Reiko Tanaka¹, Shun-ichi Wada¹, Yoshitaka Kinouchi¹, Harukuni Tokuda², Shunyo Matsunaga¹

Abstract

A new seco-abietane-type diterpenoid, 13S-hydroxy-9-oxo-9,10-seco-abiet-8(14)-en-18,10 α -olide (1) along with a known lignan compound, pinoresinol (2) was isolated from the stem bark of $Picea\ glehni$ (Fr. Schm.) Masters. Spectroscopic methods and chemical conversions were used to establish the structure of 1. In order to assess their cancer chemopreventive potential, the inhibition of Epstein-Barr virus early antigen (EBV-EA) activation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA) was examined for compound 1, its synthetic analogue, 9,10-seco-85,13S-epoxy-abiet-8(14)-en-18,10 α -olide (1a) and 2. The inhibitory effect of 1a on EBV-EA induction was strong (0, 20.7, 67.1 and 89.2% inhibition at 1000, 500, 100 and 10 mol ratio/TPA). The IC₅₀ of 1a was 226 mol ratio/32 pmol/TPA.

From the stem bark of *Picea glehni* (Fr. Schm.) Masters (Pinaceae), we isolated three new diterpenes, $19(4\rightarrow 3)abeo-8\alpha$, 13S-epoxylabda-4(18), 14-diene, 19-nor-abieta-4(18), 11, 13-tetraen-12-one and 12-hydroxydehydroabietic acid along with nine known diterpenes [1], and two new triterpenes, 3α -methoxyserrat-14-en- 13β -yl formate, and 13β -methylcycloartanone together with three known triterpenes [2]. In order to assess usefulness of this plant as a source of natural agents for cancer chemoprevention, the extract was further examined and a new 13S-hydroxy-10-seco-abiet-10, 10-colide (1) was isolated together with the known pinoresinol (2).

HR-EI-MS assigned the molecular formula of 1 as $C_{20}H_{30}O_4$. The IR spectrum of 1 showed a hydroxy group ($v_{\rm max}=3459~{\rm cm}^{-1}$), a γ -lactone ($v_{\rm max}=1770~{\rm cm}^{-1}$), and an α , β -unsaturated six-membered ring ketone ($v_{\rm max}=1675~{\rm cm}^{-1}$). The $^1{\rm H}$ - and $^{13}{\rm C}$ -NMR spectra (Table 1) exhibited two tertiary methyl groups, an isopropyl group, seven sp^3 methylenes, an sp^3 methine, an sp^3 quatenary carbon, a tertiary carbon bearing a hydroxy group [$\delta_{\rm C}=72.3$ (s)], a γ -lactone ring [$\delta_{\rm C}=85.4$ (s), 180.3 (s)], a trisubstituted double bond [$\delta_{\rm H}=6.50$ (1H, d); $\delta_{\rm C}=139.0$ (s), 148.4 (d)], and a conjugated ketone [$\delta_{\rm C}=198.9$ (s)]. The unsaturation of compound 1 suggested that it is a B-ring seco-abietane-type diterpenoid and possesses a lactone ring at positions C-10 α and C-18 re-

Affiliation: ¹ Department of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences, Osaka, Japan · ² Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto, Japan

Correspondence: Dr. Reiko Tanaka · Department of Medicinal Chemistry · Osaka University of Pharmaceutical Sciences · 4–20–1 Nasahara · Takatsuki · Osaka 569–1094 · Japan · Phone: +81-72-690-1084 · Fax: +81-72-690-1084 · E-mail: tanakar@gly.oups.ac.jp

Received: January 14, 2004 · Accepted: May 15, 2004

Bibliography: Planta Med 2004; 70: 877–880 · © Georg Thieme Verlag KG Stuttgart · New York · DOI 10.1055/s-2004-827241 · ISSN 0032-0943

Table 1 ¹H and ¹³C-NMR data for compounds **1, 1a, 1b** and **1c** (CDCl₃).^a

	1		1a		1b		1c	
Position	$\delta_{\!\scriptscriptstyle m C}$	$\delta_{\!\scriptscriptstyle H}$	δ_{C}	$\delta_{\!\scriptscriptstyle H}$	δ_{C}	$\delta_{\!\scriptscriptstyle H}$	δ_{C}	$\delta_{\!\scriptscriptstyle H}$
1α	27.8 t	1.59 m	27.8 t	1.61 m	27.9 t	1.61 m	27.9 t	1.62 m
1β		1.59 m		1.61 m		1.61m		1.62 m
2α	18.5 t	1.59 m	18.5 t	1.61 m	18.5 t	1.61 m	18.6 t	1.62 m
2β		1.68 m		1.69 m		1.68 m		1.74 m
3α	26.2 t	1.52 m	26.3 t	1.50 m	26.3 t	1.55 m	26.3 t	1.56 m
3β		1.39 m		1.40 m		1.42 m		1.42 m
4	46.7 s		46.7 s		46.7 s		46.6 s	
5α	54.0 d	1.80 t (6.1)	53.8 d	1.82 t (6.5)	53.6 d	1.88 t (6.1)	54.5 d	1.95 t (7.0)
6A	24.2 t	1.46 m	23.5 t	1.54 m	26.9 t	1.68 m	22.2 t	2.30 (2H) m
6B		1.53 m		1.60 m		1.78 m		
7A	29.5 t	2.20 dddd (13.5, 10.8, 5.9, 0.9)	32.2 t	2.10 ddd (14.3, 10.5, 5.5)	35.1 t	2.67 m	23.3 t	2.14 m
7B		2.28 dddd (13.5, 10.8, 5.9, 0.9)		2.40 dddd (14.3, 10.5, 5.5, 1.1)		2.67 m		2.30 m
8	139.0 s		143.6 s		141.2 s		137.7 s	
9	198.9 s		68.6 d	4.08 m	125.7 d	7.00 d (7.5)	70.7 d	4.21 dd (6.5, 3.5)
10	85.4 s		85.6 s		85.4 s		85.4 s	
11α	34.1 t	2.69 ddd (17.2, 10.3, 5.3)	29.7 t	2.03 ddt (12.3, 3.5, 5.5)	128.5 d	7.24 t (7.5)	30.9 t	1.84 m
11β		2.44 ddd (17.2, 6.4, 4.8)		1.78 m				1.78 m
12α	30.8 t	1.96 ddd (13.5, 10.3, 4.8)	28.7 t	1.66 m	124.3 d	7.09 d (7.5)	121.9 d	5.37 t (7.5)
12β		2.14 dddd (13.5, 6.4, 5.3, 1.4)		1.66 m		2.14 dddd (13.5, 6.4, 5.3, 1.4)		
13	72.3 s		72.4 s		149.3 s		149.1 s	
14	148.4 d	6.50 d (0.9)	129.4 d	5.41 s	126.4 d	7.02 s	114.3 d	6.08 s
15	37.0 d	1.92 septet (6.9)	37.6 d	1.75 septet (7.0)	34.1 d	2.89 septet (7.0)	35.5 d	2.35 septet (6.5)
16	16.4 q	1.03 d (6.9)	16.4 q	0.96 d (7.0)	24.0 q	1.25 d (7.0)	21.4 q	1.08 d (6.5)
17	17.4 q	0.99 d (6.9)	17.7 q	0.89 d (7.0)	24.0 q	1.25 d (7.0)	22.2 q	1.08 d (6.5)
18	180.3 s		180.3 s		180.3 s		180.2 s	
19	20.2 q	1.16 s	20.1 q	1.15 s	20.2 q	1.16 s	20.0 q	1.15 s
20	25.6 q	1.41 s	24.8 q	1.43 s	24.5 q	1.39 s	24.5 q	1.38 s

^a Assignments were made by ¹H-¹H COSY, HMQC, HMBC and NOESY data.

sulting from dehydration between a C-10 hydroxy group and a C-18 carboxylic acid. The HMBC spectrum showed the following correlations: between Me-16 and C-13, C-15, C-17; Me-17 and C-13, C-15, C-16; Me-19 and C-3, C-4, C-5, C-18; Me-20 and C-1, C-5, C-10; H-14 and C-8, C-9, C-12, C-13, C-15. In the ¹H/¹H COSY spectrum correlations were seen between H-7 α and H-6 α , H-6 β , H-7 β ; H-7 β and H-6 α , H-6 β , H-7 α , although H-14 correlated with no peak. Therefore, the tertiary hydroxy group is attached at C-13. These data suggested that the structure of 1 was a 13-hydroxy-9-oxo-9,10-seco-abiet-8(14)-en-18,10 α -olide. Reduction of 1 with LiAlH₄ gave 1a, $[M]^+m/z = 318$, in quantitative yield and its $^{1}\text{H-}$ and $^{13}\text{C-NMR}$ spectra showed new signals at δ_{H} = 4.08 (1H, m) and δ_C = 68.6 (d). NaBH₄ reduction of 1 also gave the same compound (1a), and the following HOAc treatment gave a known compounds 1b and 1c. The NOESY spectrum of 1 (Fig. 2) showed that isopropyl methyl groups (Me-16 and -17) were correlated not with Me-20 but with Me-19, and the relative configuration of 1 was determined as shown in Fig. 1. Therefore, compound 1 is a new seco-abietane-type diterpenoid, 13S-hydroxy-9-oxo-9,10-*seco*-abiet-8(14)-en-18,10 α -olide.

Table **2** lists inhibitory effects of compounds **1, 1a** and **2** on Epstein-Barr virus early antigen (EBV-EA) induced by the tumour promotor, TPA and the associated viability of Raji cells. The viability of Raji cells treated with the test compounds (**1, 1a,** and **2**) was over 70% at the highest concentration of 1000 mol ratio/TPA; suggesting that these compounds had moderate cytotoxicities against *in vitro* cell lines (Table **2**). On comparison of the anti-tumour promoting activities, **1a** showed a stronger effect than **1**. It is interesting to note that the presence of an ether group in **1a** seems to enhance its activity against tumour promotion as is the case with $13\alpha,14\alpha$ -epoxy- 3β -methoxyserratan- 21β -ol [3].

Materials and Methods

Plant material: The stem bark of *Picea glehni* (Fr. Schm.) Masters (Pinaceae) was collected in the mountainous terrain under the control of National Hokkaido Bureau, Iwamizawa City, Japan, in October 1997. A voucher specimen (PG-9710 – 1) is deposited at

Fig. 1 Chemical structures of compounds 1, 1a – c, and 2.

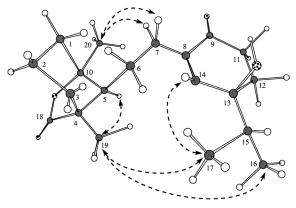


Fig. 2 NOESY correlations of 1.

the Herbarium of the Department of Medicinal Chemistry, Osaka University of Pharmaceutical Sciences.

Isolation procedure: Preliminary silica gel column chromatography separated the CHCl₃ extract (412.4 g) of the chopped stem bark (9.0 kg) of P. glehni into 13 (residues I - XIII) fractions as reported previously [1]. Residue XI (fraction nos 81 – 85, 1.958 g) was rechromatographed over silica gel (300 g) eluting with CHCl₃:EtOAc (10:1) to give an amorphous gum (fraction nos 50 - 68, 379.6 mg, 3.8 L), which has a UV absorption band on the TLC plate (254 nm). This material was rechromotographed over silica gel (30 g) using CHCl₃:EtOAc (20:1) to give pinoresinol (2) [4] (fraction no 64, 18.8 mg, 50 mL) and crude compound 1 (fraction nos 72 - 77, 75.9 mg, 300 mL), which was subjected to PTLC (nhexane:EtOAc:MeOH, 50:50:2) to give pure compound 1 (57.0 mg). Compounds 1 and 2 had purities of over 98%.

13S-Hydroxy-9-oxo-9,10-seco-abiet-8(14)-en-18,10a-olide Colourless oil; $[\alpha]_D^{23}$: -4.8° (c 0.46, CHCl₃); HR-EI-MS: m/z = 334.2143 [M] $^+$ ($C_{20}H_{30}O_4$ requires 334.2142); IR (film): v_{max} = 3459 (OH), 2960, 2933, 1770 (γ -lactone), 1675 (C = C-C = O), 923 cm⁻¹; EI-MS: m/z = 334 (7), 316.2058 (16) [M - H_2O^{+} , 291.1596 (33) [M - $C_3H_7^{+}$, 273.1501 (16), 245.1545 (86), 227.1437 (18), 167 (14), 150 (15), 137 (13), 123 (24), 122 (21), 109 (100); ¹H- and ¹³C-NMR: see Table **1**.

Reduction of **1** *with LiAlH*₄: To a solution of compound **1** (16.9 mg) in absolute ether (10 mL), LiAlH₄ (20 mg) was added and the mixture stirred at room temperature for 6 h. The reaction mixture was worked up as usual to give 1a (15.8 mg).

9S,13S-Epoxy-9,10-seco-abiet-8(14)-en-18,10a-olide (1a): M.p. 156 – 158 °C; $[\alpha]_D^{23}$: –21.7° (c 0.35, CHCl₃); EI-MS: m/z = 318 (2) [M]⁺; ¹H- and ¹³C-NMR: see Table **1**.

Reduction of 1 with NaBH₄: To a solution of 1 (14.1 mg) in MeOH (2 mL), NaBH₄ (2.0 mg) was added and the mixture was allowed to stand at room temperature for 1 h. The reaction product was confirmed as **1a** by TLC (CHCl₃:MeOH, 19:1). One drop of HOAc was added into the reaction mixture, followed by usual work-up. Evaporation of the solvent under reduced pressure afforded a residue (13.9 mg), which was subjected to PTLC (CHCl₃:MeOH, 19:1) to give compounds **1b** (5.2 mg) and **1c** (4.3 mg).

Table 2 Relative ratio^a of EBV-EA activation with respect to positive control (100%) in the presence of compounds 1, 1a and 2.

Compounds	EBV-EA positive cells (% viability) Compound concentration (mol ratio/32 pmol TPA) IC50								
	1 000	500	100	10	(mol ratio/32 pmol TPA)				
1	3.7 (70) ^b	22.5	70.7	90.3	273				
1a	0 (70)	20.7	67.1	89.2	226				
2	11.5 (70)	40.6	72.0	100.0	398				
Curcumin ^c	0 (60)	22.8	81.7	100.0	341				

^a Values represent percentages relative to the positive control value (100%).

^b Values in parentheses are the viability percentages of Raji cells.

^c Positive control substance [8].

9,10-seco-*Abieta*-8,11,13-*trien*-18,10*a*-olide (**1b**): Colourless oil; $[\alpha]_D^{20}$: +8.5° (*c* 0.41, CHCl₃); IR (film): v_{max} = 3459 (OH), 1675 cm⁻¹; EI-MS: m/z = 300 [M]⁺; ¹H- and ¹³C-NMR: see Table **1**. Compound **1b** was identified from published data including EI-MS, ¹H- and ¹³C-NMR chemical shift values and its $[\alpha]_D$ value {**1b**: $[\alpha]_D^{20}$: +8.5° (*c* 0.41, CHCl₃), synthetic sample: $[\alpha]_D^{20}$: +9.5° (*c* 0.11, CHCl₃) [5]; $[\alpha]_D^{20}$: +9.2° (*c* 1.85, CHCl₃) [6]}.

9S-*Hydroxy*-9,10-seco-*abieta*-11,13-*dien*-18,10*a*-*olide* (**1c**): Colourless oil; $[\alpha]_D^{23}$: +8.7° (*c* 0.10, CHCl₃); EI-MS: m/z = 318 [M]⁺; ¹H- and ¹³C-NMR: see Table **1**.

Pinoresinol (**2**): Colourless oil; $[\alpha]_D^{23}$: +53.1° (*c* 0.53, CHCl₃).

Inhibition of EBV-EA activation assay: The inhibition of EBV-EA was assayed according to Ito et al. [7]. The inhibiting activities of the test compounds were estimated on the basis of the percentage of the number of positive cells compared with that of a control without the test compound. The viability of the cells was assayed by the trypan-blue staining method.

Acknowledgements

The authors are grateful to Mrs. Mihoyo Fujitake and Mr. Katsuhiko Minoura of this University, for MS and NMR measurements. This study was supported by a Grant-in-Aid for High Technology from the Ministry of Education, Science, Sports and Culture, Japan.

References

- ¹ Kinouchi Y, Ohtsu H, Tokuda H, Nishino H, Matsunaga S, Tanaka R. Potential antitumor-promoting diterpenoids from the stem bark of *Picea glehni*. Journal of Natural Products 2000; 63: 817 20
- ² Tanaka R, Kinouchi Y, Tokuda H, Nishino H, Matsunaga S. Bioactive triterpenoids from the stem bark of *Picea glehni*. Planta Medica 2000; 66: 630-4
- ³ Tanaka R, Minami T, Tsujimoto K, Matsunaga S, Tokuda H, Nishino H, Terada Y, Yoshitake A. Cancer chemopreventive agents, serratane-type triterpenoids from *Picea jezoensis*. Cancer Letters 2001; 172: 119 26
- ⁴ Ludwig CH, Nist BJ, McCarthy JL. The high resolution nuclear magnetic resonance spectroscopy of protons in compounds related to lignan. Journal of American Chemical Society 1964; 86: 1186–96
- ⁵ Herz W, Mohanraj S. Structure proof by synthesis of unusual secodehydroabietanes from Tall oil. Journal of Organic Chemistry 1980; 45: 5417-9
- ⁶ Fuji K, Zheng SZ, Node M, Hao XJ. A chiral synthesis of a unique secodehydroabietane from Tall oil. Chemical and Pharmaceutical Bulletin 1991; 39: 202 – 3
- ⁷ Ito M, Kawanishi M, Harayama T, Takabayashi S. Combined effect of the extracts from *Croton tiglium, Euphorbia lathyris* or *Euphorbia tirucalli* and *n*-butyrate on Epstein-Barr virus expression in human lymphoblastoid P3HR-1 and Raji cells. Cancer Letters 1981; 12: 175 – 80
- ⁸ Huang M-T, Smart R-C, Wong C-Q, Conney A-H. Inhibition effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-0-tetradecanoylphorbol 13-acetate. Cancer Research 1988; 48: 5941 6