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Thioacetalization of Aldehydes
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ABSTRACT

Lutetium triflate has been found to be an efficient and recyclable catalyst

for chemoselective thioacetalization of aldehydes.

Key Words: Aldehydes; Chemoselectivity; Lutetium triflate; Thio-

acetalization.

The protection of carbonyl compounds plays an important role during

multistep syntheses in organic, medicinal, carbohydrate, and drug design

chemistry. Among the different carbonyl protecting groups, 1,3-dithiolanes,
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1,3-dithianes, and diethyldithioacetals[1] are important, as they are stable

under both mildly acidic and basic conditions. In addition, these are utilized

as masked acyl anions or masked methylene functions in carbon–carbon

bond-forming reactions.[2] In the literature, there are numerous methods

reported for the preparation of thioacetals from carbonyl compounds employ-

ing PTSA,[3] BF3
. OEt2,[4] Zn(OTf)2,[5] SO2,[6] TMSOTf,[7] AlCl3,[8] TiCl4,[9]

Cu(OTf)2,[10] SOCl2,[11] ZrCl4,[12] InCl3,[13] I2,[14] LiBr,[15] LiBF4,[16]

Sc(OTf)3,[17] and 5 M LiClO4.[18] However, many of these methods have

some drawbacks, such as low yields of the products, long reaction times,[12]

harsh reaction conditions,[3,4] difficulties in workup,[8,9] requirement

for an inert atmosphere,[18] and use of stoichiometric[4,6] or relatively

expensive reagents.[7,9,12,15] Some methods mentioned above are incompatible

with other protecting groups, such as tert-butyldimethylsilyl (TBS)

ethers[4b,15b,14b,16b] and fail to protect deactivated aromatic substrates.[17]

Moreover, the main disadvantage of all existing methods is that the catalysts

are decomposed in the workup procedure and cannot be recovered or reused.

Therefore, the search continues for a better catalyst, one superior to the exist-

ing ones with regard to recyclability, operational simplicity, economic viabi-

lity, and greater selectivity.

Recently, lanthanide triflates have been introduced as promising mild and

selective reagents in organic synthesis.[19] The catalyst lutetium triflate is

commercially available and can be used as catalyst in the preparation of

dithiolanes, dithianes, and dithioacetals from carbonyl compounds. While

most conventional Lewis acids decompose in the presence of water, Lu(OTf)3

is stable in water and does not decompose under aqueous workup conditions.

Thus, recyclization is often possible from aqueous workup (see the “Experi-

mental” section). A catalytic amount of Lu(OTf)3 is sufficient to obtain

the desired compounds in excellent yield (Scheme 1). Thus, various aromatic,

aliphatic, heterocyclic aldehydes undergo the protection reactions using

1,2-ethanedithiol, 1,3-propranedithiol or ethanethiol to give the corresponding

1,3-dithiolanes, 1,3-dithianes or diethyldithioacetals in good to excellent yield

(Table 1). The experimental procedure for these reactions is simple and does

not need the use of dry solvents or inert atmospheres. It is noteworthy that the

Scheme 1.
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conversion can be achieved in the presence of other protecting groups such as

benzyl, acetyl, allyl, esters, and TBS ethers. Moreover, highly deactivated

aromatic aldehydes can be protected as dithioacetals in good yield.

Also, note that the protocol can be extended for the chemoselective pro-

tection of an aldehyde in the presence of a ketone. For instance, when an equi-

molar mixture of 4-methoxybenzaldehyde and 4-methoxyacetophenone was

allowed to react with 1,2-ethanedithiol in the presence of a catalytic amount

Table 1. Lu(OTf)3 catalyzed protection of aldehydes as dithiolanes, dithianes, or

ethyldithioacetals at room temperature.

Entry Substrate Reagent

Time

(h)

Yielda

(%)

1 Benzaldehyde HSCH2CH2SH 6 83

2 4-Methoxybenzaldehyde HSCH2CH2SH 4 89

3 4-Chlorobenzaldehyde HSCH2CH2SH 5 85/79b

4 4-Nitrobenzaldehyde HSCH2CH2SH 10 72

5 Furfural HSCH2CH2SH 3 86

6 4-Benzyloxybenzaldehyde HSCH2CH2SH 5 80

7 Cinnamaldehyde HSCH2CH2SH 2 91

8 2-Naphthaldehyde HSCH2CH2SH 12 70

9 Thiophene 2-carboxaldehyde HSCH2CH2SH 3 85/81b

10 Piperonal HSCH2CH2SH 8 83

11 2-Methoxybenzaldehyde HSCH2CH2SH 7 80

12 4-Carbomethoxybenzaldehyde HSCH2CH2SH 7 85

13 4-Allyloxybenzaldehyde HSCH2CH2SH 4 91

14 Hexaldehyde HSCH2CH2SH 6 83

15 4-TBSO-benzaldehyde HSCH2CH2SH 3 88

16 1-Octanal HSCH2CH2SH 6 72

17 Butyraldehyde HSCH2CH2SH 7 78

18 Decyl aldehyde HSCH2CH2SH 6 70

19 4-Acetyloxybenzaldehyde HSCH2CH2SH 6 82

20 4-Benzoyloxybenzaldehyde HSCH2CH2SH 5 85

21 4-Bromobenzaldehyde HSCH2CH2SH 5 91

22 Benzaldehyde HSCH2CH2CH2SH 5 88

23 4-Methoxybenzaldehyde HSCH2CH2CH2SH 4 90

24 4-Chlorobenzaldehyde HSCH2CH3 6 73

25 2-Naphthaldehyde HSCH2CH3 12 68

aYields refer to pure isolated products, characterized by 1H NMR and mass spec-

trometry (MS).
bIsolated yields with reused catalyst.
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of Lu(OTf)3, only the dithiolane derivative of 4-methoxybenzaldehyde was

obtained in 89% yield after 2 h (Scheme 2).

In summary, a simple and efficient method has been developed by using a

catalytic amount of Lu(OTf)3 for protection of aldehydes as dithioacetals in

the presence of a wide range of other protecting groups. Further, the catalyst

can be readily recovered and reused, thus making the procedure environmen-

tally friendly and acceptable.

EXPERIMENTAL

Most of the products are known compounds and were identified by their

spectral data (1H NMR) and physical properties compared with those of auth-

entic samples. The progress of reaction was monitored by thin-layer chrom-

atography (TLC) on silica gel. All yields refer to isolated products.

A Typical Procedure

To a stirred mixture of 4-methoxybenzaldehyde (680 mg, 5 mmol) and

1,2-ethanedithiol (564 mg, 6 mmol) in acetonitrile (30 mL) was added

Lu(OTf)3 (312 mg, 10 mol%) at room temperature. The resulting mixture

was stirred for 1.5 h, then diluted with ethyl acetate (150 mL), washed with

water (60 mL), dried (MgSO4), and concentrated. The residue was chromato-

graphed over silica gel, eluted 15% ethyl acetate in hexane to afford pure 2-(4-

methoxyphenyl)-1,3-dithiolane. The aqueous layer containing the catalyst can

Scheme 2.
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be evaporated under reduced pressure (408C, 30 mm Hg pressure) to give a

white solid that was reused for the next thioacetalization reaction (Table 1).

Product Characterization Data

(Compounds are Numbered as the Entries—Table 1)

Compound 1: Bp 157–1598C/3 torr; lit.[20] 1608C/3 torr.

Compound 2: Bp 140–1428C/4 torr; lit.[20] 1408C/4 torr.

Compound 3: Mp 117–1188C; lit.[20] 1198C.

Compound 4: Mp 75–768C, 1H NMR (500 MHz, CDCl3) d 8.16 (d,

J ¼ 8.5 Hz, 2H), 7.67 (d, J ¼ 8.5 Hz, 2H), 5.65 (s, 1H), 3.56–3.45

(m, 2H), 3.43–3.36 (m, 2H). MS m/z 228 (M þ H)þ Anal. Calcd. for

C9H9NO2S2: C, 47.56; H, 3.99; N, 6.16. Found: C, 47.52; H, 4.01;

N, 6.14%.

Compound 5: Bp 110–1118C/5 torr; lit.[20] 1108C/5 torr.

Compound 6: Mp 86–878C; 1H NMR (500 MHz, CDCl3) d 7.48–7.30

(m, 7H), 6.90 (d, J ¼ 8.5 Hz, 2H), 5.63 (s, 1H), 5.05 (s, 2H), 3.51–

3.45 (m, 2H), 3.36–3.30 (m, 2H).

Compound 7: Mp 65–668C; lit.[20] 678C.

Compound 8: Mp 148–1508C; lit.[21] 1498C.

Compound 9: Oil; lit.[20] oil (identical NMR data).

Compound 10: Mp 45–478C; lit.[22] 448C.

Compound 11: Bp 138–1398C/0.6 torr; lit.[23] 1408C/0.6 torr.

Compound 12: Mp 110–1118C, 1H NMR (500 MHz, CDCl3) d 7.98 (d,

J ¼ 8 Hz, 2H), 7.57 (d, J ¼ 8 Hz, 2H), 5.64 (s, 1H), 3.90 (s, 3H),

3.54–3.46 (m, 2H), 3.39–3.35 (m, 2H).

Compound 13: Oil, 1H NMR (500 MHz, CDCl3) d 7.44 (d, J ¼ 8 Hz,

2H), 6.85 (d, J ¼ 8.5 Hz, 2H). 6.10–5.90 (m, 1H), 5.63 (s, 1H),

5.41–5.26 (m, 2H), 4.52 (d, J ¼ 4 Hz, 2H), 3.52–3.45 (m, 2H),

3.38–3.32 (m, 2H).

Compound 14: Bp 120–1228C/16 torr; lit.[8] 1258C/16 torr.

Compound 15: Oil, 1H NMR (500 MHz, CDCl3) d 7.38 (d, J ¼ 8.5 Hz,

2H), 6.76 (d, J ¼ 8.5 Hz, 2H), 5.62 (s, 1H), 3.52–3.40 (m, 2H), 3.35–
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3.26 (m, 2H), 0.97 (s, 9H), 0.19 (s, 6H). MS m/z 313 (M þ H)þ Anal.

Calcd. for C15H24OS2Si: C, 57.64; H, 7.74. Found: C, 57.66; H, 7.78%.

Compound 16: Bp 2878C/760 torr; lit.[20] 2898C/760 torr.

Compound 17: Bp 64–668C/3 torr; lit.[20] 658C/3 torr.

Compound 18: Bp 3208C/760 torr; lit.[23] 3228C.

Compound 19: Mp 95–968C, 1H NMR (500 MHz, CDCl3) d 7.53 (d,

J ¼ 6.5 Hz, 2H), 7.03 (d, J ¼ 6.5 Hz, 2H), 5.63 (s, 1H), 3.49–3.40

(m, 2H), 3.35–3.32 (m, 2H), 2.29 (s, 3H).

Compound 20: Bp 1808C/5 torr; lit.[23] 1888C/5 torr.

Compound 21: Mp 61–628C; lit.[23] 618C.

Compound 22: Mp 74–758C; lit.[20] 758C.

Compound 23: Mp 114–1158C; lit.[20] 1158C.

Compound 24: Bp 1208C/5 torr; lit.[20] 125/5 torr.

Compound 25: Bp 150–1528C; lit.[23] 1508C.
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