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Enantiospecific synthesis of 5 0,5 0,5 0-trifluoro-5 0-deoxyneplanocin A

Atanu Roy and Stewart W. Schneller*

Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA

Received 24 September 2005; accepted 17 October 2005
Available online 4 November 2005
Abstract—(�)-(1S,4R)-4-Hydroxy-2-cyclopenten-1-yl acetate provided a convenient entry point for a 12-step chiral preparation of
5 0,5 0,5 0-trifluoro-5 0-deoxyneplanocin A.
� 2005 Elsevier Ltd. All rights reserved.
Inhibition of S-adenosyl-LL-homocysteine (AdoHcy)
hydrolase, an enzyme with major responsibilities in
modulating biological methylations dependent on S-
adenosylmethionine (AdoMet), has served as a point
of convergence for antiviral drug design.1 From these
efforts, two structural features have arisen as meaning-
ful: nucleosides with (i) a carbocyclic framework2 and
(ii) C-5 0 fluorination.3 Neplanocin A (1) represents a
prominent entity in this area.4 Of particular relevance
to our program based on 1 (Fig. 1), and its saturated
derivative aristeromycin (2), for antiviral therapy re-
search was the report from De Clercq�s laboratory that
5 0-fluoro-5 0-deoxyneplanocin A has broad spectrum
potential.3a From this, and the fact that a C-5 0 poly-
flourinated adenosine has displayed mechanism-based
inhibition of AdoHcy hydrolase,3b we sought access to
the 5 0,5 0,5 0-trifluoro-5 0-deoxyneplanocin analogue (3).
This route is communicated herein.
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Figure 1.
The synthesis of 3 began with (�)-(1S,4R)-4-hydroxy-2-
cyclopenten-1-yl acetate (4)5 and its conversion to 5 in
high yield through a sequence of reactions (Scheme 1):
(i) hydroxyl protection, (ii) glycolization, (iii) isopropyl-
idenation, (iv) deacetylation, and (v) pyrdinium chloro-
chromate oxidation. Compound 5 was then transformed
to the trifluoromethyl derivative 6 by, first, reaction with
Ruppert�s reagent6,7 (CF3SiMe3) in the presence of a
catalytic amount of tetrabutylammonium fluoride
(0 �C) followed by desilylation with tetrabutylammo-
nium fluoride (room temperature). While the ultimate
stereochemical outcome of the 1,2-addition reaction
(Scheme 1, step b (i)) is not relevant to the goal of
obtaining 3, the configuration shown is likely because
of the hindered bottom face of 5 that blocks the a-addi-
tion of the trifluoromethyl group.

Based on the success of the Mitsunobu coupling reac-
tion for preparing carbocyclic nucleosides,8 the allylic
alcohol 9 was sought. This required the precursor
ketone 8 that, in turn, was expected to be accessible by
subjecting 6 to an oxidation followed by elimination
procedure.9 In that direction, oxidation of 6 with pyrid-
inium chlorochromate was found to produce 7 in 78%
yield (reaction conditions not specified in the scheme).
A similar result was also obtained when 6 was oxidized
with Dess–Martin periodinane reagent. The trifluoro-
methyl enone 8 was then obtained in 50% yield from 7
by reaction with methanesulfonyl chloride and triethyl-
amine (Scheme 1). In order to improve the yield of 8
from diol 6, a literature precedent was followed.10 In this
regard, a modified Pfitzner–Moffatt oxidation11 of 6
afforded a mixture of 7 in 40% yield and 8 in 36% yield.
However, when this reaction was left for 6 days in the
presence of excess oxidizing agent (8 equiv), compound
8 was obtained as the only product in high yield (80%).
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Scheme 1. Reagents and conditions: (a) (i) TBDPSCl, imidazole, DMF, rt, 95%; (ii) OsO4, NMO, THF–H2O, acetone (8:1:1), rt, 90%; (iii)
Me2C(OMe)2, acetone, H

+, rt, 94%; (iv) satd NH3 in MeOH, 100 �C, 92%; (v) PCC, CH2Cl2, rt, 90%; (b) (i) CF3SiMe3, TBAF (cat), THF, 0 �C; (ii)
TBAF, rt, 81% for two steps; (c) DMSO, CH2Cl2, EDC, HCl, pyridinium trifluoroacetate, 10 �C then rt for 36 h: 40% for 7, 36% for 8; for 6 days
with 8 equiv of oxidizing agent, only 8 (80%); (d) MsCl, Et3N, CH2Cl2, rt, 50%; (e) NaBH4, CeCl3Æ7H2O, MeOH, 0 �C, 78%; (f) (i) PPh3, DIAD,
6-chloropurine; (ii) satd NH3 in MeOH, 68% for two steps; (g) Dowex H+, MeOH, H2O (19:1), 90 �C, 80%. EDC = N-(3-dimethylaminopropyl)-
N 0-ethylcarbodiimide.
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Reduction of the trifluoromethyl enone 8 with sodium
borohydride in methanol (using the Luche method)
yielded the alcohol 9. Mitsunobu reaction of 9 with
6-chloropurine followed by ammonolysis provided
10. Acidic deprotection of 10 furnished the target 3.12

A proposed pathway to 8 from 6 is presented in Scheme
2 and follows from the initial oxidation to the key inter-
mediate 7 and calls upon the work of Moffatt and his
collaborators13 to evoke the N-(3-dimethylaminoprop-
yl)-N 0-ethylcarbodiimide hydrochloride (EDC)-DMSO
adduct (11). The transformation of 13 into 8 would be
favored by a six-membered transition state.

In conclusion, a highly efficient synthetic route to 5 0-
deoxy-5 0,5 0,5 0-trifluoro neplanocin A 3 has been
described via a key intermediate 8. The biological anal-
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Scheme 2.
ysis of 3 is underway and will be presented in a full paper
on this nucleoside derivative.
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