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Novel R- and S-spiro[2.3]hexane nucleosides have been synthesized. The key step involved the Pseudomonas cepacia lipase catalyzed resolution
of racemic compound 2, synthesized in seven steps starting from diethoxyketene and diethyl fumarate, to give (+)-acetate 3 and (-)-alcohol
13. (+)-Acetate 3 and (-)-acetate 14 were converted to R- and S-9-(6-hydroxymethylspiro[2.3]hexane)-4-adenine, respectively.

During the last two decades, treatment of viral infections  Nucleosides are the most frequently used effective class
has advanced remarkably, driven particularly by the searchof antiviral agents, with over 20 drugs currently approved
for effective agents for the treatment of herpes, AIDS, and for the treatment of viral diseases and a number of candidates
viral hepatitis. In recent years, new and emerging viruses, in the clinical trials

such as new strains of hepatitis and herpes viruses, Ebola, Since oxetanocin-Awas isolated and its antiviral activity
West Nile, and SARS, have shown their lethal potential. described;® continuous studies have been made to explore
Furthermore, the threat that viruses and other microorganismsthe chemistry and biological activity of four-membered-ring-
could be used as biological weapons in warfare or bioter- containing nucleosides (Figure 1). Since Honjo et fidst
rorism has brought antiviral research to the forefront.

Although vaccination is a valuable preventative tool for
certain viral infections, new and effective antiviral agents
are needed to prevent acute and chronic viral infections.
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Figure 1. Analogues of oxetanocin.

Table 1. Different Enzymes Tested for Maximum Optical
Purity

lipases 3 [a]p 13 [adp time (h)
Candida antarctica 1.40 —3.6 13-14
Lipozyme (Mucor mechei) 2.40 —4.2 13-14
Porcine pancreatic 11.90 —19.0 13-14
Pseudomonas cepacia 42.00 —48.10 2

of nonracemic cyclobutyl adenine. However, the large
number of steps involved as well as the moderate enanti-

reported the synthesis of cyclobutyladenine, the carbocyclic oselectivity of enzyme-catalyzed reactions resulted in rela-

analogue of oxetanocin with its interesting biological activity

tively low overall yield. Consequently, the need exists for

has prompted numerous subsequent syntheses of both paremnore efficient and simple methods for obtaining chiral forms

and related compounds.
Zemlicka and co-workefsdescribed a new class of

with high enantiomeric excess.
In this paper, we describe the useRsfeudomonas cepacia

nucleoside analogues, the spiro[3.3]heptane and spiro[2.2]-lipase promoted enzymatic resolution of intermedfer
pentane nucleosides. They found that adenosine analoguéhe synthesis of spiro[2.3]hexane nucleosides. The synthesis
displayed some activity against human cytomegalovirus in of cyclobutyl precursoR was achieved as described in the

vitro.8 However, only limited examples of spiro nucleosides
have been reported Herein, we wish to describe a facile
method for the synthesis of noviel andS-spiro[2.3]hexane
nucleosides.

The observation of different pharmacological as well as
toxicological properties of opposite enantiomers highlights
the need for asymmetric synthe&ik early studies, chiral

resolutions were performed to obtain nonracemic intermedi-

ates!? Ichikawa et al' employed a chiral titanium complex
as the catalyst in an asymmetric {2 2] cyclization to
provide a functionalized cyclobutyl intermediate. Jung and
Sledeski? utilized an enzymatic desymmetrization ofreso

literaturet® Compound2 was subjected to enzymatic resolu-
tion by using different lipases (Table 1). Among the various
lipases studied?. cepaciaPS) gave the highest optical and
chemical yield on a multigram scale. The reaction progress
was monitored byH NMR. After 2 h, a 1:1 ratio for the
H-3 proton was observed antt)-(1S2S,39-3-0O-acetyl-1,2-
O-cyclohexylidene-2,3-bis(hydroxymethyl)-1-cyclobutaBol
and (-)-(1R,2R,3R)-1,2-O-cyclohexylidene-3-hydroxy-2,3-
bis(hydroxymethyl)-1-cyclobutandl3 were obtained. Vinyl
benzoate and vinyl acetate were studied as an acylating
agents; however, the later one was found to give better
enantioselectivity.

cyclobutane as the enantioselective step in their formation To synthesizér-spiro[2.3]hexane carbocyclic nucleoside
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12, compound3 was hydrolyzed with Amberlite IR 120 (H

in methanol, followed by the tritylation of primary alcohol
to give compoundt (Scheme 1). Subsequent silylation of
the secondary alcohol gave compoumdDeprotection of
the trityl group was effected using BELO to furnish®é.
lodination of compound with CH;P(OPh)I in THF gave
iodide 7. DBU-mediated elimination of7 in THF under
reflux conditions gave compour8l Attempts for cyclopro-
panation on compoun® were unsuccessful; hence, the
TBDPS protecting group was first deprotected using TBAF
in THF to give compoun®. Cyclopropanation of compound
9 using (GHs)2Zn and CHI, under reflux conditions in
ether gave R)-6-acetoxymethylspiro[2.3]hexane-4-b0'*

in 53% yield. The alcohol 0 was condensed with 6-chlo-
ropurine under Mitsunobu conditions to give compound
11 in 63% yield. The 6-chloro derivative was converted
to compoundl12 by treatment with a saturated solution
of ammonia in methanol in a steel bomb at 10D for

24 h. Deprotection of the primary alcohol as well as
ammonolysis took place under the same conditions to give
(R)-9-(6-hydroxymethylspiro[2.3]hexane)-4-adenii#&' Fol-
lowing a similar procedure, the-)-acetatel4 was converted

(13) (a) Slusarchyk, W. A.; Young, M. G.; Bisacchi, G. S.; Hockstein.
D. R.; Zahler, R.Tetrahedron Lett1989 30, 6453-6456. (b) Brannock,
K. C.; Burpitt, R. D.; Thweatt, J. GJ. Org. Chem1964 29, 940.
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Scheme 1. Synthesis of R)-p- and §)-L-Spiro[2.3]hexane Carbocyclic Nucleoside
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aReagents and conditions: (B) cepacialipase, AcOCH=CH,, 28 °C, 2 h; (b) AgO, py, CHCIly; (c) (i) Amberlite IR-120 (H),

MeOH, rt, 1 h, (ii) PRCCI, Py, rt, overnight; (d) TBDPS-CI, imidazole,

QEl,, rt, 1 h; (e) BR*OEL, MeOH, CHCly, 1t, 1 h; (f) MesP(OPB)I,

DMF, 1 h, rt; (g) DBU, THF reflux, 24 h; (h) TBAF, THF, RT, 1 h; (i) ¢Els)2Zn, CHl,, ether, 6-45 °C; (j) 6-chloropurine, PP DIAD,

THF, 0°C to rt, overnight; (k) NH, MeOH, 100°C, 24 h.

to (§-9-(6-hydroxymethylspiro[2.3]hexane)-4-adeni2@®
in 10 steps. The optical purity was determined by chiral
HPLC on a CHIRALPAK AD-H column using 2-propanel

potent anti HIV activity (EGo 22.4uM) without cytotoxicity
up to 42.4uM in PBM, 100uM in CEM, and Vero cells.
The Senantiomer23 also showed some anti-HIV activity

hexane (1:1) as an eluent and found to be 98.2% ee for(ECso 48.6uM) (Table 2).

compoundl2 and>99.9% ee for compoun®3 (Figure 2).

The antiviral activity of the synthesized spiro nucleosides .

12 and 23 was evaluated against HIV-1 in human PBM
cells” The R)-adenine analogu&2 exhibited moderately

(14) Compound 10: colorless oil; fjp +119.05 € 0.15, CHC}); H
NMR (CDCls); 6 0.34-0.44 (m, 2H), 0.73 (m, 1H), 0.86 (m, 1H), 2.08 (s,
3H), 2.13 (m, 1H), 2.33 (m, 1H), 2.46 (m, 1H), 4.08 (d= 6.83 Hz, 2H),
4.31 (t,J = 6.83 Hz, 1H);33C NMR (CDCh) ¢ 6.7, 7.1, 21.0, 33.9, 34.2,
66.8, 70.3, 171.9. Anal. Calcd forigH17NOg (p-nitrobenzoyl derivative):

C, 60.18; H, 5.37; N. 4.39. Found: C. 60.40; H. 5.59; N. 4@dmpound

21: colorless oil; ft]p —127.82 ¢ 0.4, CHC); 'H NMR (CDCl3) 6 0.35—
0.46 (m, 2H), 0.72 (m, 1H), 0.84 (m, 1H), 2.07 (s, 3H), 2.14 (m, 1H), 2.32
(m, 1H), 2.44 (m, 1H), 4.06 (d] = 6.73 Hz, 2H), 4.29 (t) = 6.73 Hz,
1H); 13C NMR (CDCk) 6 6.8, 7.1, 21.0, 29.9, 33.6, 34.1, 66.9, 70.3, 172.0.
Anal. Calcd for GeH17NOs (p-nitrobenzoyl derivative): C, 60.28; H, 5.37;
N, 4.39. Found: C, 60.36; H, 5.68; N, 4.19.

(15) Compound 12:white solid; mp 197198°C; [a]p —39.09 € 0.13,
MeOH); UV (MeOH)Amax261.0 € 11 097, pH 2), 261.0¢(12 030, pH 7),
261.0 € 8277.5, pH 11)H NMR [(CD3),SO] 6 0.02 (m, 1H), 0.85 (m,
2H), 1.06 (m, 1H), 2.88 (m, 2H), 3.80 @,= 4.88 Hz, 2H), 4.84 (t]) =
4.88 Hz, 1H), 5.42 (tJ = 8.30 Hz, 1H), 8.28 (s, 1H), 8.64 (s, 1HYC
NMR [(CD3),S0] ¢ 4.9, 10.4, 28.6, 30.3, 36.3, 50.9, 63.2, 119.2, 140.3,
150.1, 152.8, 156.4. Anal. Calcd fori£11sNsO: C, 58.76; H, 6.16; N,
28.55. Found: C, 58.62; H, 6.20; N, 28.30.

(16) Compound 23:white solid; mp 197199°C; [o]p +38.44 €0.12,
MeOH); UV (MeOH)Amax261.0 € 11 640, pH 2), 261.0¢(13 767, pH 7),
261.0 € 16 727.5, pH 11)H NMR [(CD3),SO] 6 0.01 (m, 1H), 0.90 (m,
2H), 1.05 (m, 1H), 2.85 (m, 2H), 3.8 (§ = 5.37 Hz, 2H), 4.85 (t) =
5.37 Hz, 1H), 5.24 (t) = 8.30 Hz, 1H), (s, 2H), 8.40 (s, 1H), 8.65 (s, 1H);
13C NMR [(CD3),S0]6 5.1, 10.4, 28.6, 30.3, 36.3, 51.1, 63.0, 119.2, 140.4,
150.1, 153.0, 156.5. Anal. Calcd for#11sNsO: C, 58.76; H, 6.16; N,
28.55. Found: C, 58.34; H, 6.14; N, 28.01.
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Figure 2. Chiral HPLC of enantiomersl, 2, and 1 + 2.
CHIRALPAK AD-H column (250x 4.6 mm, 2-propanol/hexane
(1:1) as eluent, flow rate 0.2 mL/min, detection at 260 nm,
concentrateé= 1 mg/mL, volume injectee- 5 uL. RT = retention
time.
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s intermediated.0 and21 are being utilized for the synthesis

Table 2. Anti-HIV-1 Activity and Cytotoxicity of Compounds of other nucleosides with natural as well as unnatural

12 and 23 in Different Cells heterocyclic moieties.
|C50 (mM) ;
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In summary, we have described the preparative scale Supporting Information Available: Complete Experi-
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monolysis readily provided novel spiro[2.3]hexane nucleo-
sides 12 and 23 in high optical purity. Furthermore, 0L0491989
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