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The synthesis of 2-(2-diphenylphosphinophenyl)-oxazolines from o-fluoroben-
zonitrile and (−)-norephedrine or (+)-endo-2-hydroxy-endo-3-aminobornane is de-
scribed. The Pa-catalyzed alkylation of (E)-1,3-diphenylallyl acetate with the
sodium salt of dimethylmalonate using these chiral ligands occurs with an 82–87%
yield and 88–93% ee.

Keywords η3-allylpalladium; allylic alkylation; asymmetry; catalysis; oxazolines

Over the last 20 years, we have been strongly involved in the enan-
tioselective protonation of prochiral enolic species produced either
photochemically1 or from Pd catalysis.2 The chiral protic sources were
ephedrine-type compounds, (+)-endo-2-hydroxy-endo-3-aminobornane
(1),3 and its N-alkylated derivatives. Being also interested in Tsuji–
Trost reactions,4 we have prepared oxazolines 2 and 3 from (−)-
norephedrine and 1, respectively, (Scheme 1) to test them for the
Pd-catalyzed asymmetric alkylation of (E)-1,3-diphenylallyl acetate (4).
Indeed, homochiral phosphinoaryloxazolines are a class of ligands com-
monly used in metal-catalyzed enantioselective reactions, in particular
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2636 B. Ganchegui et al.

SCHEME 1

in the Pd-catalyzed allylic alkylation of 4.5−7 Oxazoline 2 already has
been used with 4 to synthesize the corresponding η3-allylpalladium
complex,8 but its synthesis, analytical properties9 and use in cataly-
sis have not been disclosed. Our results are here reported.

The synthesis of 2 and 3 was attempted via the synthesis of the cor-
responding 2-(2-fluorophenyl)-4,5-dihydrooxazoles 2a and 3a. Reflux-
ing a mixture of o-fluorobenzonitrile, (−)-norephedrine and ZnCl2 in
chlorobenzene6,10 yielded 30% of 2a. The yield was improved to 76%
using o-fluorobenzoic acid10 under conditions depicted in Scheme 2.
These experimental conditions using 1 instead of (−)-norephedrine

SCHEME 2 (a) 1: PPh3 (1 equiv.), CCl4/MeCN (4:1), 0◦C, 2.5 h; 2: (−)-
norephedrine or 1 (1 equiv.), NEt3 (3.25 equiv.), r.t., 1 h; 3: 0◦C, PPh3 (0.37 equiv.);
4: r.t., 1 h (b) Ph2PK (1.1 equiv.), THF, 0◦C, 20–30 min.
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Chiral Diphenylphosphinophenyl) Oxazolines 2637

afforded 3a in a 94% yield. The treatment of 2a and 3a with potassium
diphenylphosphide6 led to 2 and 3 in 86% and 71% yields, respectively.

The reaction of 4 with the sodium salt of dimethylmalonate in THF at
r.t. using [(η3-allyl)PdCl]2/2(or 3) as the catalytic system led to dimethyl
2-((E)-1,3-diphenylallyl)malonate in an 82–87% yield with 88–93% ee
(Eq.(1)).

(1)

In conclusion, we have synthesized two phosphorus-containing oxazo-
lines that have been used for the first time as chiral ligands for efficient
Pd-catalyzed Tsuji–Trost reactions.

EXPERIMENTAL

All reactions were carried out under an argon atmosphere using dry
solvents. The Pd-catalyzed reactions were carried out according to a
published procedure;6 the enantiomeric excesses were determined by
HPLC using a Daicel Chiracel OD column and hexane/i-PrOH (99:1)
as an eluent (254 nm, 0.5 mL/min). IR analyses were recorded on a
Spectrafile IR-TF plus Midac. NMR spectra were recorded on Bruker
spectrometers (1H, 250 or 500 MHz; 13C, 62.9 or 125.8 MHz, 19F, 235.4
MHz, 31P, 120.2 MHz) and referenced to TMS, CFCl3 and 85% H3PO4,
respectively. MS analyses were performed on a Q-TOF micro (Micro-
mass) with an electrospray source.

The Synthesis of 2a

MeCN (8 mL) and CCl4 (2 mL) were added to a round-bottom flask
containing o-fluorobenzoic acid (560 mg, 4 mmol) and PPh3 (1050 mg,
4 mmol) cooled at 0◦C. After stirring for 2.5 h, a solution of (−)-
norephedrine (605 mg, 4 mmol) and NEt3 (1315 mg, 13 mmol) in MeCN
(2 mL) was added. After stirring at r.t. for 1 h, the reaction was cooled
at 0◦C, and a supplementary portion of PPh3 (393 mg, 1.5 mmol) was
added. The mixture was stirred at r.t. for 1 h. The residue obtained af-
ter evaporation of the solvents under reduced pressure was dissolved
in CH2Cl2 (20 mL). This was washed with 2M of aqueous NaOH,
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2638 B. Ganchegui et al.

evaporated, and then subjected to column chromatography to afford
2a (775 mg, 76%).

IR (KBr, cm−1): 699, 745, 766, 1455, 1497, 1584, 1613, 1649. 1H NMR
(CDCl3, δ ppm): 1.55 (d, 6.7 Hz, 3H), 4.22 (quint, 6.8 Hz, 1H), 5.08 (d,
7.9 Hz, 1H), 7.16 (m, 1H), 7.29 (m, 1H), 7.35 (m, 5H), 7.40 (m, 1H), 7.94
(dt, 1.7 and 7.4 Hz). 13C NMR (CDCl3, δ ppm): 21.2, 71.0, 87.4, 115.9 (d,
JCF = 10.3 Hz), 116.6 (d, JCF = 21.9 Hz), 123.8 (d, JCF = 3.8 Hz), 125.4,
128.4, 128.6, 131.0 (d, JCF = 1.3 Hz), 132.8 (d, JCF = 8.7 Hz), 140.1,
159.2 (d, JCF = 5.7 Hz), 161.1 (d, JCF = 258.5 Hz). 19F NMR (CDCl3, δ

ppm): −108.9.

The Synthesis of 2

A 0.5-M Ph2PK solution in THF (11 mL, 5.5 mmol) was added dropwise
to a solution of 2a (1275 mg, 5 mmol) in THF (10 mL) at 0◦C. The mixture
was stirred at 0◦C until the color changed from red to yellow (20–30
min). After the addition of water (15 mL) and extraction of the aqueous
phase with CH2Cl2 (3 × 10 mL), the organic phases were washed with
brine and dried over MgSO4. Evaporation of the solvent followed by
column chromatography led to 2 (1810 mg, 86%).

[α]20
D = +73.2 (c = 0.7, CH2Cl2). 1H NMR (CDCl3, δ ppm): 1.26 (d, 6.6

Hz, 3H), 4.02 (quint., 7.7 Hz, 1H), 4.71 (d, 8.3 Hz, 1H), 6.88 (m, 1H),
7.13 (d, 5.9 Hz, 2H), 7.34 (m, 15H), 7.98 (m, 1H). 13C NMR (CDCl3, δ

ppm): 20.6, 70.8, 87.8, 125.8, 127.9, 128.0, 128.3 (d, JCP = 6.8 Hz), 128.4
(d, JCP = 8 Hz), 128.5, 128.7, 130.0 (d, JCP = 2.5 Hz), 133.5 (d, JCP =
2.4 Hz), 133.9 (d, JCP = 20.9 Hz), 134.4 (d, JCP = 21.2 Hz), 138.0 (d,
JCP = 10.8 Hz), 138.1 (d, JCP = 12.2 Hz), 139.4 (d, JCP = 25.9 Hz), 140.0,
162.3 (d, JCP = 3.5 Hz). 31P NMR (CDCl3, δ ppm): −4.4. M. S. (E. S.):
422(M + 1).

The same procedures were used for the synthesis of 3a and 3.
3a (770 mg, 94%) from o-fluorobenzoic acid (420 mg, 3 mmol). IR

(KBr, cm−1): 764, 1457, 1497, 1612, 1643. 1H NMR (CDCl3, δ ppm):
0.92 (s, 3H), 0.96 (s, 6H), 1.20 (m, 2H), 1.49 (m, 2H), 2.14 (wide s, 1H),
4.58 (d, 9.8 Hz, 1H), 4.72 (dd, 9.8 and 5.0 Hz, 1H), 7.14 (m, 2H), 7.37
(m, 1H), 7.83 (t, 7.4 Hz, 1H). 13C NMR (CDCl3, δ ppm): 15.0, 18.4, 19.9,
20.6, 27.1, 49.1, 49.3, 49.5, 71.8, 88.6, 116.6 (d, JCF = 22 Hz), 123.9 (d,
JCF = 3.9 Hz), 131.0, 132.5, 132.6, 160.2 (d, JCF = 6.0 Hz), 161.2 (d,
JCF = 273.8 Hz). 19F NMR (CDCl3, δ ppm): −109.7.

3 (312 mg, 71%) from 3a (723 mg, 2.65 mmol). [α]20
D = +77.4 (c =

0.7, CH2Cl2). 1H NMR (CDCl3, δ ppm): 0.74 (s, 3H), 0.79 (s, 6H), 1.10
(m, 4H), 1.90 (t, 1.2 Hz, 1H), 4.28 (d, 9.9 Hz, 1H), 4.41 (dd, 4.9 and 9.9
Hz, 1H), 6.81 (m, 1H), 7.23 (m, 12H), 7.92 (m, 1H). 13C NMR (CDCl3,
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Chiral Diphenylphosphinophenyl) Oxazolines 2639

δ ppm): 14.8, 18.3, 198.8, 20.3, 27.0, 49.1, 49.2, 49.2, 71.8, 88.6, 128.0,
128.2 (d, JCP = 7.3 Hz), 128.3 (d, JCP = 4.6 Hz), 129.9 (d, JCP = 2.9 Hz),
130.2, 132.3 (d, JCP = 19.9 Hz), 133.9, 134.0, 134.1, 138.1 (d, JCP = 37.9
Hz), 138.4 (d, JCP = 39.2 Hz), 138.8 (d, JCP = 25.6 Hz), 163.4 (d, JCP =
2.5 Hz). 31P NMR (CDCl3, δ ppm): −5.7. M. S. (E. S.): 440 (M + 1).
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