View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: P. Keller, M. Fares, S. Abd El Hadi, R. A. Eladwy, A. A. Shoun, M. M. Abdel-Aziz, W. M. Eldehna and H. A. Abdel-Aziz, *Org. Biomol. Chem.*, 2018, DOI: 10.1039/C8OB00627J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

nolecular Chemistry Accepted Manuscript

Organic and biomolecular chemistry

Communication

An improved synthesis of pyrido[2,3-d]pyrimidin-4(1H)-ones and their antimicrobial activity

Mohamed Fares^{a,b,*}, Soha R. Abd El Hadi^b, Radwa A. Eladwy^c, Aly A. Shoun^d, Marwa M. Abdel-Aziz^e, Wagdy M. Eldehna^f, Hatem A. Abdel-Aziz^g, Paul A. Keller^a

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

The screening of a small library of diverse chemical structures resulted in the identification of 2-thioxodihydropyrido[2,3-

d]pyrimidine 10a as having broad spectrum antibacterial activity (MIC 0.49 - 3.9 µg mL⁻¹), and reasonable antifungal activity (MIC 0.49 - 3.9 μ g mL⁻¹). An expeditious synthesis of **10a** was optimized by varying solvents, catalysts and the use of microwave irradiation with the best conditions using DMF as a solvent, I₂ (10 mol%) and a 30 minute reaction time compared to 15 h for classic conventional heating. The pharmacokinetic properties and calculation of drug likeness of 10a suggested good traditional drug-like properties and led to the synthesis of a small library with seven compounds 10a and **10d-i** showing broad antimicrobial activity (MIC = $0.49 - 7.81 \ \mu g \ mL^{-1}$) and selectivity indices of more than 5.6 against the normal colon cell line (CCD-33Co). The antifungal activity of compounds 10d-i was moderate to strong with MIC values of $1.95 - 7.81 \,\mu g \, m L^{-1}$.

Introduction

The paucity of novel antimicrobial agents in contemporary science is highly challenging with only 1.6% of new antibiotic drugs in clinical trials, a situation arising from the reduction in relevant drug discovery research, which leads to fewer novel registered therapeutics.¹⁻⁶ Since the dawn and overuse of antibiotics, bacteria have exploited windows to readily develop resistance to the established anti-infective agents.³⁻¹² In vitro target-based approaches have been used widely to discover potent enzyme inhibitors, but many are devoid of whole cell antibacterial activity, presumably due either to the inability to reach the intracellular targets, or as a result of the process of bacterial active efflux. $^{\rm 13,\ 14}$ More promising is whole-cell screening, where antimicrobial potencies have been identified

This journal is © The Royal Society of Chemistry 20xx

a priori followed by determination of the modes of action.^{15, 16} Most current antibiotics approved by the FDA for clinical applications are derivatives of a limited number of chemical classes or scaffolds, with many discovered in the mid-1980s.^{17,} ¹⁸ Strikingly, most candidates in recent phase 3 clinical trials were based on known scaffolds,¹⁹ including the tetracycline derivative omadacycline I, the macrolide derivative solithromycin II, trimethoprim analogue iclaprim III and the quinolones derivatives zabofloxacin IV and delafloxacin V (Figure 1).¹⁹

Figure 1. Examples of antibacterial agents in phase 3 clinical trials (I-V), isothiazologuinoline derivatives (VI).

^a School of Chemistry, University of Wollongong, Wollongong 2522, New South Wales, Australia

^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, 11829, Egypt

^cDepartment of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt

^dDepartment of Microbiology & Immunology, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt

^eThe Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11759, Egypt

^fDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt

^g Department of Applied Organic Chemistry, National Research Center, Dokki, Cairo 12622, Egypt

⁺ Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [Supplementary file 1 and 2. General methods and characterization of compounds. See DOI: 10.1039/x0xx00000x

Journal Name

Attempts to discover novel antimicrobial scaffolds related to known classes include the isothiazoloquinolones IQT **VI** (Figure 1), which are related to the known quinolones.²⁰ These derivatives showed activity against methicillin sensitive *Staphylococcus aureus* (MSSA) (MIC = 0.13 - 0.0020 µg/mL) against methicillin resistant *Staphylococcus aureus* (MRSA) (MIC = 4.0 - 0.060 µg/mL) and against *Escherichia coli* (*E. coli*) (MIC = 0.50 - 0.0040 µg/mL). Examples of ITQ derivatives were found to have 8- to 16- fold greater activity than the standard drug against MRSA, and ACH-702 is in pre-clinical development.²⁰

The continued need for new anti-infective agents is well documented, especially those based on new chemical classes. As part of an ongoing program searching for new leads, we report here 2-thioxodihydropyrido[2,3-*d*]pyrimidine **10a** which revealed broad spectrum antibacterial activity against three Gram -ve and two Gram +ve bacteria with MIC values ranging from 0.98 to 3.9 μ g/mL, (control drug 0.49 - 0.98 μ g/mL), and interestingly it showed MIC = 31.3 μ g/mL against MRSA (control drug 3.9 μ g/mL) and two fungi (control drug 0.49 - 0.98 μ g/mL).

Here we describe the development of this scaffold with the synthesis of a small library of compounds and their screening against Gram +ve, Gram -ve and MRSA bacteria as well as antifungal agents. The calculation of the pharmacokinetic properties of all compounds and the assessment of the cytotoxicity of the most active compounds was also performed.

Results and discussions

Published on 09 April 2018. Downloaded by Kaohsiung Medical University on 09/04/2018 21:37:15.

Synthesis of pyrido[2,3-d]pyrimidine derivatives 10a-j:

The required chalcone starting materials **3a-j** were prepared *via* a typical Claisen-Schmidt condensation of either *p*-chloroacetophenone **1a** or 2-acetyl thiophene **1b** with aromatic aldehydes **2a-e** in alcoholic alkaline solution in yields of 62-75% (Scheme 1).²¹ The synthesis of 6-amino-2-thiouracil **6** was accomplished by heating thiourea **5** at reflux with ethyl cyanoacetate **4** in the presence of sodium ethoxide in 68% yield (Scheme 1).

The classic Skraup synthesis of quinoline uses hot aniline, nitrobenzene and glycerol in the presence of catalytic sulfuric acid and produces low yields of product (Figure 3).^{22, 23} Doebner and von Miller replaced the glycerol with α , β -unsaturated carbonyl compounds, with heating under acidic conditions or in the presence of iodine as a catalyst to obtain quinolines in good yields (Figure 3).²³ A further development replaced the aniline with 6-amino-2-thiouracil to synthesize the pyrido[2,3-*d*]pyrimidine ring instead of quinoline (Figure 3).²⁴ We report here the continued evolution of this synthesis, to synthesize the versatile pyrido[2,3-*d*]pyrimidine scaffold in DMF at reflux in the absence of a catalyst.

Figure 2. Chemical structure of compound PP1 (10a).

Scheme 1: Reagents and conditions: (i) KOH, methanol, rt, (ii) NaOEt/ethanol, reflux, 4 h

5-aryl-7-(thiophen-2-yl/4-chlorophenyl)-2-thioxo-Therefore. 2,3-dihydropyrido[2,3-d]pyrimidin-4(1*H*)-ones 10a-j were prepared by heating at reflux equimolar quantities of 6-amino-2-thiouracil 6 and the chalcones 3a-j in dry DMF for 15-20 h in yields of 44-65% (Scheme 2). In a typical example, analysis of the ¹H NMR spectra of **10b** revealed a resonance at 7.22 ppm assigned to C5-Ar H3 and H5 with the doublet at 7.49 ppm assigned to C5-Ar H2 and H6. The pyridyl H6 was assigned to the singlet at δ 7.67 in the ¹H NMR spectra. To the corresponding C7 para substituted aryl substituent, Ar H3 and H5 was assigned the resonance at 7.58 ppm, while the resonance at 8.25 ppm was assigned to Ar H2 and H6. Two resonances at δ 12.38 and 13.08 were assigned to the two pyrimidyl NHs. The ¹³C NMR spectrum of the fluorine containing compound **10b** showed the splitting pattern of the fluorine and carbon with coupling constants ${}^{1}J_{F-C}$ = 243.1 Hz at resonance 161.3 ppm, ${}^{2}J_{F-C}$ = 20.9 Hz at resonance 114.2 ppm and ${}^{3}J_{F-C} = 8.6$ Hz at resonance 131.0 ppm.

The reaction is an apparent heterocyclic condensation of the uracil amino group with the propenone carbonyl 3a-j to afford the Schiff bases 7a-j (Scheme 2). This mechanism has been investigated²³ indicating an initial conjugate addition, followed by fragmentation with subsequent multistep reactions to produce the '1,2-addition' product. This then undergo intramolecular cyclization providing the 5,6-dihydropyrido[2,3dpyrimidines 8a-i which tautomerizes to the 5,8dihydropyrido[2,3-d]pyrimidines 9a-j which then oxidizes to **10a-j**.²⁴⁻²⁶ It has been reported that condensation of 6-amino-2-thiouracil 6 with chalcone analogues containing Ar_1 or Ar_2 para-substitution that are electron withdrawing groups (eg, NO2, Cl), the oxidized form 10 was directly obtained. Cases in which this position is unsubstituted or is para-methoxy substituted, the 5,8-dihydropyrido[2,3-d]pyrimidines 9 predominated.²⁴ In our study, all examples were isolated as the oxidized 10a-j, including the para-methoxy substituent 10i, presumably due to the extended reaction time (20 h) in air. Microwave-assisted synthesis of the pyrido[2,3-d]pyrimidine derivative 10a:

The Doebner von Miller cyclocondensation reaction of 6amino-2-thiouracil **6** with chalcone **3a** was also investigated under microwave conditions. Conventional heating of starting materials **6** and **3a** at reflux in DMF gave 44% yield of **10a** (table 1, entry 1). Replacing the solvent with trifluoracetic acid (TFA) and maintaining heating for **12** h decreased the yield Published on 09 April 2018. Downloaded by Kaohsiung Medical University on 09/04/2018 21:37:15.

(28%) (table 1, entry 2), with further heating resulting in no significant change. The use of microwave irradiation under

catalyst free

Figure 3. Skraup and Doebner-Miller synthesis of quinolone and Quiroga *et. al* synthesis of pyrido[2,3-*d*]pyrimidine.

Scheme 2: Reagents and conditions: (i) Dry DMF, reflux 15-20 h.

conditions for 1 h in DMF at 160 °C gave **10a** in low yield (18%) (table 1, entry 3), which improved marginally with increased temperature and time (table 1, entry 4). Reaction monitoring by mass spectrometry analysis indicated the reduced form **9a** was synthesized, presumably as the reaction was performed in a sealed tube with a limited oxygen supply. Upon workup, the reaction was left overnight to crystallize resulting in an efficient oxidation of **9a** to **10a**. Application of higher temperature (240 °C) for longer time periods (4 h) in catalyst free conditions only gave traces of **10a** (table 1, entry 5).

The Doebner-Von Miller synthesis of quinoline has been reported to be catalysed by iodine, Lewis acids (InCl₃, Yb(OTf)₃, Sc-(OTf)₃, ZnCl₂) and Brønsted acids (TsOH, HClO₄, Amberlite).²³ Therefore, further optimization proceeded using catalytic ytterbium(III) trifluoromethanesulfonate Yb(OTf)₃ or indium chloride (InCl₃), which resulted in traces of the desired compound, however, the use of iodine (40 mol%) gave a 15% yield in a 1 h reaction (table 1, entry 8). Reducing the reaction time enabled the catalytic loading to be reduced to 10 mole%, providing **10a** in 59% isolated yield (table 1, entry 10).

Higher catalytic loadings of I_2 and $InCI_3$ (entry 8 and entry 7, respectively) resulted in the synthesis of **11** as a by-product in yields of 45% and 38%, respectively. The ¹H NMR data of **11** (see Supplementary Information) indicated a resonance for only one NH of the pyrimidine at 11.20 ppm and a resonance at 3.14 ppm was assigned to the two CH₃ of the *N*,*N*-dimethyl, which suggests a nucleophilic substitution reaction of the thiol group in **10a** yielding compound **11**. The proposed mechanism starts with the generation of dimethylamine, which undergoes nucleophilic addition to C2 of **10a** with the thiol group acting as the leaving group. The replacement of DMF with

formamide, while maintaining catalytic I₂ at 40 mol% (entry 11) provides 2-aminopyrido[2,3-*d*]pyrimidine **12** (see Supplementary Information), which supports the proposed mechanism using either I₂ (entry 8) or the Lewis acid indium chloride (entry 7) as catalysts.

 Table 1. Formation of the pyridopyrimidine 10a under conventional heating or microwave irradiation in the presence or absence of catalyst

Entr	Solvent	Catalyst	Method	Time	Yield%
У					
1	DMF	Free	Reflux	15 h	44
2	TFA	Free	Reflux	12 h	28
3	DMF	Free	MW (160 °C,	1 h	18
			150 W)		
4	DMF	Free	MW (240 °C,	2 h	26
			150 W)		
5	DMF	Free	MW (240 °C,	4 h	Traces
			150 W)		
6	DMF	Yb(OTf)₃ (40	MW (160 °C,	1 h	Traces
		mol%)	150 W)		
7	DMF	InCl₃ (50	MW (160 °C,	1 h	Traces
		mol%)	150 W)		
8	DMF	I ₂ (40 mol%)	MW (160 °C,	1 h	15
			150 W)		
9	DMF	I ₂ (30 mol%)	MW (160 °C,	40	32
			150 W)	min	
10	DMF	I ₂ (10 mol%)	MW (160 °C,	30	59
			150 W)	min	
11	Forma	I ₂ (40 mol%)	MW (160 °C,	1h	Traces
	mide		150 W)		

Pharmacokinetic properties and drug likeness calculations

Drug likeness estimations have been used as tools to minimize attrition in the process of drug discovery and refers to the similarity of compound properties to existing oral drugs.²⁷ Strategies to assess drug likeness include the Lipinsiki guidelines.²⁸ Interestingly, all compounds fulfil the Lipinsiki criteria, which indicate the possibility of oral bioavailability (Table 2). All compounds 10a-j have 2-3 rotatable bonds (Table 2). Reduced molecular flexibility is measured with the number of rotatable bonds and is greatly linked to the oral bioavailability²⁹ with the number of rotatable bonds less or equal to ten potentially increases the oral bioavailability.³⁰ Percentage of the absorbed drugs (%ABS) is inversely proportional to the molecular volume and topological polar surface area (TPSA) and is calculated using the formula %ABS = 109 ± 0.345 x TPSA (Table 2).³¹ Compounds **10a-j** possess %ABS ranging from 71.96 to 87.77. The number of rotatable bonds (nrot), TPSA, molecular volume and %ABS provide indications to sustain good oral bioavailability of drug candidates.

The drug likeness score (DLS) of all the compounds **10a-g** were calculated using MolSoft software and³² received a positive drug likeness score from 0.05 to 0.66 (Table 2). Compounds eliciting positive values should be considered as drug candidates, while those with zero or negative values might not be considered as drug-like candidates.³¹ The 2-thioxo-2,3-dihydropyrido[2,3-*d*]pyrimidinone **10h** counterpart emerged as the most similar to drugs (DLS = 0.66) followed by 2-thioxo-2,3-dihydropyrido[2,3-*d*]pyrimidinone **10a** and **10d** (Table 2).

Our physicochemical calculation indicated that the compounds **10a-j** fulfilled the Lipinski guidelines and have positive drug-

likeness model scores, which enables them to be potential oral bioavailable leads.

Table 2. Drug likeness calculations and Lipinski parameters of the compounds 10a-10

Com	Ar ₁	Ar ₂	M. Wt ^a	$LogP^{b}$	ΗΒΑ ^c	HBD^{d}	<i>n</i> violations ^e	Rule of 5	<i>n</i> rot ^f	TPSA ^g	Volume ^h	%ABS ⁱ	Drug-likeness model score
Rule			≤500	≤5.0	≤10	≤5	≤1						
10a	$4-CIC_6H_4$	$-C_6H_5$	365.04	4.39	3	2	0	Pass	2	61.55	297.05	87.77	0.61
10b	$4-CIC_6H_4$	$4-FC_6H_4$	383.03	4.51	3	2	0	Pass	2	61.55	301.98	87.77	0.36
10c	$4-CIC_6H_4$	$4-CIC_6H_4$	399.00	4.98	3	2	0	Pass	2	61.55	310.58	87.77	0.39
10d	$4-CIC_6H_4$	$4-OMeC_6H_4$	395.05	4.46	4	2	0	Pass	3	70.78	322.59	84.58	0.61
10e	$4-CIC_6H_4$	$4-NO_2C_6H_4$	411.03	4.46	5	3	0	Pass	3	107.37	320.38	71.96	0.22
10f	2-thienyl	-C ₆ H₅	337.03	3.81	4	2	0	Pass	2	61.55	274.22	87.77	0.05
10g	2-thienyl	$4-FC_6H_4$	355.02	3.94	4	2	0	Pass	2	61.55	279.15	87.77	0.57
10h	2-thienyl	$4-CIC_6H_4$	371.00	4.37	4	2	0	Pass	2	61.55	287.76	87.77	0.66
10i	2-thienyl	$4-OMeC_6H_4$	367.04	3.79	5	5	0	Pass	3	70.78	299.77	84.58	0.45
10j	2-thienyl	$4-NO_2C_6H_4$	383.03	3.96	6	3	0	Pass	3	107.37	297.56	71.96	0.22

^a Molecular weight; ^b Lipophilicity; ^c Number of hydrogen bond acceptors; ^d Number of hydrogen bond donors, ^e Number of violations, [†] Number of rotatable bonds, ^gTopological polar surface area; ^h Molecular volume; [†] Percentage absorption.

Anti-microbial and Cytotoxicity Evaluation

Antibacterial activities and selectivity indices

Compounds **10a**, **10d-10i** showed promising inhibition zone values in comparison to the standard drugs ampicillin (Am), for Gram +ve bacteria, and gentamycin (Gm), for Gram -ve bacteria. These compounds were further tested for their minimum inhibition concentration (MIC) in μ g mL⁻¹ and showed excellent to good activities across the tested Gram +ve and Gram –ve bacteria (Table 3).

The activity of 2-thioxo-2,3-dihydropyrido[2,3-d]pyrimidinone 10a was excellent against S. pneumonia and E.coli (MIC = 0.98 $\mu g m L^{-1}$) with a therapeutic index SI = 22.1 (Table 3). It also displayed good activity against B. subtilis, S. aureus and P. aeruginosa (MIC = 1.95, 3.9 and 3.9 μ g mL⁻¹, respectively). Grafting fluorine or chlorine in the Ar2 para-position (10b and 10c respectively) decreased activity against all strains. The addition of the para-methoxy group (10d) increased activity against S. pneumonia (MIC = 0.49 μ g mL⁻¹), while maintaining the antibacterial activity of the standard drug against the Gram +ve bacteria B. subtilis and the Gram -ve bacteria P. aeruginosa and *E. coli* (MIC = 0.49, 0.98 and 0.49 μ g mL⁻¹, respectively). Compound 10d is the least cytotoxic compound with a SI against all the tested strains >46.8. Compound 10e bearing an Ar2 4-nitro substituent retained the antibacterial activity of 10a and showed excellent potency against S. pneumonia and *E. coli* (MIC = 0.98 μ g mL⁻¹) and an acceptable selectivity index (35.2) and elicited good activities against the other three bacteria (MIC = 0.98 μ g mL⁻¹) with SI = 17.7. The effect of substitution of the 7-para-chloropyrido[2,3-d]pyrimidines 10ae, grafting a methoxy or a nitro group onto the Ar2 paraposition is beneficial for the activity, whereas, substitution with halogens decreased the activity dramatically.

Bioisosteric replacement of the 7-(*para*-chlorophenyl) motif in **10a-e** with a 2-thienyl gave compounds **10f-j** (Table 3). The

unsubstituted 10f reduced activity against B. subtilis and E. coli by a factor of four with an MIC value of 1.95 μ g mL⁻¹. Insertion of fluorine or chlorine in the Ar2 para-position resulted in 10g and 10h, with the former maintaining activity against S. pneumonia (MIC = 0.98 μ g mL⁻¹, SI of 30.9) and B. subtilis (MIC = 0.98 μ g mL⁻¹ and SI = 30.9), with acceptable activity against S. aureus, P. aeruginosa and E. coli (MIC = 1.95, 3.90 and 1.95 $\mu g m L^{-1}$, respectively). The chloro derivative **10h** was equipotent to the controls against B. subtilis, P. aeruginosa and E. coli (MIC = 0.49, 0.98 and 0.49 μ g mL⁻¹, respectively) and possessed half the activity against S. aureus (MIC = 0.98 μg mL^{-1}) with a selectivity index of >13.7. Generally, the chloro counterpart 10h showed the best activity against all the tested strains except for S. pneumonia. Substituting a OMe at the Ar₂ C4 of derivative 10f resulted in a halving of activity against S. pneumonia and B. subtilis (MIC = 1.95 and 0.98 $\mu g m L^{-1}$, respectively), and a SI >51.3. The observed different activities of 10i towards the rest of the strains were good to fair (MIC = $3.9 - 7.81 \ \mu g \ mL^{-1}$, SI > 12.8).

The para-methoxy derivative 10i is the least cytotoxic among all the tested compounds (IC₅₀ > 100 μ M). The presence of the methoxy group increased the activity of 10i relative to the unsubstituted 10f towards S. pneumonia and B. subtilis, while maintaining the activity against S. aureus and p. aeruginosa. Insertion of a nitro group in C4 of Ar₂ (10j), showed only small inhibition zones and was not measured for MIC determination due to reduced antibacterial activity. Generally, the thiophene containing analogues 10f-j activities showed excellent to moderate activities, but with different trend to the 7-pchlorophenyl analogues 10a-e. The activity decreased in the order of 4-Cl>4-F>4-OMe>unsubstituted>nitro. Therefore, this might unravel the particularity of the incorporation of a small halogen or an electron donating group in the para position of the phenyl motif of the 5-phenyl-7-(thiophen-2-yl)-2-thioxo-2,3-dihydropyrido[2,3-d]pyrimidin-4(1H)-one **10f** (Table 3).

DOI: 10.1039/C8OB00627J

Journal Name

Journal Name

Table 3. In vitro antibacterial activity screening of the synthesized compounds 10a-j as inhibition Zones (IZ) in millimetres and minimum inhibitory concentrations (MICs) in µg mL⁻¹

	Gram +ve Bacteria									IC ₅₀			
Com	Sp	Sp Bs		Sa			MRSA		Ра		Ec		(μM)
	I.Z	MIC	I.Z	MIC	I.Z	MIC	I.Z	MIC	I.Z	MIC	I.Z	MIC	(CCD- 33Co)
10a	21.9±0.58	0.98 (22.1)	21.2±0.67	1.95 (11.1)	20.1±2.1	3.90 (5.6)	16.3±0.67	31.25 (0.7)	20.4±0.46	3.90 (5.6)	21.6±1.2	0.98 (22.1)	21.65
10b	12.3±0.58	NT	14.6±0.67	NT	13.5±1.2	NT	NT	NT	14.2±0.58	NT	16.3±0.46	NT	NT
10c	16.3±0.44	NT	17.2±1.2	NT	15.4±0.63	NT	NT	NT	16.7±0.58	NT	18.2 1.2	NT	NT
10d	24.2±0.44	0.49 >100	23.6±1.2	0.49 >100	21.3±0.63	1.95 (46.8)	19.6±0.58	3.90 (23.4)	22.4±0.58	0.98 (93.2)	24.6±1.2	0.49 >100	91.30
10e	22.4±1.2	0.98 (35.2)	21.3±0.25	1.95 (17.7)	20.6±1.2	1.95 (17.7)	18.3±0.25	7.81 (4.4)	21.3±0.25	1.95 (17.7)	22.4±0.63	0.98 (35.2)	34.50
10f	18.7±0.44	3.90	21.3± 0.25	1.95	20.2±0.25	3.9	NA	NA	18.3±0.44	7.81	21.2±0.44	1.95	NT
10g	22.3±0.63	0.98 (30.9)	23.4±1.5	0.98 (30.9)	20.9±0.58	1.95 (15.5)	NA	NA	19.2±1.2	3.90 (7.8)	21.4±1.2	1.95 (15.5)	30.26
10h	20.4±0.44	3.90 (13.7)	24.3±1.2	0.49 >100	23.5±0.23	0.98 (54.7)	21.3±1.2	1.95 (27.4)	23.4±0.63	0.98 (54.7)	24.9±0.58	0.49 >100	53.50
10i	21.3±0.44	1.95 >51.3	22.1±1.5	0.98 >100	20.3±0.67	3.90 >25.6	NA	NA	18.4±0.63	7.81 >12.8	20.3±1.2	3.90 >25.6	>100.00
10j	19.4±0.67	NT	18.1±0.67	NT	16.9±1.5	NT	NT	NT	16.3±1.5	NT	18.2 ±0.46	NT	NT
Am	23.8±0.63	0.98	32.4± 0.72	0.49	26.2±1.2	0.49							
Gm VM							20.3±0.63	3.90	22.3±0.58	0.98	25.4±1.2	0.49	

NT: Not tested: Selectivity Indices presented in brackets below the MIC values. **The screening organisms**, Gram +ve bacteria: *Streptococus pneumoniae* (RCMB 010010, Sp), *Bacillus subtilis* (RCMB 010067, Bs) and *Staphylococcus aureus* (RCMB) 010028, Sa), MRSA: Methicillin Resistant Staphylococcus aureus. Gram -ve bacteria: *Pseudomonas aeruginosa* (RCMB 010044, Pa) and *Escherichia coli* (RCMB 010053, Ec), **Am: Ampicillin, Gm: Gentamicin, Vm: Vancomycin**

The encouraging antimicrobial results with compounds 10a, **10d-i** inspired the further testing of these compounds against MRSA (Table 3). The 2-thioxo-2,3-dihydropyrido[2,3d]pyrimidinone 10h provided a two-fold activity increase (MIC = 1.95 μ g mL⁻¹, SI = 27.4) relative to that of vancomycin (MIC = 3.90 μ g mL⁻¹). The 4-OMe derivative **10d** maintained the activity of the vancomycin (MIC = $3.90 \ \mu g \ mL^{-1}$, with SI = 23.4) (Table 3), while, compounds **10a** (MIC = $31.25 \ \mu g \ mL^{-1}$ and SI = 0.7) and **10e** (MIC = 7.81 μ g mL⁻¹ and SI = 4.4) showed modest activity (Table 3). The 2-thioxo-2,3-dihydropyrido[2,3d]pyrimidinones 10a, 10d, 10e and 10h inhibited the growth of MRSA, however, the remaining compounds were inactive. Among the tested compounds 10a, 10d-i, the 2-thioxo-2,3dihydropyrido[2,3-*d*]pyrimidinone **10h** (MIC = 1.95 μ g mL⁻¹) emerged as the most active, eliciting double the activity of vancomycin.

Anti-fungal activity

The antifungal activity of compounds **10a**, **10d-i** (Table 4) showed that 2-thioxo-2,3-dihydropyrido[2,3-*d*]pyrimidinones **10d**, **10g** and **10i** as the most active agents against *A*. *fumigatus* with MIC values = $1.95 \ \mu g \ mL^{-1}$ followed by **10e**, **10f** and **10h** with MIC values = $3.90 \ \mu g \ mL^{-1}$. Selectivity indices of the tested compounds ranged from 13.7 to >51.3 except for compound **10a** (0.7) and **10e** (8.9). The 2-thioxo **10d** analogue (MIC = $1.95 \ \mu g \ mL^{-1}$) was the most active analogue followed by **10g** and **10h** (MIC = $3.90 \ \mu g \ mL^{-1}$). The 2-thioxo-2,3-

dihydropyrido[2,3-*d*]pyrimidinones **10f** and **10i** showed fair activity against *C. albicans* (MIC = 7.81 μ g mL⁻¹) and compound **10e** demonstrated weak activity (MIC = 15.63 μ g mL⁻¹). The selectivity indices of **10d**, **10h** and **10i** were within the acceptable range. The compounds showed better activities and selectivity indices against *A. fumigatus* than *C. albicans*.

Compound	Aspergillu	ıs fumigatus	Candida albicans			
compound	IZ	MIC	IZ	MIC		
10a	19.2 ± 0.6	31.25 (0.7)	16.4 ± 1.2	31.25 (0.7)		
10b	15.2 ± 1.2	NT	14.1 ± 0.3	NT		
10c	15.2 ± 1.2	NT	13.4 ± 1.5	NT		
10d	21.3 ± 1.5	1.95 (46.8)	20.8 ± 1.2	1.95 (46.8)		
10e	20.1 ± 0.6	3.90 (8.9)	17.3 ± 0.6	15.63 (2.2)		
10f	18.6 ± 1.2	3.90	18.3 ± 0.6	7.81		
10g	21.3 ± 1.5	1.95 (15.5)	19.2 ± 0.6	3.90 (7.8)		
10h	20.3 ± 1.2	3.90 (13.7)	19.3 ± 1.5	3.90 (13.7)		
10i	20.6 ± 1.2	1.95 (>51.3)	18.3 ± 0.6	7.81 (>12.8)		
10j	16.3 ± 0.6	NT	12.6 ± 2.1	NT		
AB	23.7±1.2	0.98	25.4±0.6	0.49		

rganic & Biomolecular Chemistry Accepted Manuscript

DOI: 10.1039/C8OB00627J

Table 4. In vitro antifungal activity screening of the synthesized compounds 10a-j as inhibition Zones (IZ) in millimetres and minimum inhibitory concentrations (MICs) in $\mu g m L^{-1}$.

NT: Not tested, Selectivity indices between brackets, **I.Z**: inhibition diameter zones expressed in millimetres, **MIC**: Minimum inhibitory concentration expressed in µg/mL. **The screening organisms**: Mould: *Aspergillus fumigatus* (RCMB 02568), Yeast: *Candida albicans* (RCMB 05036).

Conclusions

Published on 09 April 2018. Downloaded by Kaohsiung Medical University on 09/04/2018 21:37:15.

synthesis and antimicrobial The evaluation of the functionalized 5,7-disubstituted pyrido[2,3-d]pyrimidine derivatives were performed with a microwave assisted synthesis of 10a optimized to produce better yields in shorter times. Using DMF as the solvent and with 10 mol% of I₂ under microwave radiation for 30 minutes gave the best yield 59% yield. The compounds were tested in vitro for their antibacterial activity and moderate to excellent activity was observed for compounds 10a and 10d-i with MIC = 0.49-7.81 µg mL⁻¹ (Figure 4). Compounds **10d-e** and **10h** displayed potent inhibition of MRSA (MIC =1.95–3.90 μ g mL⁻¹). Among the tested compounds, derivatives 10d, 10g and 10i exhibited the best anti-aspergillus activity (MIC = 1.95 μ g mL⁻¹) and compound 10d represent the best obtained against Candia albicans (MIC = $1.95 \ \mu g \ mL^{-1}$). All the compounds showed excellent in silico pharmacokinetic properties calculation. The best compounds 10d and 10h will be subjected to a further cycle of derivatization to explore more about the structure antimicrobial relationship of this scaffold and to eventually develop the best derivatives into potentially novel and safe antimicrobial agents.

Figure 4. SAR of all the compounds against the tested bacterial and fungi.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

MF thanks UOW for the University Postgraduate Award and International Postgraduate Tuition Award scholarships. Patrick McCosker is highly appreciated for his efforts revising the first draft of the Manuscript.

References

- L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, I. Engels, B. P. Conlon, A. Mueller, T. F. Schäberle, D. E. Hughes and S. Epstein, *Nature*, 2015, **517**, 455-459.
- 2 R. J. Fair and Y. Tor, Persp. Med. Chem. 2014, 6, 25.
- H. D. Marston, D. M. Dixon, J. M. Knisely, T. N. Palmore and A. S. Fauci, *Jama*, 2016, **316**, 1193-1204.
 K. Lewis, *Nat. Rev. Drug. Discov.* 2013, **12**, 371-387.
 - K. Lewis, Nat. Rev. Drug Discov. 2013, **12**, 371-387.
- M. A. Cooper, *Nat. Rev. Drug Discov.* 2015, **14**, 587-588.
 D. J. Payne, M. N. Gwynn, D. J. Holmes and D. L. Pompliano, *Nat. Rev. Drug Discov.* 2007, **6**, 29-40.
- 7 D. L. Heymann, *Cell*, 2006, **124**, 671-675.
- 8 P. M. Hawkey, *Bmj*, 1998, **317**, 657-660.
- 9 E. P. Abraham and E. Chain, *Rev. Infect. Dis.* 1988, **10**, 677-678.
- 10 A. V. Vargiu and H. Nikaido, *Proc. Natl. Acad. Sci. U.S.A.* 2012, **109**, 20637-20642.
- 11 J. L. Floyd, K. P. Smith, S. H. Kumar, J. T. Floyd and M. F. Varela, Antimicrob. Agents Chemother. 2010, **54**, 5406-5412.
- 12 J. M. Blair, M. A. Webber, A. J. Baylay, D. O. Ogbolu and L. J. Piddock, Nat. Rev. Microbiol. 2015, **13**, 42-51.
- 13 P. N. Markham and A. A. Neyfakh, *Curr. Opini. Microbiol.* 2001, **4**, 509-514.
- 14 K. Young and L. L. Silver, J. Bacteriol. 1991, 173, 3609-3614.
- 15 K. K. Harris, A. Fay, H.-G. Yan, P. Kunwar, N. D. Socci, N. Pottabathini, R. R. Juventhala, H. Djaballah and M. S. Glickman, ACS Chem. Biol. 2014, 9, 2572-2583.
- 16 S. B. Singh, J. W. Phillips and J. Wang, Curr. Opin. Drug Discov. Develop. 2007, 10, 160-166.
- 17 P. Fernandes and E. Martens, *Biochem. Pharmacol.* 2017, **133**, 152-163.
- 18 A. L. Demain, Chem. Biol. 2011, 18, 939.
- 19 WHO report, Antibacterial agents under clinical development, 2017, WHO/EMP/IAU/2017.11.
- 20 H. Y. Kim, J. A. Wiles, Q. Wang, G. C. Pais, E. Lucien, A. Hashimoto, D. M. Nelson, J. A. Thanassi, S. D. Podos, M. Deshpande, M. J. Pucci and B. J. Bradbury, *J. Med. Chem.* 2011, **54**, 3268-3282.
- 21 Y. Qian, G.-Y. Ma, Y. Yang, K. Cheng, Q.-Z. Zheng, W.-J. Mao, L. Shi, J. Zhao and H.-L. Zhu, *Bioorg. Med. Chem.* 2010, **18**, 4310-4316.
- 22 Z. H. Skraup, Monatsh. Chem. Monthly, 1881, 2, 139-170.
- 23 S. E. Denmark and S. Venkatraman, J. Org. Chem. 2006, **71**, 1668-1676.
- 24 J. Quiroga, B. Insuasty, A. Sanchez, M. Nogueras and H. Meier, *J. Het. Chem.* 1992, **29**, 1045-1048.
- 25 V. A. Chebanov, V. E. Saraev, E. A. Gura, S. M. Desenko and V. I. Musatov, *Collect. Czechoslov. Chem. Commun.* 2005, **70**, 350-360.
- 26 M. Fares, R. A. Eladwy, A. Nocentini, S. R. A. El Hadi, H. A. Ghabbour, A. Abdel-Megeed, W. M. Eldehna, H. A. Abdel-Aziz and C. T. Supuran, *Bioorg. Med. Chem*. 2017.
- 27 C. A. Lipinski, Adv. Drug Deliv. Rev. 2016, 101, 34-41.
- 28 C. A. Lipinski, F. Lombardo, B. W. Dominy and P. J. Feeney, Adv. Drug Deliv. Rev. 2001, **46**, 3-26.
- 29 M. J. Ahsan, J. G. Samy, H. Khalilullah, M. S. Nomani, P. Saraswat, R. Gaur and A. Singh, *Bioorg. Med. Chem. Lett.* 2011, **21**, 7246-7250.
- 30 D. F. Veber, S. R. Johnson, H.-Y. Cheng, B. R. Smith, K. W. Ward and K. D. Kopple, *J. Med. Chem.* 2002, **45**, 2615-2623.
- 31 N. C. Desai, G. M. Kotadiya and A. R. Trivedi, *Bioorg. Med. Chem. Lett.* 2014, **24**, 3126-3130.
- 32 http://molsoft.com/mprop/

An improved synthesis of pyrido[2,3d]pyrimidin-4(1*H*)-ones and their antimicrobial activity

