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Abstract: A new approach to the synthesis of anomeric sulfur ana-
logues of CMP-Neu5Ac containing alkane or arene linkage 1a–d is
described. The procedure involves the high b-stereoselectivity in
sialylation of the peracetylated sialic acid methyl ester 4 with mer-
captoalkyl (aryl) trichloroacetate 5a–d, followed by selective
deprotection of the trichloroacetyl group to the corresponding hy-
droxyalkyl and hydroxyaryl thioglycosides 2a–d. Subsequent O-
phosphitylation of 2a–d with respective 3a or 3c, followed by oxi-
dation and deprotection led to the isolation of the target compounds
1a–d in good yields.

Key words: sialylation, hydroxyalkyl (aryl) thioglycosides, selec-
tive deprotection, sialyltransferase

Hypersialylation due to enhanced sialyltransferase activi-
ty is of vital importance in various biological events such
as cell-cell adhesion, tumor cell metastasis and inflamma-
tion.1 Sialic acids containing glycoconjugates are in-
volved in different disease states, particularly in the
control of tumor cell growth.2 Sialyltransferase mediates
the biosynthesis of sialylated glycoconjugates and its ac-
tivity has been demonstrated as a potential marker of tu-
morogenesis.3 Therefore, the design of potent and specific
inhibitors of sialyltransferase has become a promising
strategy for cancer treatment. Despite lacking the struc-
ture of the target enzyme or the enzyme-inhibitor com-
plex, recent studies of sialyltransferase inhibitors4

primarily focus on the design of carbohydrate mimetics
including structural analogues of the donor or acceptor
and the transition-state mimetics of the sialyl donor. In or-
der to understand the substructural requirements for the
catalytic and/or binding site of the sialyltransferase, it is
highly desirable to design a specific probe. Our interest is
in development of inhibitors that could explore interac-
tions between inhibition activity and flexibility in the ac-
tive site using a tethered moiety. Here, we would like to
report the synthesis of anomeric sulfur analogues of CMP-
Neu5Ac containing tethered alkane or arene 1a–d
(Figure 1).

The retrosynthetic analysis is depicted in Scheme 1. The
sialylation/deprotection process (4 + 5 → 2) is the key-
stone of our strategy since it secures the correct stereo-
chemistry at the anomeric carbon and at the same time

provides a way to generate a variety of alcohol linkers.
Next, the phosphitylation reaction5 between the linker
hydroxyl group and cytidinyl phosphitamide 3 forms the
P-O bond. Finally, oxidation of the phosphorous and
deprotection of CMP-Neu5Ac completes the formation of
1a–d.

Figure 1 Structure of anomeric sulfur analogues of CMP-Neu5Ac
containing tethered alkane or arene

Classically, synthesis of hydroxyalkyl and hydroxyaryl
thioglycosides could utilize either thioglycosylation or
anomeric S-alkylation strategies.6 Although various pro-
tecting groups (acetyl, benzoyl, trimethylsilyl, tert-butyl-
diphenylsilyl) for the terminal hydroxyl of 5 were made,
thioglycosylation reactions used to prepare 2a–d either
did not react, or formed disulfide, elimination products, or
non-selective deprotection of the terminal alcohol.7 In ad-
dition, S-alkylation pathway would necessitate multiple
steps. Scheme 2 outlines an efficient approach for the syn-
thesis of the requisite anomeric sulfur analogues of sialic
acid 2a–d. Treating the peracetylated sialic acid methyl
ester 48 with boron trifluoride in the presence of a corre-
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sponding mercaptoalkyl (aryl) trichloroacetate 5a–d9

gave predominantly the b-anomers 6a–d (b:a > 20:1)10 in
70–72% yield without formation of alkyl or aryl disulfides
and elimination products.

The trichloroacetyl group could be removed selectively
by treatment with pyridine–methanol to afford the per-
acetylated hydroxyalkyl and hydroxyaryl thioglycosides
2a–d. The NMR spectra of 2a–d, displaying five sharp
singlets at around d = 2 ppm, confirm the formation of a
single isomer without deacetylation.

O-Allylphosphate triesters 7a and 7b were generated from
2a,b via a two-step procedure (Scheme 3). A benzoyl pro-
tected O-allyl tetraisopropylphosphordiamidite deriva-
tive, 3a,5a was attached via phosphoramidite chemistry
and subsequent oxidation with tert-butylhydroperoxide
afforded the respective O-allylphosphate triesters 7a and
7b in 65–68% yield after purification. The allyl groups
were removed under mild conditions by Pd(PPh3)4 with
diethylamine as the nucleophile (Scheme 3, path A). Fi-
nally, deprotection of the acetyl, benzoyl and methylester
groups by sequential treatment of compound 8a and 8b
with sodium methoxide and sodium hydroxide afforded
their corresponding target molecules 1a and 1b.

Mechanistically, the incorporation of CMP into the per-
acetylated hydroxyaryl thioglycosides 2c,d with activated
O-cyanoethyl tetraisopropylphosphordiamidite 3b is also
feasible. However, attempts to prepare the benzoyl pro-
tected O-cyanoethyl tetraisopropylphosphordiamidite 3b

gave low yields of desired product, possibly because the
benzoyl protecting group afforded poor solubility of prod-
uct and reactant in the reaction solvent (acetonitrile-N,N-
dimethylformamide).

By changing the protecting group to the smaller acetyl
group5b,11 allowed reaction with 2c,d13 in the presence of
tetrazole furnished the intermediate phosphite triesters in
good yield. Subsequent oxidation under mild conditions
(5.5 M tert-butylhydroperoxide in decane) gave the corre-
sponding O-cyanoethylphosphate triesters 7c,d, which
were used in next step without further purification. Re-
moval of the cyanoethyl group by treatment of 7c,d with
triethylamine afforded the acetyl protected phosphate di-
esters 8c and 8d as triethylammonium salt (Scheme 3,
path B). Alkaline deprotection and subsequent saponifica-
tion, as described for 1a,b, produced the corresponding
sodium salt 1c and 1d in 80–82% yield.

In conclusion, a new strategy for the b-stereoselective
sialylation of the peracetylated sialic acid methyl ester 4
with mercaptoalkyl (aryl) trichloroacetate 5a–d has been
described. This one-step reaction avoids the problems of
disulfide formation, elimination and additional steps. The
hydroxyl moiety of the products 6a–d can be selectively
deprotected after sialylation providing the option for fur-
ther regioselective modifications in the sialic acid group.
On the basis of this approach, we have synthesized four
sulfur analogues of CMP-Neu5Ac 1a–d with various link-
ers between the sialic acid and CMP, shortening the
number of synthetic steps to seven with overall yields of
17–25%. These new compounds can then be used to probe
the structure of the active site of sialyltransferase. Appli-
cation of this strategy to the synthesis of cyclic
analogues12 of CMP-Neu5Ac with linkers of variable
length is currently underway.

Scheme 1 Retrosynthetic analysis of target molecules 1a–d
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3.62 (m, 1 H), 2.84 (m, 1 H), 2.76 (m, 1 H), 2.58 (br s, 1 H), 
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2.05 (s, 3 H), 2.00 (s, 3 H), 1.98 (s, 3 H), 1.84 (s, 3 H). 13C 
NMR (125 MHz, CDCl3): d = 171.44, 170.89, 170.85, 
170.36, 170.16, 168.47, 84.43, 72.73, 72.19, 69.33, 68.81, 
62.52, 60.92, 52.90, 48.96, 36.97, 31.13, 22.99, 20.93, 
20.85, 20.75, 20.65. HRMS-FAB: calcd for C22H34NO13S 
(M + H)+: 552.1951. Found: 552.1961. Compound 2b: TLC 
(100% EtOAc): Rf = 0.40. 1H NMR (400 MHz, CDCl3): d = 
5.85 (d, J = 10.2 Hz, 1 H), 5.44 (t, J = 2.3 Hz, 1 H), 2.59 (m, 
1 H), 5.23 (m, 1 H), 4.96 (dd, J = 2.5, 12.3 Hz, 1 H), 4.36 
(dd, J = 2.3, 10.4 Hz, 1 H), 4.08 (m, 2 H), 3.80 (s, 3 H), 3.67 
(m, 2 H), 2.72 (m,2 H), 2.51 (dd, J = 4.9, 13.8 Hz, 1 H), 2.46 
(br s, 1 H), 2.17 (m, 1 H), 2.13 (s, 3 H), 2.06 (s, 3 H), 2.02 (s, 
3 H), 2.01 (s, 3 H), 1.86 (s, 3 H), 1.77 (m, 2 H). 13C NMR 
(100 MHz, CDCl3): d = 171.24, 170.98, 170.86, 170.36, 
170.12, 168.35, 84.70, 72.67, 62.22, 69.31, 68.74, 62.52, 
60.77, 52.84, 49.10, 37.04, 31.75, 24.83, 22.92, 20.91, 
20.79, 20.72, 20.64. HRMS-FAB: calcd for C23H36NO13S 
(M + H)+: 556.1907. Found: 556.1911. Anal. Calcd for 
C23H35NO13S: C, 48.84; H, 6.24; N, 2.48; S, 5.67. Found: C, 
48.59; H, 7.02; N, 2.37; S, 5.61. Compound 2c: TLC (100% 
EtOAc): Rf = 0.40. 1H NMR (400 MHz, CDCl3): d = 7.40 (d, 
J = 8.2 Hz, 2 H), 7.32 (d, J = 8.2 Hz, 2 H), 5.79 (d, J = 10.2 
Hz, 1 H), 5.42 (t, J = 2.5 Hz, 1 H), 5.39 (m, 1 H), 4.79 (td, 
J = 2.2, 8.5 Hz, 1 H), 4.66 (s, 2 H), 4.53 (dd, J = 2.5, 5.5 Hz, 
1 H), 4.49 (dd, J = 2.4, 7.2 Hz, 1 H), 4.09 (m, 1 H), 4.01 (m, 
1 H), 3.63 (s, 3 H), 2.63 (dd, J = 4.8, 13.9 Hz, 1 H), 2.52 (br 
s, 1 H), 2.10 (dd, J = 11.7, 13.9 Hz, 1 H), 2.08 (s, 3 H), 2.04 
(s, 3 H), 2.03 (s, 3 H), 1.98 (s, 3 H), 1.87 (s, 3 H). 13C NMR 
(100 MHz, CDCl3): d = 171.10, 170.92, 170.34, 170.10, 
168.31, 143.06, 135.86, 127.60, 127.51, 88.28, 73.09, 72.80, 
69.04, 68.81, 64.40, 62.56, 52.67, 49.27, 37.34, 23.05, 
20.99, 20.82, 20.66. HRMS-FAB: calcd for C27H36NO13S 
(M + H)+: 614.1907. Found: 614.1910. Compound 2d: TLC 
(100% EtOAc): Rf = 0.50. 1H NMR (400 MHz, CDCl3): d = 
7.53 (m, 1 H), 7.36 (m, 2 H), 7.20 (m, 1 H), 5.93 (d, J = 10.2 
Hz, 1 H), 5.41 (m, 2 H), 4.90 (d, J = 12.9 Hz, 1 H), 4.78 (d, 
J = 12.9 Hz, 1 H), 4.71 (td, J = 2.2, 8.3 Hz, 1 H), 4.67 (dd, 

J = 2.5, 10.5 Hz, 1 H), 4.58 (dd, J = 2.2, 12.3 Hz, 1 H), 4.09 
(m, 2 H), 3.56 (s, 3 H), 2.73 (dd, J = 4.7, 13.8 Hz, 1 H), 2.63 
(br s, 1 H), 2.15 (dd, J = 11.6, 13.8 Hz, 1 H), 2.11 (s, 3 H), 
2.05 (s, 3 H), 2.04 (s, 3 H), 2.02 (s, 3 H), 1.86 (s, 3 H). 13C 
NMR (100 MHz, CDCl3): d = 171.36, 171.00, 170.36, 
170.25, 170.17, 168.49, 144.64, 136.84, 129.79, 129.25, 
127.88, 89.29, 73.24, 73.13, 69.11, 68.76, 62.79, 62.54, 
52.74, 48.92, 38.13, 22.93, 20.97, 20.80, 20.72, 20.62. 
HRMS-FAB: calcd for C27H36NO13S (M + H)+: 614.1907. 
Found: 614.1913. Compound 1a: 1H NMR (400 MHz, D2O): 
d = 8.21 (d, J = 7.6 Hz, 1 H), 6.34 (d, J = 7.6 Hz, 1 H), 5.98 
(d, J = 7.6 Hz, 1 H), 4.40–4.35 (m, 3 H), 4.28 (m, 1 H), 4.22 
(d, J = 7.6 Hz, 1 H), 4.15 (m, 2 H), 4.04 (m, 2 H), 3.91–3.84 
(m, 3 H), 3.70 (dd, J = 7.6 Hz, 1 H), 3.62 (d, J = 7.6 Hz, 1 
H), 2.88 (m, 2 H), 2.54 (dd, J = 7.6 Hz, 1 H), 2.09 (s, 3 H), 
2.06 (m, 1 H). 13C NMR (100 MHz, D2O): d = 175.01, 
173.43, 159.28, 148.55, 144.24, 95.34, 89.94, 85.17, 83.37 
(d, J = 8.7 Hz), 74.40, 71.19, 69.99, 69.28, 68.12, 67.42, 
64.87 (d, J = 4.0 Hz), 64.16 (d, J = 4.7 Hz), 63.50, 52.27, 
39.59, 28.82 (d, J = 7.4 Hz), 22.25. 31P NMR (D2O, H3PO4 
reference): d = 0.12. HRMS-MALDI: calcd for 
C22H35N4O16PSNa (M + 2 H + Na)+: 697.1403. Found: 
697.1387. Compound 1b: 1H NMR (400 MHz, D2O): d = 
8.00 (d, J = 7.6 Hz, 1 H), 6.17 (d, J = 7.6 Hz, 1 H), 6.03 (d, 
J = 4.0 Hz, 1 H), 4.37 (m, 2 H), 4.31 (m, 1 H), 4.22 (m, 1 H), 
4.16 (d, J = 10.5 Hz, 1 H), 4.12 (m, 1 H), 4.03 (m, 1 H), 
4.00–3.84 (m, 5 H), 3.70 (m, 1 H), 3.57 (d, J = 9.0 Hz, 1 H), 
2.62 (m, 2 H), 2.50 (dd, J = 4.8, 13.6 Hz, 1 H), 2.10 (s, 3 H), 
1.90 (m, 3 H). 13C NMR (100 MHz, D2O): d = 176.46, 
174.89, 165.72, 157.06, 141.69, 96.55, 89.49, 87.54, 82.86 
(d, J = 8.7 Hz), 74.37, 71.08, 70.18, 69.42, 68.46, 67.96, 
65.08 (d, J = 5.5 Hz), 64.25 (d, J = 4.8 Hz), 63.52, 52.45, 
40.98, 29.47 (d, J = 7.2 Hz), 24.63, 22.26. 31P NMR (D2O, 
H3PO4 reference): d = 0.36. HRMS-MALDI: calcd for 
C23H37N4O16PSNa (M + 2 H + Na)+: 711.1559. Found: 
711.1566. Compound 1c: 1H NMR (400 MHz, D2O): d = 
8.02 (d, J = 7.9 Hz, 1 H), 7.56 (d, J = 8.1 Hz, 2 H), 7.43 (d, 
J = 8.1 Hz, 2 H), 6.10 (d, J = 7.9 Hz, 1 H), 5.88 (d, J = 3.7 
Hz, 1 H), 4.96 (d, J = 8.1 Hz, 2 H), 4.50 (d, J = 10.4 Hz, 1 
H), 4.30–4.17 (m, 5 H), 4.03 (m, 1 H), 3.95 (t, J = 10.2 Hz, 
1 H), 3.84–3.77 (m, 2 H), 3.69–3.63 (m, 2 H), 2.72 (dd, 
J = 4.7, 13.7 Hz, 1 H), 2.12 (m, 1 H), 2.11 (s, 3 H). 13C NMR 
(100 MHz, D2O): d = 174.97, 171.92, 158.97, 148.26, 
144.00, 139.14 (d, J = 6.3 Hz), 135.39, 12911, 128.26, 
95.04, 89.95, 89.91, 83.17 (d, J = 8.2 Hz), 74.24, 71.75, 
70.20, 68.09, 68.53, 67.22 (d, J = 4.5 Hz), 66.95, 64.17 (d, 
J = 4.1 Hz), 63.18, 52.34, 39.95, 22.27. 31P NMR (D2O, 
H3PO4 reference): d = 0.15. HRMS-MALDI: calcd for 
C27H37N4O16PSNa (M + 2 H + Na)+: 759.1559. Found: 
759.1567. Compound 1d: 1H NMR (400 MHz, D2O): d = 
7.94 (d, J = 7.7 Hz, 1 H), 7.63 (m, 1 H), 7.50 (m, 1 H), 7.34 
(m, 2 H), 6.00 (d, J = 7.7 Hz, 1 H), 5.92 (d, J = 3.7 Hz, 1 H), 
5.19 (m, 1  H), 5.05 (m, 1 H), 4.28–4.19 (m, 6 H), 4.07 (m, 
1 H), 3.94 (t, J = 10.2 Hz, 1 H), 3.77 (dd, J = 1.7, 11.4 Hz, 1 
H), 3.66–3.60 (m, 2 H), 3.53 (d, J = 8.9 Hz, 1 H), 2.68 (dd, 
J = 4.6, 13.7 Hz, 1 H), 2.10 (s, 3 H), 1.97 (m, 1 H). 13C NMR 
(100 MHz, D2O): d = 175.39, 174.91, 163.51, 154.25, 
142.26, 138.00 (d, J = 6.9 Hz), 132.58, 132.06, 129.41, 
128.89, 127.92, 95.98, 91.09, 89.80, 82.99 (d, J = 8.6 Hz), 
74.47, 72.08, 70.31, 69.20, 68.64, 67.69, 66.50 (d, J = 4.7 
Hz), 64.02 (d, J = 4.5 Hz), 63.27, 52.38, 41.67, 22.29. 31P 
NMR (D2O, H3PO4 reference): d = 0.17. HRMS-MALDI: 
calcd for C27H37N4O16PSNa (M + 2 H + Na)+: 759.1559. 
Found: 759.1545.
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