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Abstract: Exploiting novel 2-(tert-butyldimethylsiloxy)thiophene (1, TBSOT) as versatile carbon 
nucleophile and both enantiomers of glyceraldehyde acetonide as chiral sources, an entry to both 
enantiomers of anti HIV-active 2',3'-dideoxy-4'-thiocytidine 10 and ent-lO was devised and executed. 

Enantiomerically pure units of type A are attractive heterocycles and valuable building blocks for 

syntheses of a myriad of biologically interesting compounds bearing diverse functionality and multiple 

chirality. The ct,13-unsaturated moiety within A can be hydrogenated, dihydroxylated, or utilized as a Michael 

acceptor, while the C-2 carbon is susceptible to electrophilic substitution. 1,2-Addition to the C- 1 carbonyl 

can be effected under a variety of conditions, whereas alkylation at C-4 can be carried out via the enolate. Due 

to its chiral nature, the C-4 substituent provides a configurational bias to be used to control the stereochemical 

outcome of the various functionalization processes. 
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A a : X = O  B a : Y = O  
Ab : X = NBoc  Bb : Y = NR 
A c : X = S  

T M S O F  : X = O; R3 = Me3 

T B S O P  : X = NBoc; R 3 = ButMe2 

T B S O T  : X = S; R 3 = ButMe2 

In addition to these useful synthetic implications, lactones Aa or lactams Ab are readily accessible, in 

a single sequence, via Lewis acid-assisted diastereoselective coupling of homochiral aldehyde Ba or imine 

Bb precursors by means of 2-(trimethylsiloxy)furan (TMSOF) or N-tert-butoxycarbonyl-2-(tert- 

butyldimethylsiloxy)pyrrole (TBSOP), respectively.l-4 We have reported that furan- and pyrrole-based 

compounds Aa and Ab serve as chiral templates for the stereoselective preparation of densely functionalized 

bioactive compounds including higher carbon sugars, I polyhydroxylated alkaloids,2 C-glycosyl-t~-amino 

acids,3 and azasugar-based nucleosides.4 

Because of the excellent potential of sulfur modified sugars and nucleosides in a broad range of 

synthetic and biological applications,5 it seemed desirable and pertinent to develop a clean, synthetically 

efficient method for the production of thiolactone intermediates of type Ac in enantiomerically pure forms. 

We have now achieved  this objec t ive  and report herein the first access to 2-(tert- 

butyldimethylsiloxy)thiophene (1, TBSOT) and its exploitation to preparation of thiolactones of type 3 and 4 
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and expedient syntheses of both enantiomers of anti-HIV active 2’,3’-dideoxy-4’-thiocytidine 10 and ent- 

lO.Sc 

Our strategy for the synthesis of the key enantiomeric thiofuranose precursors 8 and ent-8 relies upon 

Lewis acid promoted addition of TBSOT to glyceraldehyde derivatives 2 and ent-2 to produce the 

diastereomeric a&unsaturated adducts 3,4 and ent-3, ent4. Double bond saturation followed by oxidative 

extrusion of the C-6 and C-7 carbon atoms and reduction of the C- 1 thiolactone carbonyl should then lead to 

8 and ent-8, to be finally subjected to conventional coupling with the suitable nucleobase. 
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Reagents: a) TBSOT, BF3 etherate (I .O equiv), CH2C12, -90°C 5h; b) H2. 10% Pd on carbon, NaOAc, THF, 20°C 
12h; c) 80% aq. AcOH, 40°C 24h; then 0.65M aq. Na104, SiO2, CH2C12, 22°C. I h; d) NaBH4, MeOH, 25”C, 12h; 
then TBDPS-Cl, imidazole, DMF, 25°C 2h; e) LiAIH4 (0.5 equiv), THF, -2O”C, 7h; then Ac20, pyridine, DMAP, 
25°C 2h; f) cytosine (1.5 equiv), nonafluorobutanesulfonate, CH$N, HMDS, TMS-Cl, 25°C 24h; g) preparative TLC, 
SiO2, CHClj/MeOH (9:l) in NH3 atmosphere; then TBAF, THF, AcOH, 25”C, 20h. 

As depicted in Scheme 1, the synthesis of cytidine derivatives 10 (L-series) started from TBSOT and 

2,3-O-isopropilydene-D-glyceraldehyde 2. Silyl-dienol ether formation to produce stable TBSOT was cleanly 

effected (95%) from commercially available 2(5H)-thiophenone by following a well-tried tert- 

butyldimethylsilyltrifluoromethanesulfonate/2,6-lutidine-based protocol.2a,6 Diastereoselective addition of 

TBSOT to 2 in the presence of 1 .O equiv of BF3 etherate in CH2C12 resulted in preferential formation of the 

4R-adduct 3 (72%) accompanied by less than 10% of 4S-diastereoisomer 4. Hydrogenation of the major 

compound 3 (10% Pd on carbon, THF, NaOAc) furnished crystalline thiolactone 5 (SS%), whose absolute 

(4R,SR,6R)-configuration was unambiguously ascertained by single crystal X-ray analysis.7 This confirmed 

the prediction that the major coupling product 3 would have the 4,5-threo-5,6-erythro- configuration, 

indicative of a reactivity behavior similar to that observed for furan- and pyrrole-based siloxydienes. I-4 
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Selective deblocking of the acetonide protection within 5 (80% aq. AcOH), followed by exposure of 

the formed crude triol to NalO4/SiO2 in CH2C12, cleanly afforded aldehyde 6 (91%), which was used as 

such in the subsequent transformation. Reduction of the formyl moiety of 6 (NaBH4/MeOH) and subsequent 

silylation of the created primary hydroxyl function with tert-butyldiphenylsilyl chloride (TBDPS-C1, 

imidazole, DMF) then gave 7, the immediate precursor of thiosugar 8, in 77% yield. 

Selective reduction of thiolactone carbonyl to thiolactol was attained by careful exposure of 7 to 

LiA1H4 (0.5 equiv) in tetrahydrofuran at -20°C. No reaction occurred under standard conditions with either 

DIBAL-H or LiBEt3H reducing agents. Following acetylation of the anomeric hydroxyl (Ac20, pyridine, 

DMAP) pure L-thiofuranose 8 was obtained, as a 1:1 anomeric mixture, in 82% yield, which corresponds to 

a 37% overall yield based on 2. The final coupling of 8 with cytosine was successfully conducted according 

to a modification of the Vorbruggen protocol,8 by following exactly the experimental procedure of Secrist.5c 

In our hands, the reaction afforded a 68% yield of 9 as a 1:1 call3 anomeric mixture. The separation of the 

individual anomers was carried out by preparative TLC (AcOEt/MeOH 9:1 in ammonia atmosphere) allowing 

synthesis of pure nucleoside anomers 10cz and 10~. 9,10 

The synthesis of known anti-H1V active 4'-thiocytidine ent-105c (D-series) called for thiosugar ent-8 

as immediate precursor. It was envisaged that transformation of either the minor adduct 4 (from D- 

glyceraldehyde 2), or the major adduct ent-3 (from L-glyceraldehyde ent-2) would provide this key 

intermediate by the same operational sequence. Thus, as described for 3, crystalline ent-3 was prepared by 

reacting TBSOT with ent-2 (73% isolated yield), and conveniently combined with 4, thus minimizing loss of 

homochiral material (Scheme 2). 

Scheme 2 
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Reagents: See Scheme 1. 

The same set of reactions as described for 8 then allowed this diastereoisomeric mixture (dr = 80:20) 

to be elaborated into the sole enantiomer ent-8 in 50% overall yield based on ent-3,4 mixture. Final coupling 

of ent-8 with cytosine was carried out in the usual manner5c to obtain a mixture of protected nucleosides 

(65%, 1:1 cz,13 anomeric ratio), from which the pure semicrystalline ~]-anomer of 2',3'-dideoxy-4'- 

thiocytidine (ent-lO[3) was obtained as previously described for its enantiomer 10l] [mp 81-83°C; lit.Sc mp 

83-85°C]. 

In conclusion, utilizing readily available D- and L-glyceraldehyde acetonides as a couple of 

"enantiomeric" hydroxymethyl (or formyl) cation equivalents, a flexible route to enantiomerically pure 

thiofuranose-based nucleosides was devised and straightforwardly executed. Novel TBSOT and previously 
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described TMSOF and TBSOP constitute a powerful triad of four-carbon nucleophiles whose application in 

synthesis is expected to be more and more fruitful. 
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