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The recognition that the fermentation metabolites epothi-
lones A and B (1 and 2, respectively) have potent in vitro
antitumor properties and function through a paclitaxel-like
(taxol-like) mechanism as inhibitors of microtubule disas-
sembly has spurred a great deal of multidisciplinary re-
search.l' 2 Included in the pursuits which have followed in the
wake of the exciting biology of the epothilones is the goal of
total synthesis. Indeed, for those research groups (such as
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ours) for whom fermentation-derived epothilones are not
available, chemical synthesis provides the only recourse to
gain access to this series.

The total syntheses of epothilones A and B were accom-
plished by our groupl’! and, shortly thereafter, by groups
directed by Nicolaou***l and Schinzer.! A collection of fully
synthetic epothilones from our laboratory,’ as well as an even
more extensive compendium from Nicolaou and co-work-
ers,l”l were used to identify the zones of the epothilones that
could undergo molecular modification with maintenance of
biological function, at least at the in vitro level. The mapping
exercises on structure—activity relationships performed by
both groups provided very similar conclusions. An interesting
finding first reported by our group, and shortly thereafter by
Nicolaou et al.,” was that the 12,13-deoxy versions of
epothilones A and B (3 and 4, respectively) were quite active
in in vitro assays. This discovery suggested the possibility that
the epoxide linkages of the epothilones, which might be
detrimental from the standpoint of peripheral toxicity, may
not be crucial for eventual clinical function.

Our original synthesis of the epothilones, though quite long,
had the feature of high stereoselectivity in each of the
coupling steps.’! While a disadvantage in enhancing access to
multicomponent libraries,“** 7 stereoselectivity allowed for
accumulation of substantial quantities of fully synthetic key
epothilones. Comparable harvesting of required amounts of
material through the stereorandom olefin metathesis route,
practiced by otherst > as well as ourselves,® would be
virtually prohibitive. Its overall length notwithstanding, our
first-generation total synthesis, which features the highly
stereoselective LACDAC (Lewis acid catalyzed diene —alde-
hyde cyclocondensation) and B-alkyl Suzuki coupling steps,
produced substantial quantities of epothilones. In fact, the
only published in vivo data on epothilones available when this
manuscript was submitted were obtained with our fully
synthetic materials.®] These early findings in xenograft mice
identified some significant toxicity problems with the highly
potent epothilone B (2). Remarkably, in vivo studies in the
interperitoneal mode of injection demonstrate that the less
potent 12,13-deoxyepothilone B (4) is well tolerated and is
virtually curative against human mammary tumor xeno-
grafts.®l The lead compound 4 has many significant and clear
advantages over paclitaxel in terms of efficacy against multi-
ple drug resistent (MDR) tumors when administered intra-
peritoneally. We shall return to issues of bioactivity shortly.

These exciting early results®! underscored the need for a
greatly improved total synthesis which can sustain a serious
and substantial discovery research program for assaying
candidate structures in rodents as well as in higher animals.
We now report major progress in this regard. Our new route,
which retains the advantages of high stereoselectivity
throughout, is totally reworked in the treatment of the once
difficult C1-C11 domain. Scheme 1 provides an overview of
the problem.

The new route is based on four findings, each of which has
implications well beyond epothilone. The first is the ease of
formation and the synthetic utility of the (Z)-lithium enolate
10, which is readily prepared from 8 (Scheme 2). The ethyl
ketone unit, from which the critical enolate is formed, is part
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Noyori

reduction S~

macrolactonization

R = H, deoxyepothilone A 3
R = CHg3, deoxyepothilone B 4

Suzuki coupling 5

/SiEt3 SiEts
o O b o O O c OLi O O
R — _c
T A
8 R=H 9 10
ar o)
— 6, R = Hyc )
/SlEtg

1"OfBu + Stereoisomer

74%, 5.5:1
Scheme 2. Synthesis of 10 and its aldol condensation with 5. a) NaH,
THEF, 25°C, then nBuLi, 0°C, then propionyl chloride, —50°C, 71%;
b) NaH, THF, 0°C, then TESOT{, —50°C, 78%; c) LDA, THF, —33°C,
5 min. LDA =lithium diisopropylamide, TES = triethylsilyl, Tf = trifluoro-
methanesulfonyl.

of a B,0-diketoester ensemble embracing carbon atoms 1 -6 of
the target compound (see 6).

The second and perhaps most surprising finding is that the
sense of addition of enolate 10 to the readily available (S)-
aldehyde 5 provides the desired C7-C8 anti relationship
with good diastereoface selectivity in conjunction with the
expected C6-C7 syn relationship (by lk-addition)'”) (see
compound 11 and its stereoisomer).!l The 5.5:1 outcome for
the diastereoface selectivity of this aldol reaction is counter to
expectations arising from the traditional models first ad-
vanced by Cram and then by Felkin.'2l These exten-
sively invoked formulations, which differ widely in their
underlying conformational assumptions and stereochemical
treatments, usually converge in terms of their predicted
outcome.

The high diastereoface selectivity arises from a peculiarity
of aldehyde 5 and reflects, somehow, the relationship of its
vinyl and formyl groups. It is not, to a first approximation, the
result of a gross property of the novel enolate 10. Indeed, the
same enolate, upon addition of phenylpropanal (12a), per-
forms in the expected fashion,['”] yielding an 11:1 ratio of 13a
and 14a (Table 1). Furthermore, with aldehyde 12b, the
dihydro derivative of 5, the ratio of syn to anti diastereomers
(with respect to the groups on C7 and C8; 13b:14b) drops to
1:1.3. Moreover, when the distance between the vinyl and
formyl groups is extended, as in 12¢, selectivity is also
compromised. By contrast the phenyl and dimethylallyl
analogues of 5 (12d and 12e), bearing the same relationship
of unsaturated groups as in 5, exhibit good anti selectivity (see
products 13d and 13 e as well as 14d and 14 e). Also, aldehyde
12 f, a substrate that on the basis of chelation control tends to
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Scheme 1. Overview of the new synthet-
ic route to epothilones A and B (1 and 2,
respectively). a) See references [3a—c].

R = H, epothilone A 1
R = CHg, epothilone B 2

favor the anti-diastereoface product,’® performs normally
with enolate 10 to afford a 1:4 ratio of 13 f and 14 f. We shall
return to a consideration of these interesting data. First, we
deal with the impact of the strong diastereoface selectivity
(anti > syn) in the aldol reaction of 5 and 10 for achieving a
dramatically improved total synthesis of epothilone B.I']

The rather favorable result in establishing the C7—C8 bond
allowed us to explore the possibility that the C1 - C7 fragment
could be incorporated as an achiral block. For this hope to
become a real option, it would be necessary to gain control
over the eventual stereochemistry at C3. This was to be
accomplished by the implementation of an asymmetric,
reagent-controlled Noyori reduction (see below)."

The third critical element was the finding that the key B-
alkyl Suzuki coupling, which controls the geometry of the
trisubstituted double bond, can be conducted successfully
even on the elaborate substrate 15, obtained from 11. The
cognate substrate for the Suzuki reaction was the previously
describedP vinyl iodide 16. The remarkable coupling step
afforded the (Z)-olefin 17 and thence 18 after removal of the
silyl protecting group on C15 (Scheme 3). The 3,0-diketo ester

SiEty o
OoLi 0 O )j\
P x R H 12
OtBu
. THF, -120°C
10
SiEty
OH O o O
R”7 57, S 1" 0tBu +
13

Table 1. Aldol reaction of enolate 10 with different aldehydes 12.

12 R Yield. [%] 13:14
a Phy 64 11:1.0
b ~Y 80 1:13
™
P \/\/\CKH 68 1:20
3

f BnO Y 61 1:4.0

CHs
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OTroc
17, X =TBS
oL
—18,X=H

i
4 —2

Scheme 3. Synthesis of deoxyepothilon B (4) and epothilone B (2) from the product of the
aldol reaction (11). a) TrocCl, pyridine, CH,Cl,, 0 —25°C, then 0.5N8 HCl in MeOH, 0°C, 87 %;
b) 9-BBN, THF, 15, then 16, [Pd(dppf)Cl,], Ph;As, Cs,CO;, H,0, DMF; ¢) 0.4~ HCl in MeOH,
50% (over two steps); d) [(R)-(binap)RuCl,], H, (83 bar), MeOH, HCl, 25°C, 7 h, 88%
(d.r.>95:5); e) TESOTH, 2,6-lutidine, CH,Cl,, —78 —25°C, then HCI/MeOH, 77 %; f) 2,4,6-
trichlorobenzoyl chloride, TEA, 4-DMAP, PhCH;, 78 %; g) Sml,, cat. Nil,, THF, —78°C,
95%; h) HF - pyridine, THF, 98%; i) 2,2-dimethyldioxirane, CH,Cl,, —50°C, 98% (d.r.
>20:1). 9-BBN =9-borabicyclo[3.3.1]nonane, binap = 2,2"-bis(diphenylphosphanyl)-1,1'-bi-
naphthyl, 4-DMAP =4-dimethylaminopyridine, dppf = 1,1"-bis(diphenylphosphanyl)ferro-
cene, TBS = fert-butyldimethylsilyl, TEA = triethylamine, Troc = trichloroethoxycarbonyl.

array in 18 responded well to asymmetric catalytic reduction
under modified Noyori conditions!! to give the diol 19
(88%, d.r. > 95:5). The ability to maintain strict regiochemical
and diastereoface control in the Noyori reduction arose only
after extensive developmental studies, which will be described
elsewhere.l®) With this reduction achieved, no significant
obstacles remained in the total synthesis. The conversion of 19
into deoxyepothilone B (4) and then epothilone B (2) was
accomplished by methodologies worked out in our previous
synthesesl! as well as the syntheses of Nicolaou et al.[*l

The matter of explaining the results of the key aldol
coupling of 5 and 10 is best approached through earlier argu-
ments of Roush on the diastereoface selectivity of reactions of
(Z)-enolates.'® Roush postulated that with an enolate such
as 10, the conformer that reacts according to the Curtin—
Hammett principle!'”! would be one in which the R group of
the aldehyde is distanced from the methyl and the R’ group of
the enolate.['®™ The methyl group of the “a-methylaldehyde”
rather than the R group is placed on the inside face of the
transition state complex 22. The aldol reaction will lead to the

outside

2 23
C1, C» yn, Cy, Caanti 11

Cy, Co syn, C,, C3anti
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anti product. Of course, if R is approximately
equal to methyl with respect to the effective
A value (conformation energy), the selectiv-
ity for anti product correspondingly must
deteriorate. To rationalize why maximal anti
selectivity was obtained from aldehyde § or
related systems 12d and 12 e, it can be argued
that the presence of unsaturation at C4-C5
in the aldehyde moiety provides a favorable
e nonbonding interaction between the double
bond in the aldehyde and the carbonyl group
of the enolate. This interaction tends to
stabilize the transition state leading to the
observed stereoisomer (see 23). Tthe possi-
bility of fine-tuning the structure of Curtin—
Hammett conformers in C—C bond forming
reactions through subtle secondary interac-
tions has significant implications for the
enhancement of stereoselectivity.

Quite aside from identifying a potentially
important principle governing diastereoface
selection, the total synthesis we present
herein enables a serious and focused drug-
discovery program in the epothilone area
directed toward obtaining analogues in use-
ful amounts for in vivo examination. The
opportunities for preclinical biological ex-
ploration opened up by this greatly improved
access to the epothilones are being pursued in a resolute way.
For instance, we have recently found using fully synthetic
material that compound 4 has a far superior efficacy and a
much more exploitable maximum tolerable dose (MTD) than
paclitaxel, adriamycin, camptothecin, or epothilone B when
administered intraperitoneally.’! Of course, the optimal
administration of paclitaxel is intravenous. Therefore, we
recently compared 4 with paclitaxel for intravenous admin-
istration in xeongraft mice. Our previously reported toxicity(®!
in the intravenous administration of 4 has now been overcome
by using a slow infusion protocol (over 4 h). This has allowed
us to compare the therapeutic profiles of 4 and paclitaxel in
the intravenous modality. Our comparisons were conducted in
nude mice bearing the MX-1 xenograft. Even under the
formulation conditions for paclitaxel (Cremophor-EtOH), 4
is equally effective (4: ca. 99 % tumor reduction for a dose of
30 mgkg!; paclitaxel: ca. 99 % tumor reduction for a dose of
24 mgkg™1).
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Structures of Solvent-Free, Monomeric LiCCH,
NaCCH, and KCCH**

Douglas B. Grotjahn,* Aldo J. Apponi,
Matthew A. Brewster, Ju Xin, Lucy M. Ziurys*

Organoalkali metal compounds are important reagents for
introducing organic groups into organic and organometallic
compounds in substitution or addition reactions.!l For exam-
ple, active ingredients in widely used oral contraceptives
contain alkynyl groups that are introduced by the addition of
alkali metal acetylides to steroidal ketones.!) Organoalkali
metal compounds show a pronounced tendency toward
aggregation Pl and alkali metal acetylides are no exception. ]
The organic portion and co-ligand(s) (including solvent)
influence reactivity and structure of the organoalkali metal
compound dramatically, both in solution and in the solid state.
An example of the structural changes induced by subtle
variation of coligands is that whereas the crystallization of
PhCCLi in the presence of tetramethylpropylenediamine
gives dimeric units,”® similar treatment with the homologous
tetramethylhexylenediamine gives tetrameric units.’¥ Such
aggregated structures have provided the only experimental
information about alkynyl —alkali metal bond lengths to date,
but with one recent exception,*!l the alkali metal acetylides
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