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A conformationally pre-organized ligand platform allows for

restricted swivelling motions of two aryleneethynylene-appended

2,20-bipyridyl units that function as a tight bischelator as well as

a ratiometric fluorescence sensor for selected metal ions.

Cross-conjugated electronic structures continue to attract sig-

nificant research interests in organic materials chemistry.1

Molecular cruciforms represent one such architectural motif.2,3

Spatial separation of the frontier molecular orbitals (FMOs)

along each linear segment of such two-dimensional (2-D) con-

structs provides unique opportunities to control optoelectronic

properties either through covalent modification of p-conjugated
backbones4 or by interaction with chemical input signal.5

Torsional control over the conjugation paths should directly

impact the electronic properties associated with 2-D electronic

conjugation.6 This idea prompted us to explore a new

p-conjugated platform that supports two converging

2,20-bipyridyl (= bipy)7 motifs. We report that this swivelling

tetradentate ligand (i) displays fluorescence associated with

cross-linked [n,p]/[p,p]-conjugation, (ii) tightly binds metal

ions with Ka up to 107 M�1 to elicit red-shift in emission,

and (iii) thus enables ratiometric fluorescence sensing.

Bipy-containing linearly conjugated structures have been

extensively studied as fluorescence sensors for metal ions.8,9

Efforts to incorporate bipy units into 2-D p-conjugated molecular

scaffolds, however, focused predominantly on shape-persistent

macrocycles10 such as 1,11 2,12 or 3.13

We envisioned that a non-cyclic ligand 4 (Scheme 1) derived

from 2 should have a limited number of freely rotating C–C

bonds and thus provide finite trajectories for the two bipy

fragments converging at the metal center. Such conforma-

tional restriction was anticipated to enhance the binding

affinity by lowering the entropic cost of complexation. In

addition, unique electronic properties associated with the

[n,p]/[p,p]-conjugated molecular backbone could be exploited

for optical signaling of such binding events.14

The molecular C2-symmetry of 4 simplified the synthetic

operation (Scheme 2), which commenced with Sonogashira–

Hagihara coupling between 5 and 5-ethynyl-2,20-bipyridine (6),

proceeding exclusively on the iodo-substituted position of 5 to

furnish the mono-coupled product 7. A second round of

Scheme 1 Chemical structure of 4 and schematic representation of
metal binding through torsionally restricted structural folding.

Scheme 2 Synthetic route to 4.
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cross-coupling with acetone-protected acetylene produced 8,

which was subsequently converted to 9 under basic conditions.

Oxidative homocoupling of 9 completed the synthesis of 4

(Fig. 1(a)).15

InMeCN at 298K, 4 displayed a strong (e=78000M�1 cm�1)

absorption at lmax= 310 nm and broad shoulders extending to ca.

400 nm (Fig. 2). In comparison, the UV-Vis spectrum of the ‘‘half-

ligand’’ model 9 has no features above 360 nm, indicating that the

optical transitions of 4 at the longer wavelength end originate from

the p-conjugation along the diethynylene-linked biphenylene back-

bone. Consistent with this interpretation, the FMOs of 4 deter-

mined by density functional theory (DFT) calculations revealed

significant electron delocalization along the extended ligand back-

bone (Fig. 3). On the other hand, the similarity between the strong

absorption of 4 at lmax = 310 nm and that of 6 at lmax =

297 nm points toward p–p* electronic transitions localized at the

ethynylbipyridyl ‘‘arm’’ fragment (Fig. 3). Accordingly, electronic

perturbation induced by metal coordination should have profound

effects on this region of the UV-Vis spectrum.

Addition of Zn2+ (delivered as triflate salt) to 4 in MeCN

indeed elicited a gradual decrease in intensity of the absorption

peak at lmax = 310 nm with concomitant development of a

longer wavelength transition at lmax = 327 nm (Fig. S1, ESIw).
The well-resolved isosbestic point at l = 319 nm suggested the

formation of a discrete metal complex of 4, the 1 : 1 binding

stoichiometry of which was subsequently confirmed by the

Job’s plot analysis (Fig. S2, ESIw). In contrast, the half-ligand

model 9 displayed complicated binding patterns as reflected on

the Job plot (Fig. S3, ESIw), which pointed toward the

formation of multiple competing species in solution.

A high binding constant (Ka) of 1.7 (�0.5) � 107 M�1 (in

MeCN) was obtained by fitting DA310 vs. [Zn
2+] data against a

typical 1 : 1 binding isotherm. Under similar conditions,

systematically weaker binding was observed for Cd2+ and

Hg2+, with Ka = 1.5 (�0.5) � 106 M�1 and 9.4 (�0.9) �
104 M�1, respectively (Fig. S4 and S5, ESIw). The decrease in

the binding affinity along the series Zn2+ 4 Cd2+ 4 Hg2+

might be rationalized by the inability of the torsionally

restricted ligand 4 to fully relax to accommodate metals of

larger ionic radii. Alternatively, increasing softness of the d10

metals down the row might weaken the M–Nimine bonds.

Structural preorganization of 4 apparently plays a critical

role in discrete 1 : 1 complexation with high binding constants.

This was subsequently confirmed by X-ray crystallography on

its Zn2+ complex.z As shown in Fig. 1(b), 4 supports a six-

coordinate metal center with bis(bipy)-derived four nitrogen

atoms adopting a cis-divacant octahedral geometry and two

triflate-derived oxygen atoms completing the remaining co-

ordination sites. Metal binding proceeds via rigid body swivel-

ling motions of the ortho-phenyleneethynylenebipyridyl arms

around the diethynylene hinge of 4 with no significant

structural distortion of the molecular backbone.

In addition to providing a torsionally restricted structural

platform for high-affinity binding, the bent [n,p]-system of 4

fundamentally switched the intrinsic de-excitation mechanism

of the bipy unit. The free ligand 4 in MeCN at 293 K showed

fluorescence peaks at lmax = 390 and 415 nm with a large

Stokes shift (Fig. 2). Addition of Zn2+, however, elicited a

significant decrease in the free-ligand emission with a con-

comitant development of the intense ligand–metal complex

emission at 495 nm with an isoemissive point at 433 nm

Fig. 1 ORTEP diagrams of (a) 4 and (b) its Zn(II) complex

[Zn(4)(OTf)2] with thermal ellipsoids at 50% probability, where N is

blue, O is red, S is orange, and Zn is green. The tert-butyl groups of 4,

and one tert-butyl group and one OTf� ligand of [Zn(4)(OTf)2] are

disordered over two positions, for which only one model is shown.

Fig. 2 Normalized UV-Vis (solid lines) and fluorescence (dotted

lines) spectra of 4 (red), 6 (green) and 9 (blue) in MeCN, T = 298 K.

Fig. 3 FMO isosurface plots (isodensity value = 0.05 au) of DFT

models of 4 (a and b) and 6 (c and d).

Fig. 4 Fluorescence response of (a) 4 (0.5 mM) and (b) 9 (1.0 mM)

upon addition of Zn2+ (0–2.5 mM) in MeCN with lexc = 320 nm;

T = 293 K. Each trace corresponds to a 0.5 mM increment of [Zn2+].
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(Fig. 4(a)). The ratio of I500/I390 with excitation at 320 nm

varied from 0.1 in the absence of Zn2+ to 25 upon treatment of

5 equiv. Zn2+ (2.5 mM), a 250-fold emission ratio increase.

Under similar conditions, the half-ligand model 9 showed only

slight decrease in the intensity of the l= 370 nm peak with no

development of longer wavelength features (Fig. 4(b)). On the

other hand, the bipy ligand fragment model 6 showed a simple

fluorescence turn-on behavior toward Zn2+ (Fig. S6, ESIw).
The significant enhancement and red-shift in the emission of 4

now enables ratiometric detection, which is advantageous over

conventional measurement at a single wavelength.8,16–20

The high affinity of 4 toward group 12 metal ions prompted

the investigation of its response profile across a wider range of

transition-metal ions. As summarized in Fig. 5, a MeCN

solution of 4 (0.5 mM) displayed strong turn-on fluorescence

response toward mM-level concentrations of Zn2+, Cd2+ and

Hg2+ as monitored by changes in the emission intensity. On

the other hand, other closed-shell ions such as Ag+ or Cu+, or

paramagnetic Cu2+, Fe2+, Mn2+, Co2+ or Ni2+ elicited

either complete quenching or negligible changes.21

In summary, a new dynamic fluorophore was prepared, in

which swivelling motions around a rigid p-conjugated axle was

exploited to enforce two metal binding units to converge at the

metal center as a tight bischelator. A high affinity binding with

Ka up to B107 M�1 and ratiometric fluorescence response

toward selected metal ions promise potential application of

this and related ligand platforms for biological and environ-

mental sensing.20,22–24 Efforts are currently underway in order

to improve the selectivity, sensitivity, and solubility of this

first-generation prototype in aqueous environments.

This work was supported by the National Science Founda-

tion (CAREER CHE 0547251) and the US Army Research

Office (W911NF-07-1-0533). This paper is dedicated to Pro-

fessor Myunghyun Paik Suh on the occasion of her 60th

birthday.
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