

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 8913-8915

Tetrahedron Letters

Enantiospecific synthesis of 5',5',5'-trifluoro-5'-deoxyneplanocin A

Atanu Roy and Stewart W. Schneller*

Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA

Received 24 September 2005; accepted 17 October 2005 Available online 4 November 2005

Abstract—(-)-(1S,4R)-4-Hydroxy-2-cyclopenten-1-yl acetate provided a convenient entry point for a 12-step chiral preparation of 5',5',5'-trifluoro-5'-deoxyneplanocin A.

© 2005 Elsevier Ltd. All rights reserved.

Inhibition of S-adenosyl-L-homocysteine (AdoHcy) hydrolase, an enzyme with major responsibilities in modulating biological methylations dependent on Sadenosylmethionine (AdoMet), has served as a point of convergence for antiviral drug design.¹ From these efforts, two structural features have arisen as meaningful: nucleosides with (i) a carbocyclic framework² and (ii) C-5' fluorination.³ Neplanocin A (1) represents a prominent entity in this area.⁴ Of particular relevance to our program based on 1 (Fig. 1), and its saturated derivative aristeromycin (2), for antiviral therapy research was the report from De Clercq's laboratory that 5'-fluoro-5'-deoxyneplanocin A has broad spectrum potential.^{3a} From this, and the fact that a C-5' polyflourinated adenosine has displayed mechanism-based inhibition of AdoHcy hydrolase,^{3b} we sought access to the 5', 5', 5'-trifluoro-5'-deoxyneplanocin analogue (3). This route is communicated herein.

Figure 1.

The synthesis of 3 began with (-)-(1S,4R)-4-hydroxy-2cyclopenten-1-yl acetate $(4)^5$ and its conversion to 5 in high yield through a sequence of reactions (Scheme 1): (i) hydroxyl protection, (ii) glycolization, (iii) isopropylidenation, (iv) deacetylation, and (v) pyrdinium chlorochromate oxidation. Compound 5 was then transformed to the trifluoromethyl derivative 6 by, first, reaction with Ruppert's reagent^{6,7} (CF₃SiMe₃) in the presence of a catalytic amount of tetrabutylammonium fluoride (0 °C) followed by desilylation with tetrabutylammonium fluoride (room temperature). While the ultimate stereochemical outcome of the 1,2-addition reaction (Scheme 1, step b (i)) is not relevant to the goal of obtaining 3, the configuration shown is likely because of the hindered bottom face of 5 that blocks the α -addition of the trifluoromethyl group.

Based on the success of the Mitsunobu coupling reaction for preparing carbocyclic nucleosides,⁸ the allylic alcohol 9 was sought. This required the precursor ketone 8 that, in turn, was expected to be accessible by subjecting 6 to an oxidation followed by elimination procedure.⁹ In that direction, oxidation of **6** with pyridinium chlorochromate was found to produce 7 in 78% yield (reaction conditions not specified in the scheme). A similar result was also obtained when 6 was oxidized with Dess-Martin periodinane reagent. The trifluoromethyl enone 8 was then obtained in 50% yield from 7 by reaction with methanesulfonyl chloride and triethylamine (Scheme 1). In order to improve the yield of 8 from diol 6, a literature precedent was followed.¹⁰ In this regard, a modified Pfitzner-Moffatt oxidation¹¹ of 6 afforded a mixture of 7 in 40% yield and 8 in 36% yield. However, when this reaction was left for 6 days in the presence of excess oxidizing agent (8 equiv), compound **8** was obtained as the only product in high yield (80%).

Keywords: Carbocylic nucleosides; Oxidation and elimination; Mitsunobu coupling.

^{*} Corresponding author. Tel.: +1 334 844 5737; fax: +1 334 844 5748; e-mail: schnest@auburn.edu

^{0040-4039/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2005.10.064

Scheme 1. Reagents and conditions: (a) (i) TBDPSCl, imidazole, DMF, rt, 95%; (ii) OsO₄, NMO, THF-H₂O, acetone (8:1:1), rt, 90%; (iii) Me₂C(OMe)₂, acetone, H⁺, rt, 94%; (iv) satd NH₃ in MeOH, 100 °C, 92%; (v) PCC, CH₂Cl₂, rt, 90%; (b) (i) CF₃SiMe₃, TBAF (cat), THF, 0 °C; (ii) TBAF, rt, 81% for two steps; (c) DMSO, CH₂Cl₂, EDC, HCl, pyridinium trifluoroacetate, 10 °C then rt for 36 h: 40% for 7, 36% for 8; for 6 days with 8 equiv of oxidizing agent, only 8 (80%); (d) MsCl, Et₃N, CH₂Cl₂, rt, 50%; (e) NaBH₄, CeCl₃·7H₂O, MeOH, 0 °C, 78%; (f) (i) PPh₃, DIAD, 6-chloropurine; (ii) satd NH₃ in MeOH, 68% for two steps; (g) Dowex H⁺, MeOH, H₂O (19:1), 90 °C, 80%. EDC = *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide.

Reduction of the trifluoromethyl enone 8 with sodium borohydride in methanol (using the Luche method) yielded the alcohol 9. Mitsunobu reaction of 9 with 6-chloropurine followed by ammonolysis provided 10. Acidic deprotection of 10 furnished the target 3^{12}

A proposed pathway to **8** from **6** is presented in Scheme 2 and follows from the initial oxidation to the key intermediate **7** and calls upon the work of Moffatt and his collaborators¹³ to evoke the *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (EDC)-DMSO adduct (**11**). The transformation of **13** into **8** would be favored by a six-membered transition state.

In conclusion, a highly efficient synthetic route to 5'deoxy-5',5',5'-trifluoro neplanocin A 3 has been described via a key intermediate 8. The biological anal-

ysis of **3** is underway and will be presented in a full paper on this nucleoside derivative.

Acknowledgments

This research was supported by funds from the NIH (AI 56540).

References and notes

- 1. Chiang, P. K. Pharmacol. Ther. 1998, 77, 115-135.
- (a) Schneller, S. W. Curr. Top. Med. Chem. 2002, 2, 1087– 1092; (b) Rodriguez, J. B.; Comin, M. J. Mini-Rev. Med. Chem. 2003, 3, 95–114.
- (a) Shuto, S.; Obara, T.; Toriya, M.; Hosoya, M.; Snoeck, R.; Andrei, G.; Balzarini, J.; De Clercq, E. J. Med. Chem. 1992, 35, 324–331; (b) Jarvi, E. T.; McCarthy, J. R.; Mehdi, S.; Matthews, D. P.; Edwards, M. L.; Prakash, N. J.; Bowlin, T. L.; Dunkara, P. S.; Bey, P. J. Med. Chem. 1991, 34, 647–656; (c) Matthews, D. P.; Edwards, M. L.; Mehdi, S.; Koehl, J. R.; Wolos, J. A.; McCarthy, J. R. Bioorg. Med. Chem. Lett. 1993, 3, 165–168.
- (a) De Clercq, E. Antimicrob. Agents Chemother. 1985, 28, 84–89; (b) Bray, M.; Raymond, J. L.; Geisbert, T.; Baker, R. O. Antiviral Res. 2002, 55, 151–159.
- 5. Seley, K. L.; Schneller, S. W.; Korba, B. J. Med. Chem. 1998, 41, 2168–2170.
- Ruppert, I.; Schilich, K.; Volbach, W. Tetrahedron Lett. 1984, 25, 2195–2198.
- Mloston, G.; Prakash, G. K. S.; Olah, G. A.; Heimgartner, H. *Helv. Chim. Acta* 2002, *85*, 1644–1658.
- For example, (a) Yang, M.; Zhou, J.; Schneller, S. W. *Tetrahedron Lett.* 2004, 45, 8981–8982; (b) Yang, M.; Ye, W.; Schneller, S. W. J. Org. Chem. 2004, 69, 3993– 3996.
- Hua, D. H.; Venkataraman, S. Tetrahedron Lett. 1985, 26, 3765–3768.
- Johnson, C. R.; Penning, T. D. J. Am. Chem. Soc. 1988, 110, 4726–4735.

- Agouridas, C.; Denis, A.; Auger, J.-M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J.-F.; Dussarat, A.; Fromentin, C.; D'Ambrières, S. G.; Lachaud, S.; Laurin, P.; Martret, O. L.; Loyau, V.; Tessot, N. J. Med. Chem. 1998, 41, 4080–4100.
- 12. Selected data for **3**: Crystalline solid, mp 235.1–236.3 °C; $[\alpha]_{2^{4,3}}^{24,3}$ 8.05 (*c* 0.22, DMSO); (Found: C, 43.5; H, 3.4; N, 22.8. C₁₁H₁₀F₃N₅O₂·0.17H₂O requires C, 43.4; H, 3.4; N, 23.0); $\delta_{\rm H}$ (400 MHz; DMSO-*d*₆; Me₄Si) 3.56–3.66 (1H, m, 1'-H), 4.28 (1H, q, *J* 7.30, 2'-H), 5.11 (1H, t, *J* 6.7,

3'-H), 5.47 (1H, d, *J* 7.6, 2'-OH), 5.70 (1H, d, *J* 7.2, 3'-OH), 6.57 (1H, d, *J* 2.1, 6'-H), 7.46 (2H, br s, 6-NH₂), 8.25 (1H, s, 8-H), 8.35 (1H, s, 2-H); $\delta_{\rm C}$ (100 MHz; DMSO- d_6 ; Me₄Si) 53.2 (q, ${}^4J_{\rm C,F}$ 26.6), 69.0, 72.1, 109.7 (q, ${}^3J_{\rm C,F}$ 3.3) 119.1, 127.2 (q, ${}^1J_{\rm C,F}$ 277.1), 138.4, 139.8, 149.4, 153.5, 156.2; $\delta_{\rm F}$ (250 MHz; DMSO- d_6 ; CF₃C₆H₅) -71.1 (d, *J* 8.5).

 (a) Pfitzner, K. E.; Moffatt, J. G. J. Am. Chem. Soc. 1965, 87, 5661–5670; (b) Fenselau, A. H.; Moffatt, J. G. J. Am. Chem. Soc. 1966, 88, 1762–1765.