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ABSTRACT

The bioactive sesquiterpene lactone (þ)-anthecotulide (1) is synthesized for the first time, in a six-step sequence devoid of protecting groups. The
key transformations are a novel Rh(I)-catalyzed asymmetric enyne rearrangement of a terminal alkynyl ester (4), to form the R-methylene-γ-
butyrolactone core, and a final-step mild Au(I)-catalyzed Meyer�Schuster rearrangement

Anthecotulide (1) is an optically active irregular sesqui-
terpene lactone first isolated in 1969 from Anthemis cotula
L. (stinking chamomile).1 At the time, the structure was as-
signed from analysis of spectroscopic data. In 2005, a more
detailed analysis, which included a NOESY experiment to
determine the configuration of the stereogenic double bond,
corroborated the original structural assignment.2 Antheco-
tulide has attracted interest due to its contact allergen
properties3 (contamination of chamomile preparations by
A. cotula is to be avoided)2 and its unusual biosynthesis for a
sesquiterpene, involving head-to-middle coupling of geranyl
diphosphate anddimethylallyl diphosphate.4More recently,
anthecotulide demonstrated antibacterial,5 antimalarial,6

trypanocidal, and leishmanicidal activity7 and has been
shown to inhibit the activation pathway of the transcrip-
tion factor NF-kB which regulates pro-inflammatory
mediators (cytokines, nitric oxide, prostaglandins).8

Due to the emerging biological activity profile, and as
part of our ongoing interest in the synthesis of R-methy-
lene-γ-butyrolactones,9 we communicate here the first
synthesis of anthecotulide.
In this synthesis we aimed to address the synthetic

challenge of assembling the sensitive R-methylene-γ-buty-
rolactone10 and deconjugated ketone functionality in an
efficient and stereocontrolled manner. Specifically, we
envisaged accessing the natural product 1 by a Meyer�
Schuster rearrangement from propargylic alcohol 2
(Scheme 1). This alcohol 2 would be derived by Wittig
homologation of aldehyde 3, which was anticipated to be
accessible from cycloisomerization of enyne 4.
So as to examine this chemistry, enyne 4 was first

prepared (83% yield) by DCC coupling11 of commercially
available (Z)-but-2-ene-1,4-diol (6) with propiolic acid (5)
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(Scheme 2). Althoughmetal catalyzed Alder-ene reactions
of 1,6-enynes have been well-studied,12 to the best of our
knowledge only a single isolated example to form an R-
methylene-γ-butyrolactone has been reported, using an
achiral ruthenium(I) catalyst (CpRu(NCCH3)3PF6).

13

Considering the prospects for asymmetric catalysis, we
decided to investigate the synthesis of the R-methylene-γ-
butyrolactone core under rhodium(I) catalysis, which was
originally developed by Zhang and co-workers with inter-
nal alkynes.14 Using Zhang’s conditions ([Rh(cod)Cl]2/
rac-BINAP/AgSbF6, (0.025:0.05:0.05), ClCH2CH2Cl, rt,
15 h), enyne 4 gave the desired aldehyde 3, albeit in low
yields (20�30%) which were difficult to reproduce. On the
basis that polymerization might be a competitive side
reaction, we lowered the reaction concentration from 0.2
to 0.1 M and 0.05 M, but these experiments also gave low
yields (23%and15%, respectively).However,modifying the
conditions to those used byNicolaou and co-workers, where
preforming the catalyst [Rh(rac)-BINAP)]SbF6 was found
optimal for the synthesis ofR-methylene-γ-butyrolactams,15

gave aldehyde 3 in much improved yield (71%). Finally,

using [Rh((R)-BINAP)]SbF6 gave (þ)-aldehyde 3 in 73%
yield and 96:4 er by chiral HPLC (Scheme 2).16

The sense of asymmetric induction in the cycloisome-
rization above using (R)-BINAP was determined by con-
version of (þ)-aldehyde 3 to the trans-lactone 8a17 of pre-
viously established absolute configuration and comparison
of specific rotation values (Scheme 3). Chemoselective
reduction of aldehyde 3 using BH3,

18 followed by hydro-
genation of the R-methylene group in lactone 7 and silyla-
tion of the resulting primary alcohol, gave a cis�trans
mixture of lactones 8 fromwhich trans-lactone 8a could be
obtained by careful chromatography. This correlation
established that theR-configured aldehyde 3was obtained
from enyne 4 when using (R)-BINAP, and this corre-
sponds to the same sense of asymmetric induction ob-
served in Zhang’s and Nicolaou’s studies.14,15

With a catalytic and highly enantioselective synthesis of
aldehyde 3 established we examined its conversion to the
propargylic alcohol 2 for the projected Meyer�Schuster
rearrangement. Structurally related (internal) alkynes have
been recently shown to undergo one-pot cycloisomeriza-
tion�Wittig reaction.19 In the present case, addition of ylide
920 (1.3 equiv) following the Alder-ene reaction gave the
E-R,β-unsaturatedaldehyde10 (67%fromenyne4, Scheme4).

Scheme 2. Synthesis and Cycloisomerization of Enyne 4

Scheme 1. Retrosynthetic Strategy to Anthecotulide (1)

Scheme 3. Configuration of Aldehyde (þ)-3 by Conversion to
trans-Lactone (þ)-8a

Scheme 4. Synthesis of Propargylic Alcohol 2
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1,2-Reduction of aldehyde 10withLuche’s conditions,21

followedbyanAppel reaction22usingPPh3 andCBr4, gave
allylic bromide 12 (79% yield from 10). Of various proce-
dures examined for the displacement of the allylic bromide
12 by terminal alkynes,23 conditions developed by White
and co-workers were found to work best.24 Propargylic
alcohol 2 was obtained (63%) by addition of the allylic
bromide 12 at 0 �C to the alkynylcopper species from
alkynol 13, prepared by mixing with stoichiometric CuI
and Et3N in a 2:1 mixture of Et2O and DMF.
Mild methods for the conversion of propargyl alcohols

intoR,β-unsaturated ketones (Meyer�Schuster rearrange-
ments) have recently been developed.25 Akai and co-
workers reported an effective catalytic combination of
MoO2(acac)2 with AuCl(PPh3)�AgOTf, where rearrange-
ment is considered to proceed by [3,3] sigmatropy of an
intermediate molybdate which is facilitated by alkyne coor-
dination to an in situ generated cationic Au catalyst.26 Using
these conditions propargylic alcohol 2 gave (þ)-anthecotu-
lide (1) in excellent yield (87%) (Scheme5).No isomerization
of the β,γ-trisubstituted alkene into conjugation with the
ketone was observed. The spectroscopic data were in full
agreement with those in the literature,2,16 and the specific
rotation of synthetic anthecotulide [R]23D þ81.1 (c 0.15,
CHCl3) is of comparable magnitude to that reported for
the natural product [R]23D þ76.9 (c 0.032, CHCl3).

27

In summary, the first and asymmetric synthesis of (þ)-
anthecotulide (1) has been achieved in six steps from
commercially available materials, which additionally

establishes the absolute configuration of the natural product
as R- and provides a strategy for analog synthesis. Aside
from its brevity, which stems from only one oxidation
level change28 and the absence of protecting-group
chemistry,29 the synthesis is noteworthy for the first ex-
ample of an enantioselective enyne cycloisomerization to a
R-methylene-γ-butyrolactone and the tolerance of the
latter functionality to Au(I)-catalyzed Meyer�Schuster
rearrangement.
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Note Added after ASAP Publication. The version pub-
lished ASAP onOctober 7, 2011 contained typographical
errors in two specific rotations related to Scheme 5. The
correct version reposted on October 11, 2011.
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Scheme 5. Anthecotulide (1) by Meyer�Schuster Rearrange-
ment
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