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Abstract
Diels–Alder cycloaddition between cyclopentadiene and p-benzoquinone has been studied in the confined space of a pure silica

zeolite Beta and the impact on reaction rate due to the concentration effect within the pore and diffusion limitations are discussed.

Introduction of Lewis or Brønsted acid sites on the walls of the zeolite strongly increases the reaction rate. However, contrary to

what occurs with mesoporous molecular sieves (MCM-41), Beta zeolite does not catalyse the retro-Diels–Alder reaction, resulting

in a highly selective catalyst for the cycloaddition reaction.
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Introduction
The Diels–Alder reaction (DAR) is one of the most useful reac-

tions in organic synthesis. In order to improve the yield and to

avoid the reversibility of the reaction, homogeneous Lewis

acids [1-4], solid acids [5,6] as catalyst, high pressures [6-8]

and/or water as a solvent [9,10] have been reported. In particu-

lar, and among the most interesting environmental-friendly

reactions, the cycloaddition reaction occurs with high selec-

tivity and atom economy. Moreover, Diels–Alder cycloaddi-

tions in combination with heterogeneous catalysts (i.e. doped-

microporous materials) represent an interesting approach for the

conversion of biomass feedstock into stable chemicals such as

furfural derivatives, platform molecules which can be con-

verted into a variety of liquid hydrocarbon fuels and fuel addi-

tives [11,12]. Catalysis is considered as one of the foundational

pillars of green chemistry. Catalysis often reduces the energy

requirements, permits the use of renewable feedstocks and less

toxic reagents. Moreover, in most cases yields are improved and

selectivity is enhanced or modified [13]. In this regard, hetero-
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Scheme 1: Distribution of products in the Diels–Alder reaction between cyclopentadiene and p-benzoquinone.

geneous catalysis in general and zeolites in particular are

remarkably efficient since they permit the replacement of toxic

mineral acids and oxidants by easily recyclable catalysts [14].

One approach to improve yields and selectivity is the special

confinement of the reactants and the presence of catalytic active

sites, [15,16] by use of microporous materials doped with

metals. While pore dimensions and topology of the microp-

orous materials can affect the selectivity of the reaction, their

activity can be strongly limited by a slow diffusion of reactants

and products, unless microporous molecular sieves with the

appropriated pore dimensions are used as catalyst. Thus, micro-

porous molecular sieves with optimized pore diameters and

topologies can be of interest to catalyze DAR [17-26] in where

different stereoisomers could be obtained. Lewis-acid centers

contained within the framework of zeolite beta (Zr-β, Sn-β) are

useful catalysts in the Diels–Alder reaction for the production

of bio-based terephthalic acid precursors, one of the monomers

for the synthesis of polyethylene terephthalate that is used for

the large-scale manufacture of plastic bottles among others. The

authors do not find transport limitations within the zeolite

framework to the rate of the reaction [27]. Interestingly, when

Brønsted acid containing zeolites (Al-β) are used as catalyst,

there is a decrease in the Diels–Alder reaction selectivity [28].

The DAR of cyclopentadiene with p-benzoquinone is a well-

known example of cycloadditions, and some results can be

found on the control of the selectivity to the different isomers.

In homogeneous phase, equimolar amounts of diene and dieno-

phile afford two isomers, the endo as the major and the exo as

the minor product. The addition of a second equivalent of

cyclopentadiene affords mainly the endo-anti-endo product as

major isomer, and the endo-anti-exo product as the minor

isomer. While CsY zeolite enhances the selectivity to the endo-

anti-exo isomer [29], the mesoporous material MCM-41

enhances the conversion to the endo-anti-endo isomer as has

been shown in a previous work [30]. However, MCM-41 in the

form of aluminosilicate that contains Brønsted sites enhances

the retro-Diels–Alder reaction increasing the selectivity to the

endo-anti-exo isomer. Therefore, the framework and extra

framework composition of mesoporous materials and zeolite

could be used to control the selectivity of the DAR of cyclopen-

tadiene and p-benzoquinone.

In the present work, a series of large pore, pure silica zeolites

(in which rate enhancement can only occur by spatial confine-

ment) and the same structures but containing framework

Brønsted or Lewis acid sites have been studied for the DAR be-

tween cyclopentadiene and p-benzoquinone. The effects of pore

dimensions and catalyst composition on diffusivity and selec-

tivity with respect to the retro-Diels–Alder reaction (retro-

DAR) are discussed.

Results and Discussion
As it was described previously [30], the Diels–Alder reaction

(DAR) between cyclopentadiene and p-benzoquinone follows

the reactions outlined in Scheme 1.

As expected, the Diels–Alder cycloaddition provides the kineti-

cally controlled endo isomer that very rapidly reacts with a

second molecule of the diene to give again the kinetic endo-

endo isomer. It is remarkable that neither the thermodynamic

exo isomer nor the secondary exo-endo and exo-exo products

were detected under our reaction conditions. Thus, the ob-

served products, endo-endo and endo-exo are obtained in differ-

ent ratio according to the reaction conditions. This ratio can

change with the time since the retro-Diels–Alder reaction

appears as a competitive reaction. In this way, the final molecu-

lar product can revert to the initial endo isomer, which in turn

can react again with a new cyclopentadiene molecule. This is
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Table 1: Textural characteristic of the studied materials.

Catalyst Area (m2 g−1)a Crystallite size (μm)b Metal content (wt %)c External surface (m2 g−1)d

Beta 457 0.5–1 – 24
Nanocrystalline Beta 595 0.015-0.02 – 100

Ti-Beta 454 1 1.2 25
Sn-Beta 470 1 1.6 30

Beta Si/Al = 13 518 0.1–0.2 2.8 34
Beta Si/Al = 50 484 0.2 0.9 50

aArea: Total area of the material per unit of mass. bCrystallite size: Size of the crystalline material (aggregate of a large number of single crystals). It
can vary from a few nanometers to several millimeters. cMetal content: wt percentage of the metal content within the solid structure. dExternal surface:
External area of the material per unit of mass.

reflected in the distribution products by a decrease of the endo-

endo isomer (kinetic control product) jointed to an increase of

the endo-exo (thermodynamic control product).

Influence of catalyst surface
We have seen that the DAR between cyclopentadiene and

p-benzoquinone takes place thermally. The effect of confine-

ment of the reactant within the pores of the catalyst can de-

crease the entropy of the activated complex [17-26,29,30] pro-

ducing not only an increase of the reaction rate but also a modi-

fication of the selectivity. To study this effect, we have firstly

carried out the reaction using a large pore Beta zeolite as cata-

lyst. Thus, Figure 1 compares conversion results obtained for all

silica Beta zeolite with that obtained during the thermal reac-

tion or using Aerosil (amorphous non porous silica, BET sur-

face area = 200 m2g−1) as potential catalyst. Practically no

differences were found on reaction rate nor on product distribu-

tion when the reaction occurs on nonporous silica, with Beta

zeolite or even in absence of any solid. Considering that Aerosil

is an amorphous solid, these results indicate that the catalytic

reaction with pure silica Beta zeolite, if any, should only occur

on the catalyst surface and the porous structure has not any

effect on the reaction. Another hypothesis to explain these

results is that diffusion of the products through the channels, if

ever formed inside, is strongly restricted and the products

remain adsorbed within the pores. To evaluate this second

hypothesis, 13C MAS NMR, elemental analysis and material

balance were done, and the results obtained allow us to discard

the accumulation of the reaction products inside the pores of the

catalyst.

In order to check if the process is diffusion controlled within the

pores of the zeolite and the reaction is mainly occurring on the

external surface, the reaction was carried out with a pure silica

nanocrystalline Beta (see Table 1). Table 1 shows differences

between textural characteristics of all studied materials in this

work. Figure 1 shows, an increase of the reaction rate when

Figure 1: Conversion in the DAR catalysed by silica Beta zeolites and
Aerosil.

reducing the crystallite size of the zeolite, indicating that there

is a reactant diffusion control within the pores of Beta zeolite

and consequently the reaction is mainly occurring in an outer

shell of the crystals. If this is so, and since the reaction rate in-

creases with the pure silica nanocrystalline Beta zeolite with an

external surface area not too different from Aerosil silica, we

can conclude that a concentration effect within the pore mouth

of the zeolite may be responsible for the reaction rate enhance-

ment observed with pure silica nanocristalline beta.

Introduction of Lewis and Brønsted acid sites
in the solids
We have prepared Ti-Beta [31], Sn-Beta [32] and Al-Beta

(Si/Al = 50) [33] considering that Lewis acid catalyzes the DAR

[1]. This effect is known to occur by complexation of the car-

bonyl group of the dienophile with the Lewis acid that in-

creases the electron deficiency of the dienophile, reducing the

energy gap.

The results presented in Figure 2a, b clearly show an important

increase in activity due to the presence of Brønsted and, espe-
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Figure 2: Effect of Lewis and Brønsted acid sites in the conversion (a) and selectivity (b) of the DAR.

Figure 3: Effect of pore size in the conversion (a) and selectivity (b) of the DAR.

cially, of Lewis acid sites. Indeed, despite the fact that the crys-

tallite size of Ti- and Sn-Beta zeolites is much larger than

Al-Beta (Table 1), the former give higher conversions.

Importantly, the catalytic effect on the selectivity of the

competing retro-Diels–Alder reaction, which produces an en-

hancement of the endo-exo isomer from the endo-endo (see

Scheme 1), is much lower for Ti-Beta and even for Al-Beta

zeolites than for MCM-41 [30] (see Figure 2a, b) that owing to

the retro-DA reaction the selectivity of the endo-endo isomer

decreases from 85% to 65% as we previously reported. [30]

Considering the interesting application of beta zeolites as Lewis

acid catalyst for Diels–Alder reactions in different fields, i.e.,

the formation of biofuels [34], it is important to get insight into

the lack of catalytic activity of Beta for the retro-DAR, and elu-

cidate whether this is a general effect with zeolites. Due to the

diffusion limitations with Beta we have selected two extra-large

pore zeolites, SSZ-53 (BET surface area = 377 m2/g) and

SSZ-59 (BET surface area = 383 m2/g), with 1D pore system

and a Si/Al ratio of 49 and 53, respectively. The results given in

Figure 3 clearly show that the extra-large pore zeolites with

pore diameters of 8.7 Å and 8.5 Å for SSZ-53 and SSZ-59, re-

spectively, give higher conversions than Beta zeolite, despite

the smaller crystallite size of the last. Interestingly, the retro-

DAR was neither observed with the two zeolites with extra-

large pores. Similarly to that produced with the silica nanocrys-

talline Beta zeolite a concentration effect within the extra-large

pore mouth may be responsible of the reaction rate enhance-

ment observed with SSZ-53 and SSZ-59.
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Figure 4: Comparison of conversion (a) and selectivity (b) of the DAR catalysed by Al-Beta zeolite and MCM-41.

Therefore, the results seem to confirm that the occurrence of

retro-DAR as a competitive reaction not only depends on the

presence of Brønsted centers as previously reported for materi-

als with lower amounts of Al centers [28], but the structure of

the material can play a determinant role. This represents an

interesting observation since it will imply that, in principle, it

should be possible to change the relative selectivity for DAR

and retro-DAR working with micro or mesoporous catalysts.

Thus, Figure 4a,b compares conversion and selectivity to the

endo-endo isomer with Al-Beta zeolite and the mesoporous

MCM-41 material previously studied [30] both with very close

Si/Al ratios. It can be observed that both samples give the same

conversion, but different selectivity behavior.

In the case of the microporous catalyst, Al-Beta zeolite, the

selectivity to the endo-endo isomer remains constant with time,

while with MCM-41 that is formed by larger channels, a contin-

uous decrease of the endo-endo with time occurs and the ther-

modynamically controlled endo-exo product increases. The

retro-Diels–Alder is a consecutive reaction that produces the

thermodynamic product and it would occur if there is a certain

confinement within the pores.

Thus, it was thought that if retro-DAR occurs in MCM-41

(40 Å), if the pore size is decreased, then this reaction should be

enhanced because of a certain confinement effect through the

reactants. As it can be observed in Figure 4a,b, when the reac-

tion was carried out with a mesoporous material of ≈20 Å

instead of 40 Å but with a similar Si/Al ratio, the retro-DAR

was enhanced, illustrating a certain confinement effect within

the pores.

Two extra-large pore 3D zeolites with pore diameters of 1.2

(ITQ-33) [35] and 1.9 nm (ITQ-37) [36] have also been tested.

These are aluminosilicogermanates that, as the previously tested

Al-zeolites or the Al-MCM-41 material, present Brønsted

acidity. Interestingly, the pore diameters of ITQ-33, and more

so ITQ-37 are close to the pore of the mesoporous MCM-41

presented above with 2.0 nm. There is then a unique occasion to

compare the catalytic behavior of an amorphous and a crys-

talline molecular sieve with practically the same pore diameter

(Figure 5a,b).

As observed in Figure 5a,b, the crystalline structure of zeolites

ITQ-33 and ITQ-37 do not favor neither the Diels–Alder cyclo-

addition between cyclopentadiene and p-benzoquinone, nor the

retro-Diels–Alder reaction. This result suggests that the reac-

tion takes place on the surface of the material and the pore

structure does not have any influence on the reaction rate,

neither for the DAR nor for the retro-DAR.

To further prove the effect of the structure, the reaction was

carried out in presence of MCM-41 materials with different

Si/Al ratios, and similar pore diameter. The results are collected

in Figure 6a,b. As it could be expected no differences were

found in the conversion. Meanwhile, in the case of the selec-

tivity it is possible to observe that increasing the Al content and

lowering the pore size produces an increase in the selectivity of

the endo-exo isomer. However, this effect is much more marked

when the pore size decreases.

Finally, to conclude the catalytic study of the reaction between

cyclopentadiene and p-benzoquinone in presence of Beta

zeolites, the ability of reuse of Beta Si/Al = 50 was examined.

As shown in Figure 7a,b the activity of the catalyst decreases in

some extension after repeated recycling. As expected for a less

active catalyst, conversion falls partly while the selectivity to

the kinetically controlled endo-endo isomer rises after recy-

cling.
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Figure 5: Comparison of conversion (a) and selectivity (b) of the DAR catalysed extra-large pore 3D zeolites.

Figure 6: Effect of the Si/Al ratio in the conversion (a) and selectivity (b) of the DAR.

Figure 7: Effect of the reutilization of the catalysts in the conversion (a) and selectivity (b) of the DAR.
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Conclusion
In this work the DAR between cyclopentadiene and p-benzo-

quinone has been proved to take place on the catalyst surface

when the reaction is carried out in presence of microporous ma-

terials, obtaining better results when a smaller crystal size cata-

lyst is used.

When Lewis and Brønsted sites are inserted in the material

structure, an improvement of the conversion degree is obtained

as it occurs when MCM-41 and ITQ-2 were used [30]. Howev-

er, a clear change in the selectivity behavior is observed. None

of the used metals showed a retro-DAR enhancing reactivity,

even Al, the best hydrogen-bond-donating agent. This result

implies that the competitive retro-DAR takes place not only due

to the capability to act as Brønsted sites of metallic centers, but

also due to the structure of MCM-41 and ITQ-2. This effect can

be used in order to obtain a selective product or the other isomer

as a result of the chosen catalyst: The more Brønsted sites and

the more confinement of the reactants, the more retro-DAR will

be observed.

Experimental
Catalyst preparation
Beta zeolites [pure silica Beta, Beta (Ti), Beta (Sn) and Beta

(Al)] were prepared according to [31-33], using tetraethyl-

ammonium hydroxide as template, tetraethyl orthosilicate

(TEOS) as silica source and Ti(IV) ethoxide, SnCl4·5H2O and

metal Al as sources of heteroatoms. SSZ-53 and SSZ-59 were

synthesized according to the procedures described in the litera-

ture [37-41]. The textural characteristics of the catalysts are

given in Table 1.

Catalytic tests
In a similar manner as described in [30], after being activated at

250 °C under vacuum (10−2 mm Hg), 250 mg of the corre-

sponding calcined material were introduced into a two necked

bottom flask under N2. Then, 108 mg of p-benzoquinone

(1.0 mmol) and 10.0 mL of CDCl3 were added. The mixture

was stirred at room temperature for a few minutes and 0.2 mL

of freshly distilled cyclopentadiene (3.0 mmol) were added with

a syringe, being this moment considered t = 0 h. The system

was heated at 60 °C and samples were taken every hour, being

directly analyzed by 1H NMR.

Reaction products were isolated by HPLC using mixtures of

H2O/MeOH/MeCN (45:50:5). Identification of these products

was carried out by NMR techniques (1H, 13C, DEPT, COSY,

HETCOR and NOE) being the spectral data fully coincident

with those reported in the literature [42].

Conversion values for endo-endo and endo-exo products are

always referred to conversion from the endo adduct. All com-

pounds were previously described and fully characterized [30].
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