View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Wu, Y. Zhang, X. Gong, Y. Meng and C. Zhu, *Org. Biomol. Chem.*, 2019, DOI: 10.1039/C9OB00278B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Visible-light promoted aerobic difunctionalization of alkenes with sulfonyl hydrazides for the synthesis of β -keto/hydroxyl sulfones

Jie Wu, ^a Yulan Zhang, ^a Xinchi Gong, ^a Yunge Meng, ^a and Chunyin Zhu*^{a,b}

A practical method has been developed for the conversion of alkenes to β -keto/hydroxyl sulfones by their reaction with sulfonyl hydrazides under metal-free conditions. This reaction proceeds through the oxidative addition of alkenes by sulfonyl radicals that are generated by visible-light induced oxidation of sulfonyl hydrazides. Notaly the reaction uses O₂ as the terminal oxidant, instead of metal catalysts or oxidants like TBHP, leading to H₂O and N₂ as the clean by-products. The key features of this reaction include readily available reagents, mild reaction conditions and broad substrate scope.

Introduction

Published on 19 March 2019. Downloaded on 3/19/2019 11:06:43 PM

Alkenes have been exploited as starting materials for chemical production in industry due to their diverse and abundant availability from petrochemical sources.¹ Among the numerous utilizations of alkenes, difunctionalization of alkenes has evolved to be one of the most powerful and straightforward tools to integrate small molecules into intricate molecular architectures via one-step introduction of two functional groups that possess significantly synthetic utility in chemical synthesis.² In this regard, the oxysulfonylation of alkenes has emerged as an ideal strategy for the synthesis of $\,\beta\,$ -keto sulfones, which are valuable skeletons found in many organic compounds due to their biological properties³ and widespread synthetic applications⁴. As a consequence, extensive research efforts have been devoted to this transformation by the study of sulphur sources, oxidants and catalysts. For example, Wei and Wang reported copper-catalyzed aerobic difunctionalization of alkenes with sulfonylhydrazides for the synthesis of β -ketosulfones (Eq. 1, Scheme 1). ⁵ Yadav et al. accomplished K₂S₂O₈-mediated aqueous oxysulfonylation of simple alkenes with sodium arenesulfinates in the presence of O2.6 Later, they also reported AgNO3-catalyzed oxysulfonylation of alkenes with thiophenols as the sulphur source in the presence of O_2 (air) and $K_2S_2O_8$ as oxidants.⁷ The same group also achieved the transformation with sodium arenesulfinates by using the $AgNO_3/K_2S_2O_8$ combination.⁸ Liu and co-workers disclosed CF₃COOH-promoted oxysulfonylation of alkenes with sulfonyl hydrazides in the presence of O2 under elevated temperature (Eq. 2, Scheme 1).9 Zhang and Sun reported tetra*n*-butylammonium bromide-mediated aerobic oxysulfonylation

of styrenes with sulfonylhydrazides for the synthesis of β -ketosulfones (Eq. 3, Scheme 1).¹⁰

Scheme 1. Syntheses of β -ketosulfones by difunctionalization of alkenes with sulfonyl hydrazides.

Recently, visible light photoredox catalysis (VLPC)¹¹ has received increasing attention from the synthetic community due to the mild conditions and high efficiency, and this strategy has also been introduced to the oxidative difunctionalization of alkenes¹². In this context, major advance has been made in the synthesis of β -ketosulfones by using visible light photoredox catalysis. For example, Yang and co-workers developed a visible-light-promoted oxysulfonylation reaction of alkenes with sulfinic acids by using tert-butyl hydroperoxide (TBHP) as oxidant for the synthesis of β -keto sulfones.¹³ Niu and coworkers reported a Ir(ppy)₂(dtbbpy)PF₆-catalyzed visible-lightinduced oxidative difunctionalization of alkenes with sulfonyl chlorides using air under mild conditions without any other additives.¹⁴ Lipshutz and co-workers accomplished the aqueous sulfonylation of various alkenes and enol acetates using arenesulfonyl chlorides in the presence of a novel amphoteric PQS-attached photocatalyst.¹⁵ As a continuation of our interest in the utilization of hydrazine derivatives under photocatalytic conditions¹⁶, we reported a metal-free protocol for the conversion of alkenes to ketones through oxidative radical

^{a.} School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China. E-mail: <u>zhucycn@gmail.com</u>

^{b.} State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, P.R. China.

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

Journal Name

ARTICLE

addition with arylhydrazines (Eq. 4, Scheme 1)^{16b}. Now, by replacing arylhydrazines with sulfonyl hydrazides, we discovered a visible-light promoted aerobic difunctionalization of alkenes for the synthesis of β -keto/hydroxyl sulfones (Scheme 1). Herein we would like to report the details of this transformation.

Results and discussion

 $\mbox{Table 1. Effect of Reaction Parameters on the difunctionalization of alkenes with sulfonyl hydrazides <math display="inline">^{\rm a}$

$\bigcirc \bigcirc$	+ NHNH ₂ MB* (2 mol%) DABCO (1 equiv.) EtOH air, 7w blue LEDs, rt	O O Tol
1a	2a	3aa
entry	variation from the standard conditions	yield/% ^b
1	None	78
2	No MB ⁺	<10
3	No visible light, no MB⁺	trace
4	Eosin Y, instead of MB ⁺	40
5	Rhodamine B, instead of MB ⁺	33
6	No DABCO	29
7	DBU, instead of DABCO	56
8	Et ₃ N, instead of DABCO	43
9	Pyridine, instead of DABCO	31
10	Piperidine, instead of DABCO	46
11	Cs ₂ CO ₃ , instead of DABCO	42
12	K ₂ CO ₃ , instead of DABCO	30
13	MeOH, instead of EtOH	69
14	CH ₂ Cl ₂ , instead of EtOH	62
15	THF, instead of EtOH	31
16	DMSO, instead of EtOH	37
17	DMF, instead of EtOH	30
18	MeCN, instead of EtOH	67
19 ^c	Green LEDs instead of blue LEDs	76

^aStandard conditions: 1.5 mmol of **1a**, 0.5 mmol of **2a**, 0.01 mmol of methylene blue, 0.5 mmol of DABCO, air (open flask), and EtOH (1.5 mL) at room temperature under the irradiation of 7 W blue LEDs; MB⁺ = methylene blue, DABCO = 1,4-Diazabicyclo[2.2.2]octane. ^bisolated yield. ^cThe reaction was irradiated by 7 W green LEDs

At the outset, the reactivity towards this difunctionalization of alkenes was evaluated by studying the reaction of styrene **1a** and 4-methylbenzenesulfonohydrazide 2a (Table 1). To our delight, the reaction was found to work smoothly in the presence of methylene blue (MB⁺, 2 mol %), DABCO (1 equiv.) and air (open flask) in EtOH at room temperature under the irradiation of 7 W blue LEDs, leading to the production of β -keto sulfones 3aa in a good yield (78%) (entry 1). Without photocatalyst, the reaction became sluggish, resulting in a yield less than 10% (entry 2). The reaction performed in dark environment was totally shut down, indicating light is indispensable for this reaction (entries 3). Compared to methylene blue, other commercially available organic photocatalysts including rhodamine B and eosin Y, are less effective (entries 4-5), probably due to the lower oxidation potential of eosin Y $[E_{1/2}(PC^*/PC^-) = +0.83 V vs SCE$ for eosin Y; $E_{1/2}(PC^*/PC^-) = +1.14 \text{ V vs SCE for MB}^+]^{11l}$. Moreover, without DABCO or replacing it with other bases, the reaction sclead to inferior results (entries 6–12). This phenometer of the redox potential of toluene sulfonyl hydrazide from +1.24 V vs SCE to +0.53 V vs SCE by deprotonation¹⁷, making it easier to be oxidized by the excited MB⁺. The screening of solvents revealed that EtOH is superior to other solvents, such as MeOH, CH_2Cl_2 , THF, DMSO, DMF and MeCN (Table 1 entries 13-18). Finally, a reaction was performed under the irradiation of green LEDs, and it gave a yield of 76% that is close to the one under standard conditions.

With the optimized conditions in hand, we proceeded to evaluate the scope and generality of this difunctionalization of alkenes. Initial studies began by holding the hydrazine reagent constant (i.e., 4-methylbenzenesulfonohydrazide 2a) when reacting alkenes with various substitution groups/patterns. The reaction tolerated a range of functional groups including electron-withdrawing groups (F, Cl and Br) and -donating groups (Me and OMe). Some of these functional groups are useful for further synthetic diversification. Notably, divinylbenzene substrates could react with 4methylbenzenesulfonohydrazide at one side selectively in good yields (3ja and 3ka). For internal olefins, the reaction of (E)prop-1-en-1-ylbenzene with 4-methylbenzenesulfonohydrazide was tried, however, it gave a disordered mixture.

^a1.5 mmol of **1a**, 0.5 mmol of **2a**, 0.01 mmol of methylene blue, 0.5 mmol of DABCO, air (open flask), and EtOH (1.5 mL) at room temperature under the irradiation of 7 W blue LEDs

 Table 3. Reaction of 4-methylbenzenesulfonohydrazide 2a with 1,1-disubstituted alkenes^a

Published on 19 March 2019. Downloaded on 3/19/2019 11:06:43 PM

Journal Name

^a1.5 mmol of 1a, 0.5 mmol of 2a, 0.01 mmol of methylene blue, 0.5 mmol of DABCO, air (open flask), and EtOH (1.5 mL) at room temperature under the irradiation of 7 W blue LEDs

When α -methyl styrene was subjected to the reaction, β hydroxyl sulfone was generated in good yield (Table 3, 3la). Other α -methyl styrenes bearing diverse substituents including Cl, Br and OMe, also underwent this reaction smoothly, leading to the corresponding β -hydroxyl sulfones in good yields (**3ma**, **3na** and **3ga**). Replacing benzene ring with other aromatic rings such as naphthalene and pyridine, the reaction worked as well (3pa and 3ra). Notably, this reaction is also applicable to ethene-1,1-diyldibenzene, permitting the synthesis of a tertiary alcohol bearing two phenyl groups (30a).

This difunctionalization of alkenes with a focused substrate scope of hydrazine derivatives was also explored. As shown in Table 4, arylsulfonohydrazide with different groups on the benzene ring reacted smoothly with styrene under the standard conditions, leading to various β -keto sulfones in good yields (3ab-3ae). In addition, thiophene-2-sulfonohydrazide also worked for the transformation to generate the desired product 3af in 73% yield.

^a1.5 mmol of **1a**, 0.5 mmol of **2a**, 0.01 mmol of methylene blue, 0.5 mmol of DABCO, air (open flask), and EtOH (1.5 mL) at room temperature under the irradiation of 7 W blue LEDs

Scheme 3. Luminescence quenching of methylene blue with excitation at 664 nm by 2a.

To provide some insights into the mechanism of this reaction, control experiment in the presence of radical trapper TEMPO (2.0 equiv.) was carried out. The reaction was found to be inhibited, as no desired 3aa was isolated and the starting styrene 1a was recovered (eq. 1, Scheme 2). This observation supports the idea that the reaction probably proceeds through a radical pathway. A reaction in N₂ atmosphere was performed, and only trace amount of product was isolated (eq.2, Scheme 2), indicating O₂ is necessary for this reaction. Also the luminescence of methylene blue with excitation at 664 nm could be readily quenched by 2a following Stern-Volmer kinetics (Scheme 3-4), and styrene 1a cannot serve as the emission quenchers.

ARTICLE

On the basis of these experimental observations and our previous studies on the reaction of hydrazine derivatives¹⁶, a plausible mechanism is proposed for this reaction (Scheme 5). First, methylene blue is irradiated to the excited state *MB+ using blue LEDs, and this excited state is then reductively quenched by 2a along with the generation of ionic radical 4 and methylene blue radical (MB•). After deprotonation, ionic radical 4 is transformed to radical 5, which can also quench the excited state *MB⁺ and lose a proton to give intermediate 6. Another single-electron oxidation by *MB+, followed by deprotonation, results in the formation of Ts• 8. During the course MB• is oxidized back to MB⁺ by molecular oxygen with itself being reduced to hydroperoxyl radical (HOO•). Furthermore, intermediate 10, which is generated from the addition of Ts• to styrene 1a followed by incorporation of dioxygen, could react with hydroperoxyl radical to form **11**. Then **11** decomposes to afford the desired product 3aa, with concomitant formation of molecular oxygen and water through Russell fragmentation¹⁸. Another possible pathway from intermediate 9 to 3aa is the combination of 9 with HOO• to form intermediate 12, followed by its decomposition to final product **3aa** (path b).

Conclusions

Published on 19 March 2019. Downloaded on 3/19/2019 11:06:43 PM

In conclusion, we have developed a metal-free protocol for the conversion of alkenes to β -keto/hydroxyl sulfones through difunctionalization of alkenes with sulfonyl hydrazides. This reaction avoids the need for the use of metal catalysts or oxidants like TBHP. Instead, by using O₂ as the terminal oxidant, this visible-light induced reaction leads to H₂O and N₂ as the clean by-products. Preliminary mechanistic studies suggested the reaction goes through VLPC-promoted oxidation of sulfonyl hydrazides to sulfonyl radical followed by its addition to alkenes. Taken together with its operational simplicity, readily available reagents and broad substrates scope, this reaction mill find practical application for the transfor ନିର୍ଯ୍ୟ ପିନିକାର୍କ୍ତେ 2788

Experimental

General information

Column chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using UV light to visualize the course of the reactions. The ¹H (400 MHz) and ¹³C NMR (100 MHz) data were recorded on Bruker AVANCE II 400MHz spectrometer using CDCl₃ as solvent. The chemical shifts (δ) are reported in ppm and coupling constants (*J*) in Hz. ¹H NMR spectra was recorded with tetramethylsilane (δ =0.00 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ =77.00 ppm) as internal reference. All starting materials commercially available were used directly.

Typical procedure for the synthesis of products 3

To a solution of sulfonhydrazide **2** (0.5 mmol) and alkene **1** (1.5 mmol) in EtOH (1.5 mL) was added Methylene Blue (0.01 mmol) and DABCO (1 mmol). The reaction mixture was stirred at 25° C under air atmosphere (open vial) and irradiated by blue LED (7 W). After the completion of the reaction which was indicated by TLC (usually 24 hours), removal of solvent followed by column chromatography afforded desired products.

Characterization of products 3

1-phenyl-2-tosylethan-1-one (3aa) ¹⁹. Petroleum ether/ethyl acetate =10:1, white solid, 78% yield (106 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.7 Hz, 2H), 7.78 (d, *J* = 8.1 Hz, 2H), 7.64 (t, *J* = 7.3 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 4.74 (s, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 188.15, 145.36, 135.82, 134.31, 129.84, 129.34, 128.84, 128.62, 63.61, 21.70.

1-(4-bromophenyl)-2-tosylethan-1-one (3ba) ¹⁹. Petroleum ether/ethyl acetate =10:1, white solid, 89% yield (155 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, *J* = 1.8 Hz, 1H), 7.91 (ddd, *J* = 7.8, 1.6, 1.0 Hz, 1H), 7.80 – 7.71 (m, 3H), 7.38 (dd, *J* = 15.3, 7.8 Hz, 3H), 4.70 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.69, 144.92, 137.41, 132.04, 130.34, 128.55, 127.98, 123.18, 63.98.

1-(3-bromophenyl)-2-tosylethan-1-one (3ca) ¹⁹. Petroleum ether/ethyl acetate =10:1, white solid, 67% yield (118 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, *J* = 1.6 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 6.9 Hz, 3H), 7.38 (dd, *J* = 15.3, 7.8 Hz, 3H), 4.70 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.98, 145.64, 137.41, 137.12, 135.54, 132.09, 130.40, 129.95, 128.60, 128.03, 123.18, 63.68, 21.75.

1-(4-chlorophenyl)-2-tosylethan-1-one (3da) ¹⁹. Petroleum ether/ethyl acetate =10:1, white solid, 83% yield (130 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 6.8 Hz, 2H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.6 Hz, 2H), 7.36 (d, *J* = 8.3 Hz, 2H), 4.70 (s, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.90, 145.56, 141.08, 135.62, 134.11, 130.79, 129.91, 129.21, 128.58, 63.74, 21.72.

Published on 19 March 2019. Downloaded on 3/19/2019 11:06:43 PM

Journal Name

1-(4-fluorophenyl)-2-tosylethan-1-one (3ea) ¹⁹. Petroleum ether/ethyl acetate =10:1, white solid, 72% yield (106 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 7.94 (m, 2H), 7.77 (d, *J* = 8.2 Hz, 2H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.26 – 7.08 (m, 2H), 4.71 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.58, 167.76, 165.20, 145.52, 135.66, 132.51 – 132.12 (m), 129.90, 128.56, 116.21, 115.99, 63.75, 21.71.

1-(p-tolyl)-2-tosylethan-1-one (3fa) ¹⁹. Petroleum ether/ethyl acetate =20:1, white solid, 68% yield (98 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.3 Hz, 2H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 4.71 (s, 2H), 2.46 (s, 3H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.67, 145.57, 145.30, 135.82, 133.39, 129.82, 129.54 (d, *J* = 3.7 Hz), 128.61, 63.58, 21.76 (d, *J* = 7.4 Hz).

1-(m-tolyl)-2-tosylethan-1-one (3ga) ¹⁹. Petroleum ether/ethyl acetate =20:1, white solid, 65% yield (93mg). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1H), 7.77 (s, 2H), 7.75 (s, 1H), 7.73 (s, 1H), 7.44 (d, *J* = 7.6 Hz, 1H), 7.37 (dd, *J* = 15.3, 7.8 Hz, 3H), 4.72 (s, 2H), 2.46 (s, 3H), 2.42 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 188.30, 145.33, 138.74, 135.83, 135.15, 129.76 (d, *J* = 10.2 Hz), 128.67 (d, *J* = 5.5 Hz), 126.66, 63.58, 21.68, 21.31.

1-(4-methoxyphenyl)-2-tosylethan-1-one (3ha) ¹⁹. Petroleum ether/ethyl acetate =5:1, white solid, 77% yield (117mg). ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.9 Hz, 2H), 7.76 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 4.68 (s, 2H), 3.96 (s, 3H), 2.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.36, 164.55, 145.26, 135.85, 131.93, 129.81, 128.92, 128.57, 114.07, 63.55, 55.64, 21.71.

1-(3,4-dimethoxyphenyl)-2-tosylethan-1-one (3ia). Petroleum ether/ethyl acetate =5:1, white solid, 82% yield (136mg). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 10.3 Hz, 1H), 7.48 (s, 1H), 7.34 (d, *J* = 8.1 Hz, 2H), 6.91 (d, *J* = 8.5 Hz, 1H), 4.70 (s, 2H), 3.96 (s, 3H), 3.91 (s, 3H), 2.45 (s, 3H).¹³C NMR (101 MHz, CDCl₃) δ 186.41, 154.48, 149.23, 145.27, 135.85, 129.81, 129.04, 128.57, 125.15, 110.67, 110.13, 63.48, 56.12 (d, *J* = 19.0 Hz), 21.71. MS (ESI, *m*/z) 335.1 (M + H⁺), 357.1 (M + Na⁺). Anal. calcd for C₁₇H₁₈O₅S: C, 61.06; H, 5.43. Found: C, 60.84; H, 5.56.

2-tosyl-1-(3-vinylphenyl) ethan-1-one (3ja). Petroleum ether/ethyl acetate =20:1, white solid, 73% yield (109mg). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.1 Hz, 2H), 6.75 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.84 (d, *J* = 17.6 Hz, 1H), 5.38 (d, *J* = 10.9 Hz, 1H), 4.75 (s, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 188.12, 145.42, 138.36, 137.42, 136.08, 135.54, 131.74, 129.85, 129.04, 128.63, 126.96, 115.88, 63.69, 21.70. MS (ESI, *m*/z) 301.1 (M + H⁺), 323.1 (M + Na⁺). Anal. calcd for C₁₇H₁₆O₃S: C, 67.98; H, 5.37. Found: C, 67.74; H, 5.26.

2-tosyl-1-(4-vinylphenyl) ethan-1-one (3ka). Petroleum ether/ethyl acetate =40:1, white solid, 64% yield (96mg). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 8.4 Hz, 2H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 6.78 (dd, *J* = 17.6, 10.9 Hz, 1H), 5.69 (dd, *J* = 189.7, 19.5 Hz, 2H), 4.72 (s, 2H), 2.46 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 187.46, 145.38, 143.33 (s), 135.77, 135.68, 134.89, 129.83 (d, *J* = 1.9 Hz), 128.61, 126.53, 117.76, 63.68, 21.71. MS (ESI, *m*/z) 301.1 (M + H⁺),

 323.1 (M + Na⁺). Anal. calcd for $C_{17}H_{16}O_3S$: C, $67_{H28}S_{ArH28}S_{H78}$

 Found: C, 67.86; H, 5.24.

2-phenyl-1-tosylpropan-2-ol (3la) ²⁰. Petroleum ether/ethyl acetate =10:1, white solid, 72% yield (103mg). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.3 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.24 – 7.14 (m, 5H), 4.66 (s, 1H), 3.67 (dd, *J* = 45.6, 14.6 Hz, 2H), 2.40 (s, 3H), 1.72 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.53, 137.39, 133.62, 129.71, 128.25, 127.56, 127.13, 124.65, 73.17, 66.69, 30.76, 21.57.

2-(4-bromophenyi)-1-tosylpropan-2-ol (3ma) ²⁰. Petroleum ether/ethyl acetate =10:1, white solid, 81% yield (183mg). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (dd, *J* = 13.3, 5.4 Hz, 2H), 7.29 – 7.23 (m, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 7.15 – 7.08 (m, 2H), 4.72 (s, 1H), 3.66 (dd, *J* = 53.1, 14.7 Hz, 2H), 2.45 (d, *J* = 7.6 Hz, 3H), 1.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.81, 143.28, 136.84, 131.17, 129.75, 127.51, 126.61, 121.32, 72.80, 66.25, 31.02, 21.62.

2-(3-chlorophenyl)-1-tosylpropan-2-ol (3na) ²⁰. Petroleum ether/ethyl acetate =10:1, white solid, 76% yield (161mg). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (t, *J* = 1.6 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.76 (t, *J* = 6.9 Hz, 3H), 7.38 (dd, *J* = 15.3, 7.8 Hz, 3H), 4.70 (s, 2H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 186.98, 145.64, 137.41, 137.12, 135.54, 132.09, 130.40, 129.95, 128.60, 128.03, 123.18, 63.68, 21.75.

1,1-diphenyl-2-tosylethan-1-ol (30a) ²⁰. Petroleum ether/ethyl acetate =10:1, white solid, 75% yield (132mg). ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.3 Hz, 2H), 7.41 – 7.34 (m, 4H), 7.26 – 7.19 (m, 6H), 7.15 (d, *J* = 8.1 Hz, 2H), 5.41 (s, 1H), 4.21 (s, 2H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.51, 143.73, 137.42, 129.70, 128.28, 127.57 (d, *J* = 18.7 Hz), 125.87, 65.51, 21.61.

2-(naphthalen-2-yl)-1-tosylpropan-2-ol (3pa) ²⁰. Petroleum ether/ethyl acetate =10:1, white solid, 70% yield (119mg). ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.93 (m, 1H), 7.87 (d, *J* = 7.3 Hz, 1H), 7.67 (dd, *J* = 8.7, 4.1 Hz, 2H), 7.49 – 7.40 (m, 1H), 7.39 – 7.32 (m, 2H), 7.16 (d, *J* = 8.2 Hz, 2H), 6.78 (d, *J* = 8.1 Hz, 2H), 4.87 (s, 1H), 4.13 (dd, *J* = 220.5, 15.0 Hz, 2H), 2.21 (s, 3H), 2.00 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 143.70, 139.04, 134.54, 129.37, 129.20, 128.82, 126.94, 125.72, 125.09, 124.77, 124.55, 124.38, 73.52, 65.00, 30.14, 21.35.

2-(4-methoxyphenyl)-1-tosylpropan-2-ol (3qa) ²⁰. Petroleum ether/ethyl acetate =5:1, white solid, 77% yield (123mg). ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.1 Hz, 2H), 7.19 (dd, *J* = 8.6, 3.3 Hz, 4H), 6.71 (d, *J* = 8.8 Hz, 2H), 4.61 (s, 1H), 3.77 (s, 3H), 3.64 (dd, *J* = 49.7, 14.6 Hz, 2H), 2.40 (s, 3H), 1.69 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.70, 144.41, 136.64, 129.65, 127.57, 125.87, 113.50, 72.89, 66.85, 55.24, 30.70, 21.57.

2-(pyridin-3-yl)-1-tosylpropan-2-ol (**3ra**) ²¹. Petroleum ether/ethyl acetate =10:1, white solid, 63% yield (92mg). ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 4.7 Hz, 1H), 7.66 (q, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 7.07 (ddd, *J* = 6.6, 4.8, 1.7 Hz, 1H), 3.90 (dd, *J* = 152.0, 14.5 Hz, 2H), 2.38 (s, 3H), 1.62 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.51, 147.95, 144.23, 137.45, 136.93, 129.55, 127.70, 122.13, 119.34, 74.04, 65.17, 30.11, 21.56.

1-phenyl-2-(phenylsulfonyl) ethan-1-one (3ab) ²². Petroleum ether/ethyl acetate =10:1, white solid, 75% yield (98mg). ¹H NMR (400 MHz, CDCl₃) δ 4.74 (s, 2H), 7.48(tt, *J* = 7.8, 1.6 Hz, 2H),

ARTICLE

7.55 (tt, *J* = 7.8, 1.6 Hz, 2H), 7.62 (tt, *J* = 7.4, 1.2 Hz, 1H), 7.66 (tt, *J* = 7.6, 1.2 Hz, 1H), 7.90 (m, 2H), 7.94 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 188.1, 138.8, 135.8, 134.5, 134.4, 129.4, 129.3, 129.0, 128.7, 63.6.

2-((4-fluorophenyl) sulfonyl)-1-phenylethan-1-one (3ac) ²². Petroleum ether/ethyl acetate =10:1, white solid, 75% yield (104mg). ¹H NMR (400 MHz, CDCl₃) δ 4.75 (s, 2H),7.20-7.26 (m, 2H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.90-7.95 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 166.3 (d, *1JCF* = 245.4 Hz), 135.7, 134.8 (d, *4JCF* = 3.1 Hz), 134.7, 131.8 (d, *3JCF* = 9.7 Hz), 129.4, 129.1, 116.7 (d, *2JCF* = 22.6 Hz), 63.6.

2-((4-chlorophenyl) sulfonyl)-1-phenylethan-1-one (3ad) ²². Petroleum ether/ethyl acetate =10:1, white solid, 69% yield (101mg). ¹H NMR (400 MHz, CDCl₃) δ 4.75 (s, 2H),7.48-7.53 (m, 4H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.83 (d, *J* = 8.8 Hz, 2H), 7.93 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 141.3, 137.2, 135.7, 134.7, 130.3, 129.7, 129.4, 129.1, 63.5.

2-((4-nitrophenyl) sulfonyl)-1-phenylethan-1-one (3ae) ²². Petroleum ether/ethyl acetate =10:1, white solid, 77% yield (117mg). ¹H NMR (400 MHz, CDCl₃) δ 8.45 – 8.35 (m, 1H), 8.14 (ddt, *J* = 11.3, 9.3, 2.4 Hz, 1H), 7.94 (dt, *J* = 7.1, 1.4 Hz, 1H), 7.72 – 7.63 (m, 0H), 7.52 (t, *J* = 7.8 Hz, 1H), 4.82 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 187.60, 144.03, 135.33, 134.86, 130.34, 129.19, 129.09, 124.31, 63.00.

1-phenyl-2-(thiophen-2-ylsulfonyl) ethan-1-one (3af) ²³. Petroleum ether/ethyl acetate =5:1, white solid, 73% yield(102mg). ¹H NMR (400 MHz, CDCl₃): δ = 7.95 (d, *J* = 7.4 Hz, 2 H), 7.74 (dd, *J* = 4.9, 1.3 Hz, 1 H), 7.69 (dd, *J* = 3.8, 1.2 Hz, 1 H), 7.63 (t, *J* = 7.4 Hz, 1 H), 7.49 (t, *J* = 7.4 Hz, 2 H), 7.13 (dd, *J* = 4.9, 3.9 Hz, 1 H), 4.83 (s, 2 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 187.8, 139.4, 135.7, 135.5, 135.0, 134.5, 129.2, 128.9, 127.9, 64.4.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We acknowledge the Qing Lan Project of Jiangsu Province and Jiangsu University Foundation (No. 13JDG059) for financial support.

Notes and references

- 1 S. Patai, *The Chemistry of Alkenes* Wiley Interscience, 1964.
- (a) B. C. Giglio, V. A. Schmidt and E. J. Alexanian, J. Am. Chem. Soc. 2011, 133, 13320. (b) H. Wang, Y. Wang, D. Liang, L. Liu, J. Zhang and Q. Zhu, Angew. Chem. Int. Ed. 2011, 50, 5678; Angew. Chem. 2011, 123, 5796. (c) Z.-Q. Wang, W.-W. Zhang, L.-B. Gong, R.-Y. Tang, X.-H. Yang, Y. Liu and J.-H. Li, Angew. Chem. Int. Ed. 2011, 50, 8968; Angew. Chem. 2011, 123, 9130. (d) W. Wei and J.-X. Ji, Angew. Chem. Int. Ed. 2011, 50, 9097; Angew. Chem. 2011, 123, 9263. (e) Y. Su, X. Sun, G. Wu and N. Jiao, Angew. Chem. Int. Ed. 2013, 52, 9808; Angew. Chem. 2013, 125, 9990. (f) H. Li, C. Shan, C.-H. Tung and Z. Xu,

Chem. Sci., 2017, **8**, 2610. (g) Y.-Y. Liu, X.-H. Yang, R.-J. Song, S. Luo and J.-H. Li, *Nat. Commun.* **8**, 14-7(2), (J) & Cheng, Y. Cheng, J. Xie and C. Zhu, *Org. Lett.* 2017, **19**, 6452.

- 3 C. Curti, M. Laget, A. O. Carle, A. Gellis and P. Vanelle, *Eur. J. Med. Chem.* 2007, **42**, 880.
- (a) D. J. Procter, J. Chem. Soc. Perkin Trans. 1 2000, 835.
 (b) H. Yang, R. G. Carter and L. N. Zakharov, J. Am. Chem. Soc. 2008, 130, 9238. (c) A. Kumar and M. K. Muthyala, Tetrahedron Lett. 2011, 52, 5368.
- 5 (a) W. Wei, C. Liu, D. Yang, J. Wen, J. You, Y. Suo and H. Wang, *Chem. Commun.* 2013, **49**, 10239. (b) W. Wei, J. Wen, D. Yang, J. Du, J. You and H. Wang, *Green Chem.*, 2014, **16**, 2988. (c) W. Wei, J. Wen, D. Yang, M. Guo, Y. Wang, J. You and H. Wang, *Chem. Commun.*, 2015, **51**, 768. (d) J. Wen, W. Wei, S. Xue, D. Yang, Y. Lou, C. Gao and H. Wang, *J. Org. Chem.*, 2015, **80**, 4966.
- 6 R. Chawla, A. K. Singh and L. D. S. Yadav, *Eur. J. Org. Chem.* 2014, 2032.
- 7 A. K. Singh, R. Chawla, T. Keshari, V. K. Yadav and L. D. S. Yadav, Org. Biomol. Chem. 2014, **12**, 8550.
- 8 A. K. Singh, R. Chawla and L. D. S. Yadav, *Tetrahedron Lett.* 2014, **55**, 4742.
- 9 C. Liu, L. Ding, G. Guo and W. Liu, *Eur. J. Org. Chem.* 2016, 910.
- (a) X. Wan, K. Sun and G. Zhang, *Sci. China Chem.*, 2017, **60**, 353; Related works on sulfonyl hydrazides: (b) S. Cai,
 Y. Xu, D. Chen, L. Li, Q. Chen, M. Huang and W. Weng, *Org. Lett.* 2016, **18**, 2990. (c) S. Cai, D. Chen, Y. Xu, W.
 Weng, L. Li, R. Zhang and M. Huang, *Org. Biomol. Chem.* 2016, **14**, 4205.
- 11 For selected reviews on photoredox catalysis: (a) J. Xuan, W. J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828. (b) C. K. Prier, D. A. Rankic, D. W. MacMillan, Chem. Rev. 2013, 113, 5322. (c) D. M. Schultz, T. P. Yoon, Science. 2014, 343, 1239176. (d) R. A. Angnes, Z. Li, C. R. D. Correia, G. B. Hammond, Org. Biomol. Chem. 2015, 13, 9152. (e) J. Xuan, Z. G. Zhang, W.J. Xiao, Angew. Chem. Int. Ed. 2015, 54, 15632. (f) J. Luo, J. Zhang, ACS Catal. 2016, 6, 873. (g) J. R. Chen, X. Q. Hu, L. Q. Lu, W. J. Xiao, Chem. Soc. Rev. 2016, 45, 2044. (h) See a special Issue on "Photoredox Catalysis in Organic Chemistry" on Acc. Chem. Res., 2016, 49. (i) X. Sun and S. Yu, Synlett 2016, 27, 2659. (j) M. Zhang, C. Zhu and L.-W. Ye, Synthesis 2017, 49, 1150. (k) W. Li, W. Xu, J. Xie, S. Yu and C. Zhu, Chem. Soc. Rev., 2018, 47, 654. (I) N. A. Romero and D. A. Nicewicz, Chem. Rev. 2016, 116, 10075.
- a) M.-Y. Cao, X. Ren and Z. Lu, *Tetrahedron Lett.* 2015, 56, 3732. (b) Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413. (c) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937. (d) T. Courant and G. Masson, J. Org. Chem. 2016, 81, 6945. (e)Wang, X.; Studer, A. Acc. Chem. Res. 2017, 50, 1712. (f) X.-W. Lan, N.-X. Wang, and Y. Xing, *Eur. J. Org. Chem.* 2017, 5821.
- 13 D. Yang, B. Huang, W. Wei, J. Li, G. Lin, Y. Liu, J. Ding, P. Sun and H. Wang, *Green Chem*. 2016, **18**, 5630.
- 14 T.-F. Niu, J. Cheng, C.-L. Zhuo, D.-Y. Jiang, X.-G. Shu and B.-Q. Ni, *Tetrahedron Lett.* 2017, **58**, 3667.
- 15 M.-j. Bu, C. Cai, F. Gallou and B. H. Lipshutz, *Green Chem.*, 2018, **20**, 1233.
- (a) Y. Ding, T. Zhang, Q.-Y. Chen and C. Zhu, Org. Lett. 2016, 18, 4206. (b) Y. Ding, W. Zhang, H. Li, Y. Meng, T. Zhang, Q.-Y. Chen and C. Zhu, Green Chem., 2017, 19, 2941. (c) Y. Ding, H. Li, Y. Meng, T. Zhang, J. Li, Q.-Y. Chen and C. Zhu. Org. Chem. Front., 2017, 4, 1611; (d) T. Zhang, Y. Meng, J. Lu, Y. Yang, G.-Q. Li and C. Zhu, Adv. Synth. Catal. 2018, 360, 3063.

Published on 19 March 2019. Downloaded on 3/19/2019 11:06:43 PM.

ARTICLE

Journal Name

- 17 Y. Zhao, Y.-L. Lai, K.-S. Du, D.-Z. Lin, and J.-M. Huang. J. Org. Chem., 2017, 82, 9655.
- 18 G. A. Russell, J. Am. Chem. Soc. 1957, 79, 3871
- 19 L.-L. Xie, X.-M. Zhen, S.-P. Huang, X.-L. Su, M. Lin and Y. Li. *Green Chem*, 2017, **19**, 3530.
- 20 C.-K. Chan, N.-C. Lo, P-Y. Chen and M.-Y. Chang. Synthesis. 2017, **49**, 4469.
- 21 T.-C. Tsuyoshi, I. Atsushi and I. Hiroyuki. Org. Biomol. Chem. 2011, 9, 3151.
- 22 Q.-Q. Lu, J. Zhang, G.-L. Zhao, Y. Qi, H.-M. Wang and A.-W. Lei. *J. Am. Chem. Soc.* 2013, **135**, 11481.
- 23 H. Jiang, Y.-Z. Cheng, Y. Zhang and S.-Y. Yu. *Eur. J. Org. Chem.* 2013, 5485.