ b. p. 170-175°/15 mm.); 8-phenyloctyl bromide (72%), b. p. 185–187°/12 mm. (Found: Br, 27·1. C₁₄H₂₁Br requires Br, 29.7%); 5-o-tolylpentyl bromide (84%), b. p. 155-162°/14 mm. (Found: C, 59.45; H, 7.2; Br, 33.3. C₁₂H₁₇Br requires C, 59.7; H, 7.1; Br, 33.2%); 5-p-tolylpentyl bromide (84%), b. p. 157—163°/14 mm. (Found: Br, 29.95. $C_{12}H_{17}Br$ requires Br, 33.2%).

5-Phenylpent-4-en-1-yl toluene-p-sulphonate, prepared (38%) in the usual way and crystallised from methanol at -80° , had m. p. 42-43° (Found: S, 10.5. $C_{18}H_{20}O_3S$ requires S, 10.1%). The toluene-p-sulphonates of 5-p-methoxyphenylpent-4-en-1-ol, 5-p-tolylpent-4-en-1-ol, and

* On several occasions, when the passage of chlorine through the ethereal solution of dihydropyran was interrupted so that the increase in weight could be measured, a bright flash travelled up the delivery tube leaving a carbonaceous deposit. This occurred with several batches of dihydropyran, all of which had been freshly distilled from sodium, and usually when the uptake was nearly complete.

 ¹⁹ Bateman, Cunneen, and Lyons, J., 1951, 2290.
 ²⁰ Oae and VanderWerf, J. Amer. Chem. Soc., 1953, 75, 5037.
 ²¹ von Braun, Ber., 1911, 44, 2867.
 ²² von Braun and Kühn, Ber., 1927, 60, 2557.

5-p-methoxyphenylpentanol were similarly prepared, but used without purification. When the toluene-p-sulphonate of 5-p-tolylpent-4-en-1-ol was prepared in pyridine, but the mixture was left for several days before being worked up, the product was the quaternary pyridinium salt, m. p. $68-69^{\circ}$ (Found: C, $68\cdot95$; H, $6\cdot75$; N, $3\cdot4$; S, $7\cdot8\%$; M, 409. $C_{24}H_{27}NO_3S, 0\cdot5H_2O$ requires C, 68.9; H, 6.7; N, 3.3; S, 7.8%; M, 418).

5-Phenylpent-4-en-1-yl bromide was obtained from tetrahydro-2-phenylpyran as described by Paul.²³ 1-Methyl-5-phenylpentyl bromide, prepared by catalytic reduction of cinnamylideneacetone 24 and subsequent treatment with 50% aqueous hydrobromic acid, had b. p. 152- $156^{\circ}/14$ mm., n_{p}^{30} 1.5218 (lit.,²⁵ b. p. 152—156°/10 mm.).

5-Cyclohexylpentan-1-ol was prepared (90%) by reduction of 5-phenylpent-4-en-1-ol over Raney nickel in ethanol at $131^{\circ}/100$ atm. It had b. p. $136--137^{\circ}/11$ mm., $n_{\rm p}^{17}$ 1.4685 (lit.,²⁶) b. p. 118—119°/4 mm., $n_{\rm D}^{25}$ 1·4638). Treatment with hydrobromic-sulphuric acid as described above gave 5-cyclohexylpentyl bromide (91%), b. p. 127°/7 mm., np²⁰ 1.4838 (lit., 26 b. p. 113--- $114^{\circ}/5$ mm., $n_{\rm D}^{25}$ 1.4814).

3,4-Dihydro-6-phenyl-2H-pyran.-Sodamide (15.6 g.) was ground in a ball-mill under toluene (50 ml.) for 30 hr. and to the resulting cream, stirred and refluxed in toluene (50 ml.), was added during 30 min. a solution of 3-chlorotetrahydro-2-phenylpyran (19.65 g.) in toluene (50 ml.). After a further 17 hr. the cooled mixture was treated with water, and the washed and dried toluene solution was distilled, giving the dihydrophenylpyran (78%), b. p. 119- $125^{\circ}/9$ mm., $n_{\rm p}^{17}$ 1·5703 (lit.,¹² b. p. 125°/11 mm., $n_{\rm p}^{17}$ 1·5720). When heated with 50% aqueous hydrobromic acid for 15 min. at 100°, it yielded 4-benzoylbutyl bromide (94%), m. p. 58° (lit.,12 m. p. 61°).

Ethyl α -(4-p-Methoxyphenoxybutyl)benzoylacetate.—4-p-Methoxyphenoxybutyl bromide (67.5 g.), dissolved in ethanol (50 ml.), and benzoylacetic ester (50 g.) were added successively to a solution of sodium (6.1 g.) in ethanol (150 ml.). The mixture was refluxed for 3 hr., then concentrated, diluted with water, and extracted with ether. The residue crystallised on trituration with light petroleum. Recrystallisation of the crude product (62 g., 64%) from ethanol afforded the pure ester (50 g.), m. p. 38-40° (Found: C, 71.6; H, 7.05. C₂₂H₂₆O₅ requires C, 71.3; H, 7.0%).

1-Benzoyl-5-p-methoxyphenoxypentane.--A mixture of the foregoing ester (50 g.), potassium hydroxide (20 g.), methanol (300 ml.), and water (200 ml.) was stirred and refluxed for 24 hr., then evaporated. The residue was extracted with ether and the washed and dried ethereal solution was evaporated. Trituration of the residue with light petroleum gave the ketone $(34\cdot3 \text{ g., } 88\%)$ (Found: C, 76·3; H, 7·8. $C_{19}H_{22}O_3$ requires C, 76·5; H, 7·4%), m. p. 42° not raised by recrystallisation from light petroleum.

The alkaline mother-liquors on acidification gave 6-p-methoxyphenoxyhexanoic acid (1 g.), m. p. 80-82° (Found: C, 65.8; H, 7.6. C₁₃H₁₈O₄ requires C, 65.5; H, 7.6%), and benzoic acid.

5-Benzoylpentyl Bromide.—A mixture of 1-benzoyl-5-p-methoxyphenoxypentane (34.5 g.), phenol (30 g.), and 50% hydrobromic acid (100 ml.) was stirred and refluxed for 2 hr., then cooled, and cautiously added to aqueous sodium hydroxide and ice. The product was extracted with ether and the washed and dried solution was distilled, giving the bromide (17.3 g., 59%), b. p. 190-200°/14 mm., m. p. 33-34°. After recrystallisation from light petroleum (b. p. 60-80°), it had m. p. 37.5-38.5° (Found: Br, 30.6. C₁₂H₁₅BrO requires Br, 31.4%).

6-Benzoylhexyl Bromide.—1,5-Dibromopentane (46 g.) and benzoylacetic ester (19.2 g.) were added successively to a solution of sodium $(2\cdot3 \text{ g.})$ in dry ethanol (70 ml.), and the mixture was refluxed for 1.5 hr., concentrated, diluted with water, and extracted with ether. The extract was evaporated and the residue was stirred with 50% hydrobromic acid (100 ml.) on the steam-bath for 18 hr. The mixture was then diluted and extracted with ether and the washed and dried extract was distilled, giving 6-benzoylhexyl bromide (14.7 g., 55%), b. p. 140-150°/0.03 mm. (Found: Br, 27.75. C₁₃H₁₇BrO requires Br, 29.7%).

5-(2-Methoxy-4-nitrophenoxy)pentyl Bromide.---A mixture of potassium 2-methoxy-4-nitrophenoxide (220.5 g., 93.9% pure), 1,5-dibromopentane (1150 g.), and acetone (3 l.) was refluxed for 20 hr., concentrated to low bulk and steam-distilled. The residue was extracted thrice with chloroform and the combined extracts were washed with 2N-sodium hydroxide and water,

- ²⁴ Roblin, Davidson, and Bogert, J. Amer. Chem. Soc., 1935, 57, 151.
 ²⁵ von Braun, Deutsch, and Schmatloch, Ber., 1912, 45, 1246.
- ²⁶ Hiers and Adams, J. Amer Chem. Soc., 1926, 48, 2388.

²³ Paul, Bull. Soc. chim. France, 1935, 2, 311.

[1961] The Chemotherapy of Schistosomiasis. Part IV. 1869

concentrated, and diluted with an equal volume of methanol. The crude bromide (252 g.; m. p. 75—76°) was purified by dissolving it in ether and filtering it from 1,5-di-(2-methoxy-4-nitrophenoxy)pentane (8.85 g., m. p. 122—123°). Concentration of the ethereal solution gave the bromide (218 g.), m. p. 76—77° (Found: Br, 23.8. $C_{12}H_{16}BrNO_4$ requires Br, 25.1%). 3-(2-Methoxy-4-nitrophenoxy)propyl bromide, m. p. 77.5—79° (from methanol) (Found: N, 4.9; Br, 27.5. $C_{10}H_{12}BrNO_4$ requires N, 4.8; Br, 27.5%), was similarly prepared.

Nitro- and acylamino-compounds.

7-(2-Methoxy-4-nitrophenoxy)-1-phenylhepyl Acetate.—7-(2-Methoxy-4-nitrophenoxy)-1phenylheptan-1-ol (Table 1) (39 g.) was mixed with acetic anhydride (150 ml.) and treated with one drop of concentrated sulphuric acid. Ice was added after the mixture had been kept for 15 min. at room temperature. When the acetic anhydride had been decomposed the product was extracted with ether, and the extract washed with water, dried, and evaporated. The oil solidified under light petroleum containing a small quantity of ether. The solid was collected and recrystallised from methanol, to give the pure acetate (37 g., 89·5%), m. p. 88—89° (Found: C, 65·85; H, 6·8; N, 3·45. $C_{22}H_{27}NO_6$ requires C, 65·8; H, 6·8; N, 3·5%). In an earlier experiment the mixture was refluxed for 1 hr., and the product was recrystallised from ether, yielding 7-(2-methoxy-4-nitrophenoxy)-1-phenylhept-1-ene (7·0 g., 35%), m. p. 97—99° (Found: C, 70·05; H, 6·4; N, 4·0. $C_{20}H_{23}NO_4$ requires C, 70·35; H, 6·8; N, 4·1%). Its structure was confirmed by catalytic reduction to the known 1-(4-amino-2-methoxyphenoxy)-7-phenylheptane (Table 2).

Similarly prepared was 5-(2-methoxy-4-nitrophenoxy)-1-phenylpentyl acetate (71%), m. p. 114—115° (Found: C, 64·55; H, 6·35; N, 3·7. $C_{20}H_{23}NO_6$ requires C, 64·3; H, 6·2; N, 3·7%).

5-(2-Methoxy-4-nitrophenoxy-1-phenylpentan-1-one Diethyl Acetal.—1-Benzoyl-4-(2-methoxy-4-nitrophenoxy) butane (15 g.) in ethanol (100 ml.) was treated with ethyl orthoformate (5.8 g.) and one drop of concentrated hydrochloric acid. After 3 days at about 35—40° the mixture was filtered from some starting material (4.8 g.) and concentrated. Ether was added and a further quantity of starting material (1.2 g.) was collected. The ether was removed from the filtrate, and the product was recrystallised from ether-light petroleum, to give the diethyl acetal (10.2 g., 55.5%), m. p. 62—64° (Found: C, 65.5; H, 7.4; N, 3.55. C₂₂H₂₉NO₆ requires C, 65.5; H, 7.2; N, 3.5%).

Ethyl α-(4-p-nitrophenoxybutyl)benzoylacetate was prepared (62%) from benzoylacetic ester and 4-p-nitrophenoxybutyl bromide as described above for the p-methoxy-derivative. After crystallisation from methanol it had m. p. 74-75° (Found: C, 65·1; H, 5·9; N, 3·8. $C_{21}H_{23}NO_6$ requires C, 65·5; H, 6·0; N, 3·6%).

6-p-Nitrophenoxy-1-phenylhexan-1-one.—(a) The foregoing ester (33·3 g.) was hydrolysed by potassium hydroxide (13 g.) in refluxing methanol (250 ml.) and water (250 ml.) for 24 hr. The *ketone* (80%), recrystallised from ethanol, had m. p. 102° (Found: C, 69·1; H, 6·0; N, 4·5. $C_{18}H_{19}NO_4$ requires C, 69·0; H, 6·1; N, 4·5%). 6-p-Nitrophenoxyhexanoic acid (1·8 g.), m. p. 103—104°, not depressed by an authentic sample,³ was isolated from the alkaline motherliquors. In an experiment which was similar except that less water was used, the product was largely the acid, with only a small amount of ketone.

(b) The same compound was obtained (76%) by condensation of potassium *p*-nitrophenoxide with 5-benzoylpentyl bromide.

5-p-Nitrophenoxy-1-phenylpentan-1-one was similarly obtained from benzoylacetic ester and 3-p-nitrophenoxypropyl bromide in 26% overall yield. 5-p-Nitrophenoxypentanoic acid (13%) was also formed. The ketone has been previously made from benzoylbutyl bromide.¹

6-p-Nitrophenoxy-1-phenylhexan-1-ol was prepared (94%) by reduction (Meerwein-Ponndorf method ¹) of the corresponding nitro-ketone. After crystallisation from light petroleum (b. p. 100-120°) it had m. p. 72-74° (Found: C, 68.7; H, 6.75. $C_{18}H_{21}NO_4$ requires C, 68.5; H, 6.7%).

S-5-(2-Methoxy-4-nitrophenoxy)pentylthiourea.—A mixture of 5-(2-methoxy-4-nitrophenoxy)-pentyl bromide (63.6 g.), thiourea (15.2 g.), and ethanol (150 ml.) was refluxed for 20 hr., cooled, and diluted with an equal volume of ether. The thiouronium bromide (93%) had m. p. 158—159° (from ethanol) (Found: Br, 18.95; S, 7.9. $C_{13}H_{19}N_3O_4S$,HBr requires Br, 20.3; S, 8.1%).

5-(2-Methoxy-4-nitrophenoxy) pentane-1-thiol.—A mixture of the foregoing thiouronium salt (95 g.) and 1.86N-sodium hydroxide (129 ml.) was refluxed for 3 hr. (under nitrogen), cooled, and extracted with chloroform. The dried extract on evaporation afforded the thiol (79%),

Collins and Davis:

m. p. 77–80°. A distilled specimen, b. p. $216^{\circ}/0.2$ mm., was crystallised from ether and had m. p. 84–86° (Found: N, 5.2; S, 11.6° ; M, 299. $C_{12}H_{17}NO_4S$ requires N, 5.2; S, 11.8° ; M, 271). On several occasions, samples suddenly decomposed during distillation.

1-(2-Methoxy-4-nitrophenoxy)-5-methylthiopentane.—A mixture of the foregoing thiol (6·15 g.) and a solution from sodium (0·52 g.) in ethanol (30 ml.) was refluxed whilst methyl iodide (3·55 g., 1·1 mol.) in ethanol (10 ml.) was added during 15 min. After a further 4 hr. the mixture was evaporated and the residue was dissolved in chloroform. The washed and dried extract was distilled, giving the *sulphide* (55%), b. p. 185—205°/0·15 mm., m. p. 56—59°. A specimen recrystallised from ether had m. p. 59—61° (Found: C, 55·05; H, 6·85; S, 11·4. $C_{13}H_{19}NO_4S$ requires C, 54·7; H, 6·7; S, 11·2%).

1-2'-Hydroxyethylthio-5-(2-methoxy-4-nitrophenoxy)pentane.—2-Mercaptoethanol (15.6 g.) and 5-(2-methoxy-4-nitrophenoxy)pentyl bromide (60.4 g.) were added successively to a solution from sodium (4.6 g.) in ethanol (150 ml.), and the mixture was refluxed for 1 hr., cooled, and filtered. The filtrate was concentrated and diluted with ether. The crystalline product was washed with ether and water, and crystallised from methanol to give the *sulphide* (52%), m. p. 52—54° (Found: N, 4.5; S, 9.95. C₁₄H₂₁NO₅S requires N, 4.4; S, 10.2%).

Similarly prepared were 1-benzylthio-3-(2-methoxy-4-nitrophenoxy)propane (80%), m. p. 51—53° (from methanol-ethanol) (Found: N, 4·2; S, 9·3. $C_{17}H_{19}NO_4S$ requires N, 4·2; S, 9·6%), 1-(2-methoxy-4-nitrophenoxy)-5-phenylthiopentane (83%), m. p. 54—55° (from ether-light petroleum) (Found: C, 62·6; H, 6·4; S, 9·35. $C_{18}H_{21}NO_4S$ requires C, 62·2; H, 6·1; S, 9·2%), and 1-p-chlorophenylthio-5-(2-methoxy-4-nitrophenoxy)pentane (76%), m. p. 67—69° (from ethanol-ether) (Found: N, 3·7; S, 8·0. $C_{18}H_{20}CINO_4S$ requires N, 3·7; S, 8·4%).

Similarly prepared, but by using 5-*p*-nitrophenoxypentyl bromide, were 1-*p*-nitrophenoxy-5phenylthiopentane (90%), m. p. 67° (from ethanol) (Found: N, 4·3; S, 10·5. $C_{17}H_{19}NO_3S$ requires N, 4·4; S, 10·1%), 1-*p*-nitrophenoxy-5-*p*-nitrophenylthiopentane (88%), m. p. 83—84° (from acetic acid) (Found: N, 7·7; S, 8·8. $C_{17}H_{19}N_2O_5S$ requires N, 7·7; S, 8·8%), and 5-benzylthio-1-*p*-nitrophenoxypentane (77%), m. p. 33—34° (from ethanol) (Found: N, 4·05; S, 9·7. $C_{18}H_{21}NO_3S$ requires N, 4·2; S, 9·7%).

1-(2-Methoxy-4-nitrophenoxy)-3-phenylthiopropane.—Thiophenol (11.0 g.) was added to a solution from sodium ($2\cdot3$ g.) in dry ethanol (100 ml.), followed by 1,3-dibromopropane ($40\cdot4$ ml.). After being refluxed for $0\cdot5$ hr. the mixture was concentrated and the residue dissolved in ether; the solution was washed with water, dried, and concentrated. Excess of 1,3-dibromopropane was removed by steam-distillation and the residual 3-phenylthiopropyl bromide was condensed with potassium 2-methoxy-4-nitrophenoxide to give the *nitro-compound* (54%), m. p. 87—89° (from ethanol) (Found: N, $4\cdot5$; S, 10·15. C₁₆H₁₇NO₄S requires N, $4\cdot4$; S, 10·0%).

1-(2-Methoxy-4-nitrophenoxy)-5-phenylsulphonylpentane.—1-(2-Methoxy-4-nitrophenoxy)-5-phenylthiopentane (27 g.) in acetic acid (200 ml.) was treated with 30% w/v hydrogen peroxide (20 ml.); the temperature rose to 50° . After 2·5 hr. the solution was heated at 90° for 1 hr., cooled, and poured into water. The product slowly solidified and recrystallised from ethanol, to give the *sulphone* (88%), m. p. 122—124° (Found: C, 57·6; H, 5·9; S, 8·2. C₁₈H₂₁NO₆S requires C, 57·0; H, 5·6; S, 8·4%).

Similarly prepared were: 1-(2-methoxy-4-nitrophenoxy)-5-methylsulphonylpentane (66%), m. p. 95–97% (from ethanol) (Found: N, 4.5; S, 9.7. $C_{13}H_{19}NO_6S$ requires N, 4.4; S, 10·1%); 1-p-nitrophenoxy-5-phenylsulphonylpentane (97%), m. p. 85–86° (from ethanol) (Found: C, 58·1; H, 5·8; N, 3·9. $C_{17}H_{19}NO_5S$ requires C, 58·5; H, 5·45; N, 4·0%); 1-p-nitrophenoxy-5-pnitrophenylsulphonylpentane (94%), m. p. 129–130° (from acetic acid) (Found: N, 7·1; S, 8·1. $C_{17}H_{19}NO_5S$ requires N, 7·1; S, 8·1%); and 1-benzylsulphonyl-5-p-nitrophenoxypentane (88%), m. p. 120–121° (from acetic acid) (Found: C, 59·25; H, 6·1; N, 3·8. $C_{18}H_{21}NO_5S$ requires C, 59·5; H, 5·8; N, 3·9%).

1-p-Acetamidophenylsulphonyl-5-p-nitrophenoxypentane.—A mixture of 5-p-nitrophenoxypentyl bromide (28·8 g.), p-acetamidobenzenesulphinic acid (19·9 g.), sodium acetate (7·0 g.), sodium iodide (2·0 g.), 2-ethoxyethanol (200 ml.), and water (5 ml.) was refluxed for 2·5 hr., concentrated and diluted with water. Recrystallisation of the product from ethanol afforded the sulphone (55%), m. p. 112—113° (Found: C, 56·4; H, 5·5; N, 6·6. $C_{19}H_{22}N_2O_6S$ requires C, 56·2; H, 5·4; N, 6·9%).

5-p-Nitrophenoxypentyl Phenyl Sulphoxide.--30% Hydrogen peroxide (14.6 ml.) was added to a solution of 1-p-nitrophenoxy-5-phenylthiopentane (40 g.) in acetic acid (400 ml.) at 40°. The solution was heated at 80° for 30 min., cooled, diluted with water, and filtered. The

The Chemotherapy of Schistosomiasis. Part IV. [1961]1871

product was recrystallised from ethanol, giving the sulphoxide (98%), m. p. 80-81° (Found: C, 60.6; H, 5.7; N, 4.2. C₁₇H₁₉NO₄S requires C, 61.3; H, 5.7; N, 4.2%). Similarly prepared was benzyl 5-p-nitrophenoxypentyl sulphoxide (92%), m. p. 97-98° (from aqueous ethanol) (Found: C, 62.0; H, 6.15; N, 4.05. $C_{18}H_{21}NO_4S$ requires C, 62.2; H, 6.05; N, 4.0%).

2-Methoxy-4-nitrophenyl Tetra-O-acetyl-D-glucoside.—A mixture of potassium 2-methoxy-4nitrophenoxide (14.1 g., dried azeotropically with benzene), acetobromoglucose (28 g.), and dimethylformamide (100 ml.) was stirred for 20 hr., then filtered, and the solid was washed with benzene (200 ml.). The combined solutions were evaporated under reduced pressure, and the residue, in benzene, was stirred with activated alumina (7 \times 20 g.) to remove free phenol. The filtered solution was evaporated and the residue crystallised from ether, to give the glucoside (49%), m. p. 145—147° (Found: C, 50·7; H, 5·2; N, 2·9. C₂₁H₂₅NO₁₃ requires C, 50·5; H, 5·05; N, 2.8%). The same compound was obtained in traces on using the free phenol, silver carbonate, quinoline, and acetobromoglucose in ether.

2-Methoxy-4-nitrophenyl D-Glucoside.—The foregoing tetra-acetate (33.2 g.) in methanol (340 ml.) was treated with a solution of sodium hydroxide (11.2 g.) in a small amount of water and methanol (170 ml.) and kept for 30 min. The product, which separated, was filtered off and crystallised from methanol; it then had m. p. 212-213° (Found: C, 47.3; H, 4.9; N, 4.4. $C_{13}H_{17}NO_9$ requires C, 47.1; H, 5.2; N, 4.2%).

4-Acetamido-2-methoxyphenol.-2-Methoxy-4-nitrophenol (31 g.) was reduced over platinum oxide in ethanol (300 ml.). The resulting suspension (still containing catalyst) was evaporated under reduced pressure and the residue was refluxed for 30 min. with acetic anhydride (50 ml.), cooled, and filtered. The solid was washed with ether and crystallised from ethanol, giving the diacetyl derivative (50%), m. p. 150-152° (lit.,²⁷ 147°).

4-Acetamido-2-methoxyphenyl acetate (54 g.) was shaken with 2n-aqueous sodium hydroxide (242 ml.) containing wetting agent ("Lissapol," 1 drop) until dissolved (10 min.). The solution was filtered (charcoal), cooled in ice, and acidified with concentrated hydrochloric acid (53 ml.). The precipitated 4-acetamido-2-methoxyphenol (98%, m. p. 114-116°), after recrystallisation from ethyl acetate, had m. p. 115-117° (lit.,⁸ m. p. 118°).

1-(4-Acetamido-2-methoxyphenoxy)-5-p-nitrophenylpentane.—4-Acetamido-2-methoxyphenol (15.35 g.) and 5-p-nitrophenylpentyl bromide ² (23.1 g. of the crude product from the nitration)of 5-phenylpentyl bromide) were added to a solution from sodium (1.95 g.) in ethanol (100 ml.), and the mixture was stirred and refluxed for 20 hr., then evaporated under reduced pressure. The residue was shaken with chloroform and water, and the chloroform solution was separated, dried, concentrated, and treated with ethyl acetate. The product, which separated, was recrystallised from methanol (yield 21%), and then had m. p. 115.5---116° (Found: C, 64.65; H, 6.7; N, 7.3. $C_{20}H_{24}N_2O_5$ requires C, 64.5; H, 6.5; N, 7.2%).

1-(2-Hydroxy-4-nitrophenoxy)-5-phthalimidopentane.—4-Nitrocatechol (18.2 g.) and 5-phthalimidopentyl bromide (34.7 g.) were added to 2-ethoxyethanol (100 ml.) and a solution of potassium hydroxide (6.6 g.) in water (20 ml.). The mixture was refluxed for 20 hr., cooled, and diluted with water. Recrystallisation of the product from acetic acid gave the *phthalimide* (41%), m. p. 137–139° (Found: N, 7.7. $C_{19}H_{18}N_2O_6$ requires N, 7.6%).

1-(2-Methoxy-4-nitrophenoxy)-5-phthalimidopentane.---A mixture of the foregoing hydroxycompound (0.77 g.), anhydrous potassium carbonate (0.3 g.), methyl iodide (4 ml.), and acetone (30 ml.) was refluxed for 20 hr., then evaporated. The residue was treated with aqueous ethanol and the insoluble solid was crystallised from acetic acid. It had m. p. 147.5-148.5°, not depressed by a specimen prepared directly from 2-methoxy-4-nitrophenol (see Table 1).

1-(2-Methoxy-5-nitrophenoxy)-5-phenylpentane, m. p. 73-75° (from ethanol) (Found: C, 68.9; H, 6.9; N, 4.4. C₁₈H₂₁NO₄ requires C, 68.5; H, 6.7; N, 4.4%), was prepared (81%) from 2-methoxy-5-nitrophenol,²⁸ 5-phenylpentyl bromide, and 10N-aqueous potassium hydroxide in 2-ethoxyethanol.

1,2,3-Trimethoxy-5-nitrobenzene.-Nitric acid (d 1.42; 20 ml.) was added fairly slowly to 1,2,3-trimethoxybenzene (30 g.) in acetic acid (60 ml.). When the temperature reached 90-100°, ice-water was added. The product was washed well with water, and (by stirring) with hot dilute sodium hydroxide. It was re-washed with water, and crystallised from ethanol; it then had m. p. 100-102° (lit.,¹¹ m. p. 100°). The yield (39-41%) was reduced when more dilute nitric acid was employed.

²⁷ Kehrmann and Hoehn, Helv. Chim. Acta, 1925, 8, 218.

²⁸ Paul, Ber., 1906, **39**, 2773; Reverdin and Crépieux, Ber., 1906, **39**, 4232.

Collins and Davis:

•	J				. /	10	C	///			UI.		01	'n	Ρ.	y	~)	0			50	05			vv	10	10	•		
	4·1	P-01	4.5	4.3	4·1	4•15 4.5	9.9	5.2	4.6	4.05	4 •8	4.6	4·4	4.	4.1 2.0		6.4 6.5	4.0	1:0	1.45		9.9	0 00 - 1 -	10.1	7.6	8-0	4.9	4.3	3.9	3.9 2.0	$-170^{\circ}/0.05$ m-1-0l, via and KOAc b. $^{\circ}$ B. p. l. $^{\circ}$ B. p. mine and mine and with acetyl
	1-9	0.0	÷	6.5	6.1	0.1	01 H		5.6	6.7	01 (101	9.9	0.0	4 I			1 x - 13	6.1			ц ц	2			$6 \cdot 5$	6.3	4.5	8. <u>0</u>	6.45	4.9 4.0	p. 150– pent-4-e rromide a n acctone d pentano p. 170 by meth by meth ic acid y
	66-1 20-0	00.0 53-3	0-69	2-69	66-5	60.0	50.1		63-4	66-0	62.3	63.4	64·3	\$.00	00-2 66-0	9.79	61.9	62.6			62.2				55.4	58-3	62.7	65.7	67.25	66-8 66-8	ne. ^e B. rall from ypentyl b ypentyl b vyphenyl 80°. ^z B s0°. ^z B repared l ophenoxy slutaran
	4·1	06./	4	4.3	4.2	4	- <u>2</u> -9	5.3	4.7	4.15	- 1 8	4.7	+ •	4	4.1	- x - ~	े ग		7.3	9.1 9.1	7.95	9.2.9		10.4	7.6	8.0	4.7	4.2	9.9	3.9 3	y to ami h Ove h Ove
	6-9 1	0.9 9.7	5.9	6-5	6.3	27.2	5.33		5.8	0. 1.		5.5	;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	≎ I 2 ¢	è i		- 9-9 - 9-9	6·1			5.0	0			<u></u> 9	6.2	4·8	2.8 2	÷.	9 0. - 1 0	d directl %0.3 mm "0.3 mm n nitrogu From C B. B. B. 8.0% a (2-metho cyclisati
	6.69	53-1	0.69	20-02	6.99	2.05	50.6		63·3	$66 \cdot 2$	62.45	63.8	64·5	6.00 0	2-00 99-1-2	67-65	9-19	62.3			6.9				35-3	58.6	62.4	65.7	1.70	2.00	me; reduce 2, 204-215 m. k From droxide. " 1, 7 Overa 1, 7
	C19H23NO5	CIRTING C.H.N.O.	C. H. NO.	$C_{1,0}H_{21}NO_{1}$	C ₁₀ H ₂₁ NO,		C,H,NO,	Ċ,"H,"NŎ,	C ₁₆ H ₁₇ NO ₅	C1,9H23NO5	C15H15NO5	C16H17NO5	C ₁ ,H ₁ ,NO	CIRTINOS		Contrast OS	C.H.NO.	C, H, NO	C20H24N2O6 ""	C18H20N2O7		C H N O	C., H., N.O.	C21H25N30	C17H24N2O7	C ₁₇ H ₂₂ N ₂ O ₆	C ₁₅ H ₁₃ NO ₅	C1.HINO5	C ₂₀ H ₂₂ NO,	C,,,H21NO5	obtained crystalli /0.8 mm. ø B. F 0.164186°/0.1 m aucous sodium hy 9.5% ø From 0.5% ø From OMe, 80. Requ ()Dentylamin. " anhydride (cf. ref
	EtOH COM- ETOH	FLAC	EtOH	EtOAc-Pet.	EtOH-EtOAc	ETOH COM.	EtOH-Pet w		EtOH	EtOH	EtOH	ETOH	ETOH	FIOT TOTA	ELOH FLOH	FIOH	EtOH	EtOH	EtOH	AcOH	ACUH	AcOH	EtOAc	COMe.	COMe ₂ -Pct	EtOH	OEt·[CH2]2·OH	OEt-[CH2]2-OH	EtOH	Et.O-Pet	ot where stated). ^b Not used. f B. p. 186–194 enc-p-sulphonate. ^J B. p enc-p-sulphonate. ^J B. p entyl ester with 0-8N-ac amine. ^a Overall from L: S. 9-4. Required, S, L. P. 770,870). ^a Found: "erthoxy-4-nitrophenoxy pentylamine and glutaric to (cf. rcf. 1).
	81	04 and 30-34 86-87	9597	$103 - 103 \cdot 5$	121-121.5	181-061	89-92	ĸ	12-17	1606		100-102	$90 - 91 \cdot 5$	0100	01	58-59	26 - 92	106-107	122-123	9596	14/-0-145-0 8183	010	131-132	129-130	94 - 97	138 - 140	122 - 123	91	82-84	6263	troleum (b. p. 40–60°, except where sta aluenc- p -sulphonate of alcohol used. <i>I</i> B. m hept-3-en-1-of via the toluenc- p -sulpho ised. m By hydrolysis of the ethyl ester ystalline; reduced directly to amine. <i>4</i> onlypent-4-en-1-ol. w Found: S, 9-4. Pherzyloxypentyl bronide (B.P. 770-870) e By benzoylation of 5-(2-methoxy-4- ervein-Ponndorf) of the ketone (cf. ref. 1)
	57 1	2 X 3	+	57	یں ہو 90 ہ	2 C 9	809 0	66	80%	× [-	06 i	73	68 68	00	# C			851	86	00 cr 1	18 40	10	64 ac	95 ad	99 ac	83 af	7 8	59	100	94 av 89 av	petrolcum (Toluene- \mathcal{P} -si rom hept-3- rom hept-3- \mathbf{n} E crystalline; crystalline; crystalline; crystalline; \mathbf{n} E crystalline; \mathbf{n} E crystalline; c
	5 CeH.OMe-p	5 C.H.(NO.)2.4				$\frac{1}{1} p - C_6 \Pi_4 - S O_2 MC$	Ū		2 O·CH ₂ Ph				4 OPh					4 $0 \cdot C_n H_1 \cdot OMc \cdot \hat{\rho}$			6 Phthalimido									4 CHPh-OH 6 CHPh-OH	^a Solvent for crystn. Pet = light petroleum (b. p. 40–60°, except where stated). ^b Not obtained crystalline; reduced directly to amine. ^e B. p. 150–170%0-05 mm. ^d B. p. 164–184%0-02 mm. ^e Tournine to there- <i>p</i> -subponate. ^b Overall from pert-4-en-1-ol, <i>via</i> the toluene- <i>p</i> -subponate. ^j B. p. 164–186%0-1 mm. ^e From nitroguiae/prypentyl broninde and KOAc (f. cr. 3). ^j ChiBr-CO,Ef in acctone used. ^m B. pyhdrolysis of the ethyle ster with 0-88-aqueous sodium hydroxide. ^a From interguiae/prypentyl broninde and KOAc (f. cr. 3). ^j ChiBr-CO,Ef in acctone used. ^m By hydrolysis of the ethyle ster with 0-88-aqueous sodium hydroxide. ^a From interguiae/prypentyl broninde and KOAc (f. cr. 3). ^j ChiBr-CO,Ef in acctone used. ^m By hydrolysis of the ethyle ster with 0-88-aqueous sodium hydroxide. ^a From interguiae/prypentyl broninde and KOAc (f. cr. 3). ^j Overall from 5- <i>p</i> -methoxyphenylpentanol. ^d B. p. 170%0-1 mm. ^e Promonde and KOAc (f. cr. 3). ^j ChiBr-CO,Ef in acctone used. ^m B. p. forom 5- <i>p</i> -methoxyphenylpentanol. ^d B. p. 170%0-1 mm. ^e Toluene- <i>p</i> -suphonate used. ^e From 5- <i>p</i> -methoxyphenylpentyl to amine. ^e Overall from 5- <i>p</i> -methoxyphenylpentanol. ^d B. p. 170%0-1 mm. ^e Toluene- <i>p</i> -suphonate used. ^e From 5- <i>p</i> -methoxyphenylpentylanine and ² -phenyloration (see text). ^e By penzolytation of the 2-hydroxy-compound (see text). ^e By penzolytation of the 2-hydroxy-compound (see text). ^e By renzolytation of the expension (cf. ref. 1). ^{ef} From 5-2-methoxypentylamine and ² -phenyloration (cf. ref. 1). ^{ef} From 5-2-methoxy 4-nitrophenoxy)pentylamine and ² -phenyloration (cf. ref. 1). ^{ef} From 5-2-methoxy-4-nitrophenoxypentylamine and ² -phenyloration (f. ref. 1). ^{eff} From 5-2-methoxy-4-nitrophenoxypentylamine and ² -phenyloration (f. ref. 1). ^{eff} From 5-2-methoxy-4-nitrophenoxypentylamine and ² -phenyloration (f. ref. 1). ^{eff} From 5-2-methoxy-4-nitrophenoxypentylamine and ^{from 2-1} for the fourted (f. ref. 1). ^{eff} From 5-2-methoxy-4-nitrophenoxypen

The Chemotherapy of Schistosomiasis. Part IV.

[1961]

874								C	Col	lin	S	an	d	De	avi	s:											
		Hal				01.11	13.1						12.5	10.3	:	11.73			8.70	;		-	39-6				
	(%)	s		0.11				9-2																9.8	f •6	1.6	
	Required (%)	z	*:- *:-	ci a	9 1- 1 9 1- 1	1.0	5.9 1	0.0 4 • 0	61 10	5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4.8	9.6 F	4.6 4.9	5.6 4.0	, eo eo 1 10 10	4.65	- 00 (- 00)	0.0 4.8	8.9 7.0	5.95	- 61 e	5	6.9	4·3	9 4 1 1	•	ŝ
	Req	H	8.3 8	8.8 8	9-15	6.3	9.7	0-01	6.8	10.5 10.5	10.65	11.3		10-0	10-2		ei e oo d	9-3 10-0	61 80	0.6	6.2	8.45 5.6	6.6	0.5	- 1	#	
		ပြ	66-3	67.7	6.89	f ∙f	6-02	1.11	6.5.9	72-5 73-1	73.7	0.92		11.7	72.5		9.69	74.3	69-5	71-5	62-9	64•0 54•8	73-4	1.15			
		Hal				69-9	13-9						26:0 13:1	0.01	1	11.6	•		2.10	;			39-7				
	~	s		10.0				Đ· +																6.6	9.65	9-05 0	× ×
	Found (%)	z	ος ι ος ι	4.0		2 6 9 6 6 9	5.0 10 10	0.00 3.6	5-3	5.1 8.4 8.8	4 30 1	- 6. - 6.	+ + + 0 +	5.0 8.0	5.95 5.95	8.4 8.7		0.00 4.85	6.8 4.85	0:1 9:1	0 01 0	0 	6-7 5-95	4-05 5.8			
۲] <i>n</i> ۰R	For	н	₹ •₹	8·6	9.3	9.3	9-7.5	0.01	6·8	10-3 10-5	10.4	11.35		10-3	10.4		+.8	- 3.6 6	8•3	0.3	7.75	5.6 5.9	6.5	202			
OMe OMe		ပြ	66·6	67-6	69-15	70-1	70-85		65.7	72•4 72•9	73-7	0.0 19:5		1-1	72-8 79-3		69.8	74.6	1 -69		62.5		73.1			CR. ¥1	
Aminoguaiacyl ethers, H ₂ N		Formula	C,H1,NO2 C,0,H1,NO2	C ₁₁ H ₁₇ NO ₂	C12H19NO2	C13H11NO2, HCI C13H21NO2	C13H21NO2, HCI C14H23NO2	C15H25NO2 C15H25NO2,CH4O3S	C ₁₅ H ₂₅ NO ₂ ,C ₂₀ H ₁₈ O ₈	C1.H2.NO2 C1.HNO2	C18H INO	C ₁₃ H ₄₁ NO ₂	C ₁₃ H ₂₁ NO ₂ ,HBr C ₁₅ H ₂₅ NO ₂ ,HCl	CITH NO HCI	CleH2NO2	CitH ₂ NO, HCI	C13H17NO3	C1.H23NO3 C1.H.NO3	C1.H1,NO	CuH21NO2	C14H21NO4	C ₁₂ H ₁₁ NO ₃ C ₆ H ₁₁ NO ₄	C ₁₃ H ₂₂ N ₂ O ₂ ,2HBr C ₁₄ H ₁₅ NO ₃	CitHisNO, CHOSS	C1,H17NO3,CH4O3S	C16H1PNO2,CH4O3S	C ₁ ,H ₂₁ NO ₂ ,CH ₄ O ₃ S
		Solvent a	Et_0-Pet Et_0-Pet	Pet F+OH	Pet Pet	EtOH EtoH	EtOH-Et ₂ O EtOH	ETUH	EtOAc	Et ₂ 0-Pet Pet	EtOH	Et.O-Pet	EtOH-Et_0 Et_0-C_H_	E+OH-E+ O	Et_0-Pet	O ta HOta	EtOH-Pet /	Pet ^o MeOH	Et _s O-Pet Dil 24 HBr	Pet	EtOH-H _a O	CHCl ₃ -Pet H ₂ O	MeOH-Et ₂ O Pet k	EtOH-Et ₀ 0	EtOH-Et ₂ O	EtOH-Et ₂ O	EtOH
TABLE 2.		M. p.	60—61° b 65—67	3536 172 173	43-44	6769	185-200 72-74	120-125	and 200 161—162	71-73 61-62	6667 67 66	6768	214-217 160-164	ء 160180	72-73.5	164-168	6466	61-65 91-91.5	25-26 103-107	38-42	46-48	200-202	216-218 84-85	200-201	159-160	103-104	123-124
	1.1.1.1	(%)	86 87	17	92	91	65	ę		19 19	99 00	20 20 20	69 9 9	83	62 d 10	0 F	333	<u>3</u> 8	ų 06	42 h 10 i	°	93 <i>)</i> 83	39 39	ŝ	0	6	60
		Derivative	Base Base	Base Moreo H	Base	Base	HCI Base	Base Mc•SO ₃ H	Diptolate °	Base Base	Base	Base	HBr HBr	Base	Base Base	HCI	Base	Base	Base HR-	Base	Base	Base Base	2HBr Basc	Mc SO ₃ H	Me SO ₃ H	Me SO ₃ H	Mc•SO ₃ H
		<i>n</i> R	1 Me 2 Mc	3 Me	4 Mc	5 Me	6 Mc			8 Mc 9 Mc	10 Mc		1 CHEt _s 1 CHEtBun	0 CHMc·C H13-n	2 CHMe-CH,But		0 Cyclopentyl		0	2 CH.CHBun		5 0H 1 CO ₂ H				a Lu	4 Ph

Published on 01 January 1961. Downloaded by FAC DE QUIMICA on 07/01/2015 16:18:56.

[196]] The C	Chemotherapy	of Schistosomiasis.	Part IV. 1875
111				
8·1		8.4 8.5 10.4	9 r- 00 00	 12-6
4 4 Cir. si	44449944000 1212001-124000	1 8 9 9 9 9 9 9 9 9 9 9 9 9 9	با ــ هېغ خې چې ـــ و. و. و. غې چې چې چې چې با ــ هې چې ـــ و. و. و. و. چې چې چې چې د. با د ه چې د و.	ਲ਼ਲ਼ੵਜ਼ਗ਼ੑਜ਼ਗ਼ਗ਼ੑਗ਼ੑਗ਼ੑੑੑੑਖ਼ਖ਼ੑਖ਼ਲ਼ਖ਼ ਗ਼ਲ਼ਗ਼ਗ਼ਗ਼ਗ਼ਲ਼ਗ਼ਗ਼ਗ਼ੑਖ਼ਲ਼ਗ਼ਗ਼ਲ਼ਜ਼
8·1	××××××××××××××××××××××××××××××××××××××	8.0 7.35 6.1 8.8 8.8 8.8		0,000,000,000,000 0,000,000,000 0,000
13-75	00000000000000000000000000000000000000	68-5 76-7 77-4 77-4 59-0 65-3	770.3 669.5 67.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3	669-71 669-71 71-1-1-1 71-1-1 72-3 72-3 72-3 72-3 72-3 72-3 72-3 72-3
11.0				
S.J		8-4 8-5 9-5	τ ο ο. 	13.05
4.0 8.0 8.0 8.0 8.0	· · · · · · · · · · · · · · · · · · ·	51 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	، ۵، ۵، ۵، ۵، ۵، ۵، ۵، ۵، ۵، ۵، ۵، ۵، ۵،	907-00-0000000-00-00-00-00-00-00-00-00-00
8.4	88888888888888888888888888888888888888	8		7.0.1.0.4.4.0.0.1. 7.0.1.1.0.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
76-05	76-4 76-1 76-1 76-1 76-1 72-0 5 72-0 5	68-9 76-6 76-65 77-05 77-05 58-6 65-05	70.1 72.1 69.3 69.3 71.45 71.45 73.2 57 73.2 67.1 67.1 67.1	$\begin{array}{c} 68.4\\ 68.4\\ 68.5\\ 65.3\\ 70.3\\ 71.4\\ 71.4\\ 72.6\\ 72.1\\ 72.1\\ 72.1\\ 72.6\\ 72.1\\ 72.6\\ 72.1\\$
C ₁₈ H.,3NO ₂ C ₁₈ H.,2NO2,CH ₄ O3S C ₁₈ H.,2NO2,H4O3S		arvio arvio arvio arvio arvio rvo rvo cho s rvo cho s rvo rvo s rvo s rvo s rvo s rvo s rvo rvo rvo rvo s rvo rvo rvo rvo rvo rvo rvo rvo rvo rvo	2000 200 2000 2	
EtOH s EtOH-Et ₂ O	Et ₂ O-Pet Et ₂ O-Pet Et ₂ O-Pet Et ₂ O-Pet Et ₂ O-Pet EtOH-H ₂ O EtOH-Pet EtOH EtOH	EtOH-Pet EtOH-Bio EtOH-Bio EtOH-Bio EtOH-Hio EtoH EtoH OH-CH ₃ :OEt EtOH-Et ₃ O	EtOH-PE10 EtOH-PE10 EtOH-PE10 EtOH-Et_0 EtOH EtOH EtOH EtOH EtOH EtOH EtOH	EFOUR EFOUR EFOH EFOH EFOH EFOH EFOH EFOH EFOH EFOH
" 77-78 1138-5-139-5 147-149 (clear)	$\begin{array}{c} 136-100\\ 136-100\\ 65\\ 65\\ 65\\ 65-63\\ 86-71\\ 86-87\\ $	$\begin{array}{c} 99-100\\ 90-92\\ 184-190\\ 104-105\\ 117-118\\ 61-63\\ 61-63\\ 192-194\\ 130\\ 61-63\\ 61-63\\ 61-63\\ 192-194\\ 130\\ 61-62\\ 130\\ 104\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106\\ 106$	$\begin{array}{c} 124-126\\ 11-42\\ 138-139\\ 354-35\\ 125-124\\ 106-107\\ 76-78\\ 115-117\\ 115-117\\ 115-117\\ 115-117\\ 106-107\\ 57-58\\ 57-58\\ 66-67\\ 105-105\\ 105-105$	$\begin{array}{c} 212 \\ 212 \\ 212 \\ 212 \\ 205 \\$
90 m 86 n 1	88 93 93 93 93 93 93 93 93 93 93 93 93 93	110 888 881 941 9 44 888 8 88 8 9 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		0 0 0 0 0 0 0 0 0 0 0 0 0 0
Base Me [•] SO ₃ H HCl	Base Base Base Base Base Base Base Base		Mersoy, H Base MerSo, H Base MerSo, H Base Base Base Base Base	2McSO ₃ H 2McSO ₃ H Base Base Base Base Base Base Base Base
5 Рћ	6 Ph CHMe [CH ₂]4 Ph 7 Ph 8 Ph 6 C ₆ H ₄ Me-0 5 C ₆ H ₄ Me-0 5 C ₆ H ₄ Me-2 6 C ₆ H ₄ Me-2 5 C ₆ H ₄ Me-2 6 C ₆ H ₄		2 0.CH ₂ Ph 5 0CH ₂ Ph 3 0Ph 5 0Ph 6 0Ph 8	 O-C.H., NHAC-P Phthalimido Phthalimido Phthalimido Phthalimido Phthalimido Phthalimido Phthalimido CHPh-OH CHPh-OH CHPh-OH CHPh-OH CHPh-OAc CHPh-OAc CHPh-OAc CHPh-OAc CHPh-OAc CHPh-OAc CHPh-OAc

Hal	E ($\dot{O}H$ C _{1,0}^{(1)} C _{1,0}^{(2)} H _{1,0}^{(2)} NO_{5}^{(2)} C_{2,0} T_{1,0}^{(2)} D_{1,0}^{(2)} D_{1,0}^{		ſs	11-2 8-5	16-1 10-1 10-0	6.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0
d (%) d (%) i5 i5 i1:2 i0:1 i0:1	9-2 from pe e corres nitrophe phthali	Required (%)	N 61.5		0.4440 0.4440	6-7 6-7 4-2 ither th
Required (%) H N 5 7.65 4.3 8.3 3.55 3.57 3.5 16 3.5 16 3.5 16 3.5 16 11 7.3 4.0 11	65 Overall com th coyy-4-r colysis v onding c acid.	Requir	┢╓╔┇	8.1	6-9	6- 1 on of c
່ ກໍ່ ແ	 8 6.65 8 6.65 4 Ov bi. t Froi by hydrol by hydrol by hydrol bracetic and the second second		C 75-9 76-1	10.8	67-3	60-6 reducti
Hal C 73.4 70.8 68.1 9.9	61.8 0-tartrate c thanol. rom 1-(2 ivative by m the cc with iron-		رم	11.5 8.55	16.3 9.9 9.5	9-9 19-9 talytic
6) S F 115.95 9.9	9-0 toluoyl-j phide in le. <i>m</i> F tetylder -ketone '	(%	N 5-25		604449 107040	6.6 6.6 4.1 d By ca
Found (%) 5 4-2 5 3-7 5 11 4-7 11 4-7 11 12 11 12 11 12 12 12 12 12	= di- p -t um sult bromide bromide c N-acc c N-acc c nitro-1	Found (%)	H O			
	7.0 tolate = by sodi libutyl From th n of th	I ₂]"•R.	C C C		67-1 7	60-2 6-4 ¢ B. p. 60
88 11:0 88 11:0 11:0	62:0 • Dip • Dip	0•[CF				, В. 60
(H4O3S	P. 55°. from 4 from 4 s5°. R By 1	·C ₆ H ₄ ·	Formula NO ₃	S,2HCI	CH ₀	ic acid.
(Continued.) Formula CaeHasNO3 CaHASNO3 CaHASNO3 CaHASNO3 CAHASNO3 CAHASNO3 CAHASNO3 CAHASNO3 CAHASNO3 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO2 CAHASONO3 CAHASONO3 CAHASONO3 CAHASONO3 CAHASONO3 CANASONO CANASONO CANASONO CANASO	NO4S it. ⁸ m. 	p-Aminophenyl ethers, p-NH2•C ₆ H ₄ •O•[CH2] ₁ •R. 1	Forr H1,NO ₃	C18H21102 C18H21NO2 C18H21NOS C17H22N2OS,2HCI	C1,H2,NOS,CH4,03S C17H2,NO2,S C17H2,NO2,S C17H2,NO3,S C17H2,NO3,S	C ₁₁ H ₂₆ N ₂ O ₅ C ₁₁ H ₂₆ N ₂ O ₅ S C ₁₄ H ₂₃ N ₂ O ₄ S C ₁₄ H ₂₃ N ₄ O ₄ S C ₁₆ H ₂₃ N ₄ O ₃ S
	C ₁₈ H ₂₃ d) b L b L b L b L 0°. l (b l from l from i nitro-l	hers, 1	C1.7			
નં	e state n. <i>f</i> E 100—12 00era v Overa 2. <i>f</i> Fc ponding	enyl et	ent Dot e	Pet	EtOH-Et ₂ O Et ₂ O Et ₂ O EtOH	vith iro
TABLE Solvent ^a C-Et ₂ O -H ₂ O -H ₂ O -Et ₂ O -H ₂ O Pet	pt when [0-2 m; [1, p. cne, [0-100] : corres;	inoph	Solvent EtOH C HDot #	Et O-Pet C HPet Dil. HCI	EtOH Et ₀ 0 Et ₀ 0 Et0H	EtOH EtOH duced w
TAB Solvent Solvent EtOAc-Et ₄ O MeOH-H ₄ O EtOH-H ₄ O EtOH-H ₄ O EtOH-H ₄ O EtOH-H ₄ O	EtOH 2. exce 3. k-170 170 170 170 170 170 170 170	р-Ат	، 1+،	. x 00		1154 EVOIT 1154 EVOIT 126-1128 EtOH 101-102 EtOH Nitro-ketone reduced with iron in 101.1.1.2.2.2.2.2.0.1002
	90 . 406(3. p. 16 f. ref. 5-pheny). " F	Е 3 .	M. p. 112—114° 61 62	86-88 63 220-230	(decomp. 147—149 70—71 89—90 93—95	150
M. p. 85-87° 107-109 53:5-56 53:5-56 53:5-56 134-136 134-136 134-146	3 89-90 oleum (b. p. 40- 6 mm. / B. p. accente (cf. rr accente (cf. rr))) (cf. accente	TABLE 3.	ه م م		6 6 6	m. ^b 1
Vield (96) 533 ° 538 ° 548 ° 558 °	73 etroleur 0-05 m nitroph 60-16 (see Pa		Yicld (%) 49 b	66 e 66 e	91 ¢ 65 ¢ 82 ¢	87 94 94
ative 3 ₃ H	light p -146% sis of B. p. 1 -1. acid		Derivative Base	, , , ,	Me•SO ₃ H Base Base Base	Diacetyl Base 94 Base 94 Pet = light petroleum.
Dcriv Base Base Base Me S(Base Base Base	Pet = Pet = Pet = 143 hydrolys fluotholy fluothor fluochlor		Deriva Base	Base Base 2HCl	Me-S(Base Base Base	Diace Diace Base Base Base Pot $= 1$
	5 SO_{2}^{0} Base 73 $S9-90$ EtOH C_{1}^{0} T_{1}^{0} S_{2}^{0} T_{2}^{0} T_{2			d.	-	
$_{1}^{\rm R}$ R (Et).	tt for re yl oxid(c. ^j B) me. ⁿ rne. ⁿ rith tin		ч К	CHPh•OH SPh S·C ₆ H₄•NH₂-⊅	S•CH ₂ Ph SOPh SO•CH ₂ Ph SO ₂ Ph	SO2 C6H4.NH2P SO2 CH2Ph SO2 CH2Ph solvent for recrystu.
R COPh CHPh(OEt) ₂ SMe SCH ₂ Pi SPh SPh SPh SPh SPh	SO ₂ Me SO ₂ Ph a Solven ro-ketoacy drochlorid fuction w		COPh	SPh SPh SPh		SO ₂ SO ₂ Solven
ر در در به در به در ۲۵ م ۲۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵	nitre pher hyd: redu		5 4 8	ດເດເດເຕ	יטיטיטיט	ດ ລາ ດ [

Published on 01 January 1961. Downloaded by FAC DE QUIMICA on 07/01/2015 16:18:56.

1877

	11	ie	C	ne	m	ot	nerap	y of	Scr	<i>usto</i>	som	<i>i</i> 1a	sı:	s.	-	Pa	irt	1	! V	•		
		Hal			30 .8	0.70	6.64 30.1	27.8	27.1	18-7 26-1	39-6	0.1.0	n H	10.1	n 0.6	8.75	21.7			18.1		inter-
	(%) p	z	4 v 1- 0	5 6 19 6	3·4	4-5 2-1		4·4 3·1	$4.3 \\ 3.0$	3.3 9.0	7-9 4-4	7.3 7.97	4.6 4	4.0 0.4	9.0 9.0	3.45	3.8	4.75	4.5	। । ।	4·1 6·3	mine;
	Required (%)	н	+.8 10.01	5.15		s 1	7.3	8.0	5.6		9-05	6-85	10.8					1	9 r.	•	9.8 8.9	lary al
	Я		76-2 76-2			16.6	66.8	72.35	73-45		1.4.7	1.69	74-2						68-8 70-0	•	67.2 65.2	• Overall from primary amine; inter-
		Hal			30.6	97.6	$\frac{6.5 d}{32 \cdot 1}$	27.1	27-0	$19.0 \\ 25.95$	39-3	9.66		10.3	- 6.8	8.6 .1z	21.5			17-85		rall fro
	(%)	Z	1- ? - 1 1		3.5		1016 0000	4.5 3.05	$\frac{4\cdot 3}{3\cdot 0}$	61 99 61 99 61 99	4.8 8.5	₹.'- 1.'2	4.9	4.0 	0 10 0 10				4 4 51 -	3.1	6 i 3	• Over
	Found (%)	H	9.9 9.0			S:3		s.5	6.1		9-03	0; !	10.8						8 1 1 1 1		9-9 6-8	sis.
		c	2.6.6			76-9	66-3	72.5	73-2		1.47	1.69	2.4-3						08:0 10:0	1	$67.2 \\ 64.9$	r analy
OMe OMe		Formula	-	CleH27NO2	HailNO.	C ₂₀ H ₂ NO ₂	C ₁₀ H ₂ NO ₂ C ₁ H ₈ O ₃ S € C ₁₇ H ₂₉ NO ₂ ,H ₈ O ₃ S € C ₁₇ H ₂₉ NO ₂ ,HBr C ₁₈ H ₃₂ INO ₂	C19H35NO3 C20H28INO3	C20H25NO3 C21H28INO3	C20H27NO2S,HBr C21H20INO2S	.0.	0	.	C1.H2.CINO4	C18H28CINO	C ₂₁ H ₂₄ CINO,	C ₁₁ H ₂₆ CINO ₃ C ₁₇ H ₃₀ NO ₃ ,HBr	C ₁₇ H ₂₉ NO ₃		C.,H.,NO,S.HBr		33°/0-2 mm. ^d Sulphur analysis.
N-Substituted amines, R"R'N		Solvent a	Et <u>_</u> O-Pet	Ft.O	H,0	Et ₂ O-Pet	EtOH-Et ₂ O EtOH-Et ₂ O H ₂ O	$Et_{a}O-Pct$ $H_{a}O$	EtOH H ₂ O	Aq. HBr H ₂ O		••••			E10H		EtOH-H ₂ O McOH-Et ₂ O	_	MeOH	EtOH-Et.O		• B. p. 161-163°/0.2 mm.
stituted av		M. p.	35° b	30 <u>3</u> 33	152 - 156	38.5-39.5	114-116 119-120 184-186	$(d^{c}comp.)$ 49—51 162·5—164	(decomp.) 8284 160163	(decomp.) 96—98 142—145	(decomp.) 3941 203904	70-72	202002	63—63 -2 = 5 -	011-011	95-97	45-47 147.5-149	35 - 36	62.5-63.5	1 1	6264 6869	228°/0·04 mm.
V-Sul		(%)	33	22 C	68	93 6	80 80	89 95	95 J.3	$26 \\ 100$	17 17 17	36	85°	06 1	100 94	69	29 29 29	15	18	012	51	1 :
TABLE 4. 1		Deriv.	Base	Base	MeI	Base	p-C ₆ H ₄ Mc•SO ₃ H HBr MeI	Base Me I	Base MeI	HBr MeI	Base MeT	Base	Me1 Base				HBr	Base	Base	HBr	Base Base	leum. ^b B. p. 197- . 162—174°/0 [.] 05 mm
		R		Me Dh		\mathbf{Ph}	Me	OPh	COPh	SPh	₽-C ₆ H₄NMc₂	Phthalimido	Mc	Ph	Me Oph	COPh	SPh Ph	Me	OPh CODL	SPh	Mc Phthalimido	ht petro / B. p
		ш	10	l~ ¢	1	ŝ	t-	4	-+	5	ũ	ŝ	1-	511	L- 4	4	10 ei	t-	4 -	# ¥3	HH 2 - 2	n. Pe not ise
		К"	H	Н	DIM	Me	Me	Mc	Mc	Me	Me	Mc	Rt.	H [*] CI H	н. Т	H ₂ CI H	CH ₂ CI H	H	H		CHall OH	cent for quatern
		R'	~	0	0	63	0	0	6 3	c)	0	e		Ď₂•CH₂•C	O.CH.C	D ₂ CH ₂ C	CO,CH, CH ₂	CH. J. OH	[CH.] OH		CH. J. OH	solv solv nediate
			M	Mc	TUT	M_{c}	Mc	Mc	Me	Mc	Me	Mc	Ē	ŭ	ರರ	50	25 25	20	0		100	, r

Published on 01 January 1961. Downloaded by FAC DE QUIMICA on 07/01/2015 16:18:56.

Collins and Davis:

2,6-Dimethoxy-4-nitrophenol.—(a) The foregoing nitro-compound (60 g.) was stirred and refluxed for 2 days with potassium hydroxide (60 g.) in water (350 ml.), then cooled. The potassium salt (49.5 g., 74%) was filtered off, washed with chloroform and ethanol, and dried. The mother-liquors were concentrated and refluxed for a further 24 hr., giving a second crop (6.1 g., 9%). The sodium salt was similarly obtained.

(b) A mixture of 1,3-dimethoxyacetone (7·14 g.), sodium nitromalondialdehyde (9·5 g.), and a solution of sodium hydroxide (0·9 g.) in water (90 ml.) was kept overnight at room temperature, then concentrated *in vacuo*, cooled, and filtered, giving the sodium salt (8·35 g., 62%) of the phenol. Acidification and recrystallisation from aqueous acetic acid gave 2,6-*dimethoxy*-4-*nitrophenol*, m. p. 136–137° (effervescence) (Found: N, 6·8; OMe, 30·7. $C_8H_9NO_5$ requires N, 7·0; OMe, 31·2%).

1-(2,6-Dimethoxy-4-nitrophenoxy)-5-phthalimidopentane.—A mixture of potassium 2,6-dimethoxy-4-nitrophenoxide (40 g.), 5-phthalimidopentyl bromide (50 g.), and 2-ethoxyethanol (100 ml.) was stirred under reflux at 100° for 7 days. The product crystallised from ethanol, yielding the 5-phthalimidopentyl ether (68%), m. p. 105—106° (Found: N, 6·75; OMe, 15·2. $C_{21}H_{22}N_2O_7$ requires N, 6·75; OMe, 14·9%). Similarly obtained (63%) (refluxed for 48 hr.) was 1-(2,6-dimethoxy-4-nitrophenoxy)-5-phenylpentane, m. p. 36—37° (from light petroleum) (Found: C, 66·6; H, 6·9; N, 4·4. $C_{19}H_{23}NO_5$ requires C, 66·1; H, 6·7; N, 4·1%).

The nitro-compounds listed in Table 1 were prepared (except where stated) by condensation of potassium 2-methoxy-4-nitrophenoxide with the appropriate alkyl or substituted alkyl bromide, usually in boiling ethanol or 2-ethoxyethanol.

Amines.

Di-[5-(4-amino-2-methoxyphenoxy)pentyl] Sulphide.—A mixture of 5-(2-methoxy-4-nitrophenoxy)pentyl bromide (24 g.), sodium sulphide nonahydrate (48 g.), ethanol (200 ml.), and water (100 ml.) was stirred and refluxed for 24 hr. The ethanol was distilled off and the residue was shaken with ether. The solid (4.55 g., 27%; m. p. 81—89°) which separated was dissolved in chloroform and shaken with 2N-hydrochloric acid. The hydrochloride was reconverted into the base which, after recrystallisation from chloroform-ether, had m. p. 90—92° (Found: N, 6.2; S, 7.1. $C_{24}H_{36}N_2O_4S$ requires N, 6.2; S, 7.1%).

3,3'-Dimethoxy-4,4'-di-n-octyloxyazoxybenzene.—This compound, m. p. 86—89° (from 2-ethoxyethanol) (Found: C, 70·1; H, 9·1; N, 5·2%; M, 490. $C_{30}H_{46}N_2O_5$ requires C, 70·0; H, 8·95; N, 5·45%; M, 514), separated (5% yield) on one occasion when a batch of 1-(2-methoxy-4-nitrophenoxy)octane was reduced over Raney nickel in ethanol. The principal product, 3-methoxy-4-octyloxyaniline, was isolated from the filtrate.

4-Amino-2-methoxyphenyl D-Glucoside.—The corresponding nitro-compound (15.6 g.) in ethanol (460 ml.) and water (180 ml.) was reduced over Raney nickel. Concentration of the filtered solution and recrystallisation of the solid from ethanol gave the *amine* (70%), m. p. 202—203°, $[\alpha]_{\rm D}^{19.5}$ —61° in H₂O (Found: C, 51.7; H, 6.3; N, 4.7. C₁₃H₁₉NO₇ requires C, 51.8; H, 6.3; N, 4.65%).

3,5-Dimethoxy-4-5'-phthalimidopentylaniline was obtained (85%) by catalytic reduction of the nitro-compound over Raney nickel in dimethylformamide. After crystallisation from ethanol, it had m. p. 97° (Found: C, 65·7; H, 6·35; N, 7·45. $C_{21}H_{24}N_2O_5$ requires C, 65·6; H, 6·3; N, 7·3%). 3,5-Dimethoxy-, m. p. 85—87° (from ether) (Found: C, 72·5; H, 8·0; N, 4·4. $C_{19}H_{25}NO_3$ requires C, 72·4; H, 7·9; N, 4·4%), and 3-methoxy-4-5'-phenylpentyloxy-aniline (92%), m. p. 59—60° (from ether-light petroleum) (Found: C, 75·7; H, 8·3; N, 4·9. $C_{18}H_{23}NO_2$ requires C, 75·75; H, 8·1; N, 4·9%) [methanesulphonate, m. p. 130—131° (from ethanol-ether) (Found: N, 3·55; S, 8·4. $C_{18}H_{23}NO_2$, CH₄O₃S requires N, 3·7; S, 8·4%)], were obtained (90%) by a similar reduction in ethanol.

The primary amines listed in Tables 2 and 3 were prepared (except where stated) by catalytic reduction of the corresponding nitro-compounds, usually over Raney nickel in ethanol or 2-ethoxyethanol, but occasionally in ethyl acetate or dimethylformamide.

N-Formyl-3-methoxy-4-5'-phenylpentyloxyaniline, prepared (89%) from the primary amine by means of formamide and concentrated hydrochloric acid ¹ and recrystallised from methanol, had m. p. 86—88° (Found: C, 72.9; H, 7.2; N, 4.4. $C_{19}H_{23}NO_3$ requires C, 72.8; H, 7.4; N, 4.5%). The 4-octyloxy-derivative (81%), m. p. 77—78° (from methanol) (Found: C, 68.3; H, 9.1; N, 4.95. $C_{16}H_{25}NO_3$ requires C, 68.8; H, 9.0; N, 5.0%), was similarly prepared. N-Methyl Derivatives (Table 4).—The foregoing formamides were reduced with lithium aluminium hydride in ether-benzene.

NN-Dimethyl and NN-Diethyl Derivatives (Table 4).—The primary amines were converted into the quaternary iodides, which were pyrolysed under reduced pressure (see Part III ¹).

N-(2-Chloroethoxycarbonyl)-3-methoxy-4-5'-phenylpentyloxyaniline.—2-Chloroethyl chloroformate (8.7 g.) and sodium acetate trihydrate (11.1 g.) were added successively to a suspension of 3-methoxy-4-5'-phenylpentyloxyaniline (20 g.) in water (115 ml.) and acetic acid (3 ml.). The mixture was periodically shaken during 1 hr., then filtered, and the solid was washed with water and recrystallised from aqueous ethanol, giving the *urethane* (85%), m. p. 76—78.5° (Found: N, 3.6; Cl, 8.95. $C_{21}H_{26}CINO_4$ requires N, 3.6; Cl, 9.1%). The other *urethanes* listed in Table 4 were similarly obtained.

N-(2-Hydroxyethyl)-3-methoxy-4-5'-phenylpentyloxyaniline.—The foregoing urethane ($22 \cdot 4 \text{ g.}$) was added to a solution of sodium hydroxide (12 g.) in water (23 ml.), ethanol ($4\cdot 9 \text{ ml.}$), and 2-ethoxyethanol (49 ml.), and the mixture was refluxed for 10 min., cooled, diluted with water, and filtered. The product was washed with water and recrystallised from aqueous ethanol, giving the *amine* (68%), m. p. 72—73° (Found: C, 73.05; H, 8.35; N, 4.3. C₂₀H₂₇NO₃ requires C, 73.0; H, 8.2; N, 4.3%). The other N-2-hydroxyethyl derivatives (Table 4) were similarly prepared.

NN-Di-(2-hydroxyethyl)-3-methoxy-4-5'-phenylpentyloxyaniline.—A mixture of 3-methoxy-4-5'-phenylpentyloxyaniline (14·27 g.), calcium carbonate (14·27 g.), ethylene chlorohydrin (14·27 ml.), and water (150 ml.) was stirred and refluxed for 18 hr., cooled, and extracted with chloroform. The extract was evaporated and the residue treated with methanesulphonic acid in ethanol-ether. After recrystallisation from ethanol-ether, the *methanesulphonate* (46%) of the tertiary amine had m. p. 93—94° (Found: N, 2·9; S, 6·8. $C_{22}H_{31}NO_4$, CH₄O₃S requires N, 3·0; S, 6·8%). The other di-(2-hydroxyethyl) derivatives (Table 4) were similarly prepared.

NN-Di-(2-hydroxypropyl)-3-methoxy-4-5'-phthalimidopentyloxyaniline.—A mixture of 3-methoxy-4-5'-phthalimidopentyloxyaniline (20 g.), 1,2-epoxypropane (25 ml.), ethanol (170 ml.), and concentrated hydrochloric acid (1 ml.) was refluxed for 24 hr., diluted with water, and filtered. Recrystallisation of the solid from methanol-ether gave the tertiary amine (28%), m. p. 112—114° (Found: C, 66.5; H, 7.3; N, 6.3. $C_{26}H_{34}N_2O_6$ requires C, 66.4; H, 7.7; N, 6.0%).

N-D-Glucosyl-3-methoxy-4-5'-phthalimidopentyloxyaniline.—A mixture of 3-methoxy-4-5'-phthalimidopentyloxyaniline (3.54 g.), D-glucose (1.8 g.), and ethanol (30 ml.) was refluxed for 1.5 hr. (a clear solution was formed after 1 hr.), then concentrated to 15 ml., cooled, and filtered. The glucosylamine (53%) had m. p. 121—123° (Found: C, 59.2; H, 6.5; N, 5.35; H₂O, 1.8. $C_{26}H_{32}N_2O_{9},0.5H_2O$ requires C, 59.4; H, 6.3; H, 5.3; H₂O, 1.7%). Similarly prepared (62%) was the galactosylamine, m. p. 96—98° (Found: C, 60.1; H, 6.6; N, 5.7. $C_{26}H_{32}N_2O_{9}$ requires C, 60.5; H, 6.2; N, 5.4%).

4,6-Diamino-1,2-dihydro-1-(3-methoxy-4-octyloxyphenyl)-2,2-dimethyl-1,3,5-triazine.—A mixture of 3-methoxy-4-octyloxyaniline (30 g.), dicyandiamide (10 g.), concentrated hydrochloric acid (10 ml.), and acetone (300 ml.) was refluxed for 4 hr., cooled, and filtered, and the residue was washed with acetone. The triazine hydrochloride had m. p. 210—212° (Found: N, 17.0; Cl, 8.55. $C_{20}H_{33}N_5O_2$,HCl requires N, 17.0; Cl, 8.6%).

The authors thank Dr. H. J. Barber, F.R.I.C., and Dr. J. N. Ashley, F.R.I.C., for their continued interest, and Mr. S. Bance, F.R.I.C., for the analyses.

THE RESEARCH LABORATORIES, MAY AND BAKER LTD., DAGENHAM, ESSEX.

[Received, October 24th, 1960.]