

Available online at www.sciencedirect.com



EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY

European Journal of Medicinal Chemistry 44 (2009) 2313-2321

Laboratory note

http://www.elsevier.com/locate/ejmech

# Synthesis and bioassay of a new class of heterocycles pyrrolyl oxadiazoles/thiadiazoles/triazoles

V. Padmavathi<sup>a,\*</sup>, A.V. Nagendra Mohan<sup>a</sup>, P. Thriveni<sup>a</sup>, A. Shazia<sup>b</sup>

<sup>a</sup> Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, Andhra Pradesh, India <sup>b</sup> Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science,

Bangalore 560 012, Karnataka, India

Received 10 January 2008; received in revised form 29 March 2008; accepted 8 April 2008 Available online 27 April 2008

### Abstract

A new class of heterocycles pyrrolyl thiadiazoles, pyrrolyl oxadiazoles and pyrrolyl triazoles were prepared from arylsulfonylethenesulfonylacetic acid methyl ester and tested for their antimicrobial and cytotoxic activities. © 2008 Elsevier Masson SAS. All rights reserved.

Keywords: Pyrroles; 1,3,4-Thiadiazoles; 1,3,4-Oxadiazoles; Antimicrobial activity; Cytotoxic activity

### 1. Introduction

Among different five-membered heterocyclic systems pyrrole, oxadiazole, thiadiazole, triazole and their derivatives have gained importance as they constitute the structural features of many bioactive compounds. 1,3,4-Oxadiazoles are of significant interest in medicinal chemistry in a number of biological targets including benzodiazepine receptor agonists [1], 5-HT receptor agonists [2], muscarinic agonists [3], 5-HT antagonists [4], human NK1 antagonists [5], antirhinoviral compounds [6] and anti-inflammatory agents [7]. They have been used as peptide mimetics due to their particular geometric and electrostatic properties [8,9]. Apart from these, 1,2,3-substituted thiadiazole derivatives were associated with diverse biological activities [10,11]. Various substituted 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles and their dihydro analogues possess diverse pharmacological activities such as antimicrobial [12], antibacterial [13], antitubercular [14], anti-inflammatory [15-17], and antifungal [18,19]. A number of pyrrole derivatives viz., tolmetin, ketorolac, etc., were of

E-mail address: vkpuram2001@yahoo.com (V. Padmavathi).

pharmacological relevance due to their anti-inflammatory and analgesic properties [20]. Hence, it is considered worthwhile to prepare a new class of heterocycles from synthetically vulnerable intermediate arylsulfonylethenesulfonylacetic acid methyl ester (4).

### 2. Chemistry

The compound, E-arylsulfonylethenesulfonylacetic acid methyl ester (4) was obtained by the condensation of 1arylsulfonyl-2-chloroethene with mercaptoacetic acid followed by oxidation and esterification (Scheme 1 and Table 1). Earlier, we have studied the reactivity of phenacylsulfonylacetic acid methyl ester and aroylethenesulfonylacetic acid methyl ester towards the development of heterocycles. When phenacylsulfonylacetic acid methyl ester was treated with hydrazine hydrate instead of the expected acid hydrazide, 1,1-dioxo-6-phenyl-1,2,4,7-tetrahydro- $1\lambda^{6}$ -1,4,5-thiadiazepin-3-one was obtained [21]. In order to get the desired heterocycles, keto group in phenacylsulfonylacetic acid methyl ester was protected by oximation. The ester functionality was exploited for oxadiazoles, thiadiazoles and triazoles. The deoximation of keto group was affected by β-cyclodextrin in the presence of oxidizing agent [22]. However,

<sup>\*</sup> Corresponding author. Tel.: +91 877 2289303x303; fax: +91 877 2249532.



Scheme 1.

aroylethenesulfonylacetic acid methyl ester on treatment with hydrazine hydrate produced 1,1-dioxo-6-phenacyl-[1,4,5]thiadiazinan-3-one and (3-aryl-4,5-dihydro-1*H*-pyrazole-5sulfonyl)acetic acid methyl ester instead of acid hydrazide [23]. As such, first the olefinic moiety in the former was utilized to develop pyrazole ring by 1,3-dipolar cycloaddition methodology with diazomethane. The resultant pyrazolyl ester was used to construct oxadiazoles, thiadiazoles and triazoles [23]. As unexpected products were obtained in both the cases when a molecule having two different functional groups was treated with hydrazine hydrate, we thought of exploiting olefin

| Table 1          |        |            |               |        |    |
|------------------|--------|------------|---------------|--------|----|
| Characterization | data o | f compound | $1 \le 2 - 4$ | and 6- | 12 |

moiety in 4 to construct pyrazole ring. When 4 was treated with diazomethane in the presence of  $Et_3N$  at -20 to -15 °C for 48 h a solid was obtained and identified as Nmethyl-3-arylsulfonylpyrazole (6) by spectral parameters (Scheme 2). It seems the 1-pyrazoline formed during the course of the reaction in the presence of carbene generated from diazomethane led to a bicyclic compound which was ultimately aromatized by the elimination of sulfonylacetic ester moiety (mechanism). In our interest to develop heterocycles from 4, it was treated with tosylmethyl isocyanide (Tos-MIC) in the presence of sodium hydride in a solvent mixture of ether and DMSO. The compound obtained was identified as (4-arylsulfonyl-1*H*-pyrrole-3-sulfonyl)acetic acid methyl ester (7). The articulation of oxadiazole, thiadiazole and triazole rings was made by the use of ester moiety in 7. The compound 7 on reaction with hydrazine hydrate gave the corresponding acid hydrazide 8. The potassium dithiocarbazate of acid hydrazide 9 was prepared from 8 on treatment with carbon disulfide in the presence of potassium hydroxide under ultrasonic conditions. This on refluxing in acetic acid cyclized 5'-(4-arylsulfonyl-1*H*-pyrrole-3-sulfonylmethyl)-[1',3',4'] to thiadiazole-2'-thiol (10). Acid catalysed hydrolysis of 9 resulted in 5'-(4-arylsulfonyl-1*H*-pyrrole-3-sulfonylmethyl)-[1',3',4']oxadiazole-2'-thiol (11). Further, the compound 9 on treatment with hydrazine hydrate produced 4'-amino-5'-(4-arylsulfonyl-1

| Compound | Mp (°C)/(colour)         | Ar     | Yield (%) | Molecular formula (M.Wt)                                                                 | Analysis % calcd./(found) |             |               |
|----------|--------------------------|--------|-----------|------------------------------------------------------------------------------------------|---------------------------|-------------|---------------|
|          |                          |        |           |                                                                                          | С                         | Н           | Ν             |
| 2a       | 43-45 (white crystals)   | Ph     | 72        | $C_{10}H_{10}O_4S_2$ (258.31)                                                            | 46.50 (46.74)             | 3.90 (3.87) | _             |
| 2b       | 40-42 (white crystals)   | 4-MePh | 68        | C <sub>11</sub> H <sub>12</sub> O <sub>4</sub> S <sub>2</sub> (272.34)                   | 48.51 (48.61)             | 4.44 (4.46) | _             |
| 2c       | 51-53 (white solid)      | 4-ClPh | 76        | C <sub>10</sub> H <sub>9</sub> ClO <sub>4</sub> S <sub>2</sub> (292.76)                  | 41.03 (40.95)             | 3.10 (3.05) | _             |
| 3a       | 146-148 (white solid)    | Ph     | 84        | $C_{10}H_{10}O_6S_2$ (290.31)                                                            | 41.37 (41.32)             | 3.47 (3.52) | _             |
| 3b       | 163-165 (white solid)    | 4-MePh | 85        | C <sub>11</sub> H <sub>12</sub> O <sub>6</sub> S <sub>2</sub> (304.34)                   | 43.41 (43.50)             | 3.97 (4.00) | _             |
| 3c       | 157-159 (white solid)    | 4-ClPh | 82        | C <sub>10</sub> H <sub>9</sub> ClO <sub>6</sub> S <sub>2</sub> (324.76)                  | 36.98 (37.04)             | 2.79 (2.81) | _             |
| 4a       | 118-120 (white crystals) | Ph     | 86        | C <sub>11</sub> H <sub>12</sub> O <sub>6</sub> S <sub>2</sub> (304.34)                   | 43.41 (43.36)             | 3.97 (4.01) | _             |
| 4b       | 124-126 (white crystals) | 4-MePh | 87        | $C_{12}H_{14}O_6S_2$ (318.37)                                                            | 45.27 (45.31)             | 4.43 (4.39) | _             |
| 4c       | 131-133 (white crystals) | 4-ClPh | 85        | C <sub>11</sub> H <sub>11</sub> ClO <sub>6</sub> S <sub>2</sub> (338.78)                 | 39.00 (38.92)             | 3.27 (3.29) | _             |
| 6a       | 78-80 (yellow solid)     | Ph     | 68        | C <sub>10</sub> H <sub>10</sub> N <sub>2</sub> O <sub>2</sub> S (222.26)                 | 54.04 (54.00)             | 4.53 (4.50) | 12.60 (12.71) |
| 6b       | 66-68 (yellow solid)     | 4-MePh | 64        | C <sub>11</sub> H <sub>12</sub> N <sub>2</sub> O <sub>2</sub> S (236.29)                 | 55.91 (55.97)             | 5.12 (5.00) | 11.86 (11.94) |
| 6c       | 87-89 (Yellow solid)     | 4-ClPh | 67        | C <sub>10</sub> H <sub>9</sub> ClN <sub>2</sub> O <sub>2</sub> S (256.71)                | 46.79 (46.83)             | 3.53 (3.57) | 10.91 (10.83) |
| 7a       | 141-143 (yellow solid)   | Ph     | 69        | C <sub>13</sub> H <sub>13</sub> NO <sub>6</sub> S (343.38)                               | 45.47 (45.51)             | 3.82 (3.80) | 4.08 (4.05)   |
| 7b       | 158-160 (yellow solid)   | 4-MePh | 71        | C <sub>14</sub> H <sub>15</sub> NO <sub>6</sub> S <sub>2</sub> (357.4)                   | 47.05 (47.01)             | 4.23 (4.20) | 3.92 (3.98)   |
| 7c       | 164-166 (yellow solid)   | 4-ClPh | 74        | C <sub>13</sub> H <sub>12</sub> ClNO <sub>6</sub> S <sub>2</sub> (377.82)                | 41.33 (41.37)             | 3.20 (3.22) | 3.71 (3.77)   |
| 8a       | 156-158 (yellow solid)   | Ph     | 72        | C <sub>12</sub> H <sub>13</sub> N <sub>3</sub> O <sub>5</sub> S <sub>2</sub> (343.38)    | 41.97 (41.93)             | 3.82 (3.84) | 12.24 (12.21) |
| 8b       | 163-165 (Yellow solid)   | 4-MePh | 70        | C <sub>13</sub> H <sub>15</sub> N <sub>3</sub> O <sub>5</sub> S <sub>2</sub> (357.41)    | 43.69 (43.72)             | 4.23 (4.26) | 11.76 (11.71) |
| 8c       | 172-174 (yellow solid)   | 4-ClPh | 75        | C <sub>12</sub> H <sub>12</sub> ClN <sub>3</sub> O <sub>5</sub> S <sub>2</sub> (377.82)  | 38.15 (38.12)             | 3.20 (3.23) | 11.12 (11.16) |
| 9a       | - (white solid)          | Ph     | 82        | C <sub>13</sub> H <sub>12</sub> KN <sub>3</sub> O <sub>5</sub> S <sub>4</sub> (457.61)   | _                         | _           | _             |
| 9b       | - (white solid)          | 4-MePh | 79        | C <sub>14</sub> H <sub>14</sub> KN <sub>3</sub> O <sub>5</sub> S <sub>4</sub> (471.64)   | _                         | _           | _             |
| 9c       | - (white solid)          | 4-ClPh | 81        | C <sub>13</sub> H <sub>11</sub> ClKN <sub>3</sub> O <sub>5</sub> S <sub>4</sub> (492.05) | _                         | _           | _             |
| 10a      | 196-198 (yellow solid)   | Ph     | 73        | $C_{13}H_{11}N_3O_4S_4$ (401.5)                                                          | 38.89 (38.86)             | 2.76 (2.75) | 10.47 (10.54) |
| 10b      | 189-191 (yellow solid)   | 4-MePh | 69        | C <sub>14</sub> H <sub>13</sub> N <sub>3</sub> O <sub>4</sub> S <sub>4</sub> (415.53)    | 40.47 (40.51)             | 3.15 (3.17) | 10.11 (10.20) |
| 10c      | 206-208 (yellow solid)   | 4-ClPh | 68        | C <sub>13</sub> H <sub>10</sub> ClN <sub>3</sub> O <sub>4</sub> S <sub>4</sub> (435.95)  | 35.82 (35.85)             | 2.31 (2.29) | 9.64 (9.69)   |
| 11a      | 167-169 (yellow solid)   | Ph     | 67        | C <sub>13</sub> H <sub>11</sub> N <sub>3</sub> O <sub>5</sub> S <sub>3</sub> (385.44)    | 40.51 (40.47)             | 2.88 (2.92) | 10.90 (10.97) |
| 11b      | 180-182 (Yellow solid)   | 4-MePh | 68        | C <sub>14</sub> H <sub>13</sub> N <sub>3</sub> O <sub>5</sub> S <sub>3</sub> (399.47)    | 42.09 (42.04)             | 3.28 (3.30) | 10.52 (10.45) |
| 11c      | 174-176 (yellow solid)   | 4-ClPh | 71        | C <sub>13</sub> H <sub>10</sub> ClN <sub>3</sub> O <sub>5</sub> S <sub>3</sub> (419.88)  | 37.19 (37.22)             | 2.40 (2.39) | 10.01 (10.05) |
| 12a      | 212-214 (yellow solid)   | Ph     | 67        | C <sub>13</sub> H <sub>13</sub> N <sub>5</sub> O <sub>4</sub> S <sub>3</sub> (399.47)    | 39.09 (39.06)             | 3.28 (3.26) | 17.53 (17.49) |
| 12b      | 209-211 (yellow solid)   | 4-MePh | 70        | $C_{14}H_{15}N_5O_4S_3$ (413.5)                                                          | 40.67 (40.65)             | 3.66 (3.68) | 16.94 (16.98) |
| 12c      | 234-236 (yellow solid)   | 4-ClPh | 72        | $C_{13}H_{12}CIN_5O_4S_3$ (433.91)                                                       | 35.98 (36.01)             | 2.79 (2.80) | 16.14 (16.20) |



Scheme 2.

*H*-pyrrole-3-sulfonylmethyl)-[1',2',4']-triazole-3'-thiol (12) (Scheme 3 and Table 1).

Mechanism:



### 3. Biology

#### 3.1. Antimicrobial activity

The synthesized compounds were tested for their *in vitro* antimicrobial activity against the Gram-positive bacteria *Staphylococcus aureus*, *Bacillus subtilis*, the Gram-negative bacteria *Escherichia coli*, *Klebsiella pneumoniae* and fungi *Fusarium solani*, *Curvularia lunata* and *Aspergillus niger*. The primary screening was carried out by agar disc-diffusion method [24] using nutrient agar medium. The minimal inhibitory concentration for the most active compounds **10c**, **12a** and **12c** against the same microorganisms used in the preliminary screening was carried out using microdilution

susceptibility method [25]. Ciprofloxacin and ketoconazole were used as control drugs.

### 3.2. MTT assay for cell viability

Toxicity of compounds in different cell lines in the presence of 10 and 0.2% FBS, respectively, was determined using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide reduction assay [26,27]. The compounds were dissolved in DMSO at 10 mM concentration and stored at -20 °C. The dilutions were made in culture medium before treatment.

Nearly 8000 cells/well were plated in 96-well plates. After 3–4 h, the compounds were added to the cells at different concentrations. After 72 h of incubation, 20 µl of MTT solution was added and the cells were incubated further for 4 h. Blue formazan crystals were seen at well when checked under microscope. Media was removed and 200 µl of DMSO was added per well. The absorbance was measured using microtiter plate reader. Control treatments were performed with DMSO. The % viability was then calculated as [{ $A_{590}$  (treated cells)–background]/ [ $A_{590}$  (untreated cells)–background}] × 100.

### 4. Results, discussion and conclusion

The structures of the compounds synthesized in the present work were established by spectral parameters. The <sup>1</sup>H NMR spectrum of **4a** showed two doublets at  $\delta$  7.93 and 7.41 ppm for  $H_A$  and  $H_B$ . The coupling constant value J = 14.7 Hz indicates that it possess trans geometry. Besides, two singlets were observed at  $\delta$  4.15 and 3.78 ppm for methylene and methoxy protons of carbomethoxy group. The <sup>1</sup>H NMR spectrum of **6a** displayed a singlet and two doublets at  $\delta$  3.94, 6.78 and 7.39 ppm which were accounted for N-CH<sub>3</sub>, C<sub>5</sub>-H and  $C_4$ -H, respectively. The mass spectrum of **6a** exhibited a molecular ion peak at m/z 222 corresponding to its molecular formula. The <sup>1</sup>H NMR spectrum of 7a showed two singlets at  $\delta$  6.96 and 7.09 ppm for pyrrole ring protons, C<sub>2</sub>-H and C<sub>5</sub>-H. In addition two singlets were observed at  $\delta$  3.72 and 4.21 ppm due to methoxy and methylene protons. A broad singlet observed at  $\delta$  10.21 ppm due to NH disappeared on deuteration. The <sup>1</sup>H NMR spectrum of **8a** displayed broad signals in the regions  $\delta$  9.46 and 5.10 ppm for NH and NH<sub>2</sub> which disappeared on deuteration in addition to signals due to other protons.

The <sup>1</sup>H NMR spectra of **10–12** displayed a singlet in the region  $\delta$  10.18–10.28 ppm for SH besides signals due to pyrrole ring and methylene protons. In addition to these, **12a** showed a broad singlet at  $\delta$  5.42 ppm for NH<sub>2</sub> which disappeared on deuteration. The structures of **10–12** were further confirmed by <sup>13</sup>C NMR spectra (Table 2).

### 4.1. Biological results

The results on preliminary antibacterial testing of the final compounds (10-12) are shown in Table 3. The results revealed that in general, the inhibitory activity against the Gram-positive bacteria was higher than that of the Gram-



negative bacteria. The compounds 10c, 12a and 12c showed excellent activity against Gram-positive bacteria (inhibitory zone > 28 mm) and good activity against Gram-negative bacteria (inhibitory zone > 22 mm). All the tested compounds showed moderate (11a–c) to high (10a–c and 12a–c) inhibitory effect towards tested fungi. The presence of chloro substituent at position 4 of arylsulfonyl group caused good antimicrobial activity (Table 4).

The MIC values were determined as the lowest concentration that completely inhibited visible growth of the microorganisms (Table 5). The structure—antimicrobial activity relationship of the synthesized compounds revealed that the compounds having pyrrole in combination with oxadiazole moiety exhibited least activity when compared with compounds having pyrrole with thiadiazole and triazole moieties. Among the substituents on the aryl group, 4-chlorophenyl derivatives were the most active. The maximum activity was attained with compound **12c**.

The cytotoxic activity of the compounds **10a**, **11a** and **12a** in A<sub>549</sub> and CCl<sub>64</sub> cell lines in the presence of 10 and 0.2% FBS, respectively, was determined using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. The compounds were dissolved in DMSO at 10  $\mu$ M concentration and stored at -20 °C. The dilutions were made in culture medium before treatment. The compounds tested did not exhibit cytotoxic activity up to 100  $\mu$ M concentration.

In conclusion, a new class of heterocycles, pyrrole in combination with thiadiazole, oxadiazole and triazole are developed adopting simple, elegant and well-versed methodologies from a vulnerable substrate, arylsulfonylethenesulfonylacetic acid methyl ester. The *in vitro* antimicrobial activity of lead compounds showed that all compounds tested are more active towards fungi than bacteria. The compound pyrrole in combination with triazole showed greater antimicrobial activity.

### 5. Experimental

### 5.1. Chemistry

Melting points were determined in open capillaries on a Mel-Temp apparatus and are uncorrected. The purity of the compounds was checked by TLC (silica gel H, BDH, ethyl acetate/hexane, 0.5:2). The IR spectra were recorded on a Thermo Nicolet IR 200 FT-IR spectrometer as KBr pellets and the wave numbers were given in cm<sup>-1</sup>. The <sup>1</sup>H NMR spectra were recorded in CDCl<sub>3</sub>/DMSO-*d*<sub>6</sub> on a Varian EM-360 spectrometer (300 MHz). The <sup>13</sup>C NMR spectra were recorded in CDCl<sub>3</sub>/DMSO-*d*<sub>6</sub> on a Varian VXR spectrometer operating at 75.5 MHz. All chemical shifts are reported in  $\delta$  (ppm) using TMS as an internal standard. The microanalyses were performed on Perkin–Elmer 240C elemental analyzer.

The starting compound 1-arylsulfonyl-2-chloroethene was prepared according to literature procedure [28].

### 5.1.1. General procedure for the synthesis of E-arylsulfonylethenemercapto

acetic acid 2a-c

To a solution of sodium hydroxide (2 mmol) in methanol (10 ml), mercaptoacetic acid (1 mmol) was added dropwise. To this compound 1 (1 mmol) was added in portions and the reaction mixture was stirred at 0 °C for 3 h. The contents

Table 2 Spectral data of the compounds 2-4 and 6-12

| Compound | $IR (KBr) \text{ cm}^{-1}$                         | <sup>1</sup> ILINNE (CDC1) & new                                                                                                                                          | $^{13}$ C NMB (CDCL) $\delta$ mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mass m/r           |
|----------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| no.      | IK (KBI) CIII                                      | H NMK (CDCI <sub>3</sub> ) <i>b</i> ppm                                                                                                                                   | C NMR (CDCI <sub>3</sub> ) <i>b</i> ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (M <sup>+•</sup> ) |
| 2a       | 1122, 1330 (SO <sub>2</sub> ),<br>1704 (C=O), 3242 | 3.61 (s, 2H, CH <sub>2</sub> ), 7.59 (d, $J = 13.4$ Hz, 1H, H <sub>B</sub> ),<br>7.87 (d, $J = 13.4$ Hz, 1H, H <sub>A</sub> ), 7.38–7.79<br>(m 5U Arth) 0.84 (m c 1H, OU) | 52.2 (CH <sub>2</sub> ), 135.9 (SO <sub>2</sub> CH), 142.4 (CHS),<br>170.2 (COOH), 128.2, 129.5, 130.2, 132.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                  |
| 2h       | (OH)<br>1125 1333 (SO.)                            | (m, 5H, ATH), 9.84 (bf s, 1H, OH)<br>2.23 (s 3H $Ar$ -CH.) 3.57 (s 2H CH.) 7.62                                                                                           | (aromatic carbons)<br>22.3 ( $Ar$ -CH <sub>2</sub> ) 51.8 (CH <sub>2</sub> ) 136.4 (SO <sub>2</sub> CH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                  |
| 20       | $1123, 1333 (30_2),$<br>1710 (C=0) 3247            | (d I = 13.7  Hz - 11  Hz), 7.94 (d I = 13.7  Hz)                                                                                                                          | 141.6 (CHS) 169.7 (COOH) 127.4 129.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|          | (OH)                                               | (a, b = 10.7  Hz, 111, 112, 113, 112, 112, 112, 112, 112                                                                                                                  | 130.7. 131.6 (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
|          |                                                    | (br s, 1H, OH)                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| 2c       | 1120, 1338 (SO <sub>2</sub> ),                     | 3.68 (s, 2H, CH <sub>2</sub> ), $7.56$ (d, $J = 14.0$ Hz, 1H, H <sub>B</sub> ),                                                                                           | 52.9 (CH <sub>2</sub> ), 135.4 (SO <sub>2</sub> CH), 142.9 (CHS),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | —                  |
|          | 1708 (C=O), 3249                                   | 7.89 (d, $J = 13.8$ Hz, 1H, H <sub>A</sub> ), 7.51–7.84                                                                                                                   | 171.0 (COOH), 128.6, 130.2, 131.6, 134.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
|          | (OH)                                               | (m, 4H, ArH), 9.82 (br s, 1H, OH)                                                                                                                                         | (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| 3a       | 1118, 1334 (SO <sub>2</sub> ),                     | 4.36 (s, 2H, $SO_2CH_2$ ), 7.61 (d, $J = 14.3$ Hz, 1H,                                                                                                                    | 58.8 (-SO <sub>2</sub> CH <sub>2</sub> ), 135.9 (SO <sub>2</sub> CH), 141.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                  |
|          | 1706 (C=O), 3251                                   | $H_B$ ), 7.84 (d, $J = 14.3$ Hz, 1H, $H_A$ ), 7.51–7.79                                                                                                                   | (CHSO <sub>2</sub> ), 170.7 (COOH), 127.5, 128.8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| 2h       | (OH)<br>1115 1240 (SO )                            | (m, 5H, AFH), 9.79 (or s, 1H, OH)<br>2.26 (c. 2H, A=CH), 4.21 (c. 2H, CH), 7.62                                                                                           | 130.2, 131.4 (aromatic carbons)<br>22.6 (Ar, CH) 58.4 (SO CH) 126.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
| 30       | $1713, 1340 (30_2),$<br>1714 (C=0) 3254            | (d I - 14.6  Hz 1  H  Hz) 7.93 (d I - 14.6  Hz)                                                                                                                           | $(SO_2CH)$ 140.7 (CHSO <sub>2</sub> ) 171.1 (COOH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                  |
|          | (OH)                                               | (a, b = 14.0  Hz, 111, 11g), 7.55 (a, b = 14.0  Hz, 111, 11g), 7.55 (a, b = 14.0  Hz, 112, 114, 114, 114, 114, 114, 114, 114                                              | 127 1 128 3 129 4 130 8 (aromatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|          | (011)                                              | (br s, 1H, OH)                                                                                                                                                            | carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
| 3c       | 1119, 1339 (SO <sub>2</sub> ),                     | 4.37 (s, 2H, $-SO_2CH_2$ ), 7.68 (d, $J = 14.8$ Hz,                                                                                                                       | 57.9 (CH <sub>2</sub> ), 136.7 (SO <sub>2</sub> CH), 142.2 (CHSO <sub>2</sub> ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                  |
|          | 1716 (C=O), 3252                                   | 1H, H <sub>B</sub> ), 7.99 (d, $J = 14.8$ Hz, 1H, H <sub>A</sub> ),                                                                                                       | 172.3 (COOH), 127.8, 128.6, 131.2, 135.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
|          | (OH)                                               | 7.42-7.88 (m, 4H, ArH), 9.91 (br s, 1H, OH)                                                                                                                               | (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| 4a       | 1124, 1332 (SO <sub>2</sub> ),                     | $3.78$ (s, 3H, OCH <sub>3</sub> ), $4.15$ (s, 2H, $-SO_2CH_2$ ),                                                                                                          | 53.5 (OCH <sub>3</sub> ), 59.0 (CH <sub>2</sub> ), 137.8 (SO <sub>2</sub> CH),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 304.34             |
|          | 1746 (C=O)                                         | 7.41 (d, $J = 14.7$ Hz, 1H, H <sub>B</sub> ), 7.93 (d,                                                                                                                    | 143.6 (CHSO <sub>2</sub> ), 167.6 (CO <sub>2</sub> CH <sub>3</sub> ), 128.6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
| 45       | 1127 1224 (80.)                                    | $J = 14./HZ, 1H, H_A, 7.5/-7.82$ (m, 5H, ArH)                                                                                                                             | 129.8, 135.0, 137.3 (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 219 27             |
| 40       | $1127, 1554 (50_2),$<br>1743 (C=0)                 | $(s, 2H - SO_{2}CH_{2}), 7.48 (d, I - 14.3 Hz, 1H)$                                                                                                                       | $(SO_{2}CH_{2})$ 136 9 (SO <sub>2</sub> CH) 144 3 (CHSO <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 518.57             |
|          | 1745 (C=0)                                         | (3, 21, $3022012$ ), 7.40 (d, $J = 14.512$ , 11,<br>H <sub>p</sub> ) 7.84 (d $J = 14.3$ Hz 1H H <sub>A</sub> ) 7.42–7.75                                                  | $(50_2 \text{eH}_2), 150.5, (50_2 \text{eH}), 144.5, (6150_2), 168.5, (CO_2 \text{CH}_2), 128.4, 130.6, 132.3, 136.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
|          |                                                    | (m, 4H, ArH)                                                                                                                                                              | (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| 4c       | 1123, 1339 (SO <sub>2</sub> ),                     | 3.68 (s, 3H, OCH <sub>3</sub> ), 4.17 (s, 2H, CH <sub>2</sub> ), 7.45                                                                                                     | 22.1 (Ar-CH <sub>3</sub> ), 52.9 (OCH <sub>3</sub> ), 59.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 338.78             |
|          | 1749 (C=O)                                         | (d, $J = 13.9$ Hz, 1H, H <sub>B</sub> ), 7.78 (d, $J = 13.9$ Hz,                                                                                                          | (SO <sub>2</sub> CH <sub>2</sub> ), 138.2 (SO <sub>2</sub> CH), 142.9 (CHSO <sub>2</sub> ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|          |                                                    | 1H, H <sub>A</sub> ), 7.49–7.78 (m, 4H, ArH)                                                                                                                              | 169.7 (CO <sub>2</sub> CH <sub>3</sub> ), 128.2, 130.4, 132.7, 136.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|          |                                                    |                                                                                                                                                                           | (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| 6a       | 1129, 1341 (SO <sub>2</sub> ),                     | 3.94 (s, $3H$ , N–CH <sub>3</sub> ), $6.78$ (d, $1H$ , C <sub>5</sub> –H,                                                                                                 | 38.4 (N–CH <sub>3</sub> ), 107. 9 (C-4), 141.1 (C-5),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 222.26             |
|          | 15/4 (C=N)                                         | J = 2./ Hz), $7.39$ (d, 1H, C <sub>4</sub> -H, $J = 2./$ Hz),<br>7.26 8.04 (m 5H Ar H)                                                                                    | 151.6 (C-3), $127.7$ , $129.0$ , $131.9$ , $133.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| 6h       | 1130 1336 (SO <sub>2</sub> )                       | 7.20-8.04 (III, 5H, AI-H)<br>2 27 (s 3H Ar-CH <sub>2</sub> ) 3 91 (s 3H N-CH <sub>2</sub> )                                                                               | (aromatic carbons)<br>22 4 (Ar-CH <sub>2</sub> ) 39 1 (N-CH <sub>2</sub> ) 107 4 (C-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 236.29             |
| 00       | 1579 (C=N)                                         | 6.74 (d. 1H. C <sub>5</sub> -H. $J = 2.6$ Hz), 7.36 (d. 1H.                                                                                                               | 142.7 (C-5), 151.1 (C-3), 127.2, 128.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 250.27             |
|          |                                                    | $C_4$ -H, $J = 2.6$ Hz), 7.20-7.89 (m, 4H, Ar-H)                                                                                                                          | 131.1, 133.6 (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| 6c       | 1124, 1338 (SO <sub>2</sub> ),                     | 3.98 (s, 3H, N-CH <sub>3</sub> ), 6.80 (d, 1H, C <sub>5</sub> -H,                                                                                                         | 39.6 (N-CH <sub>3</sub> ), 108.8 (C-4), 143.2 (C-5),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 256.71             |
|          | 1582 (C=N)                                         | J = 2.9 Hz), 7.32 (d, 1H, C <sub>4</sub> -H, $J = 2.9$ Hz),                                                                                                               | 152.6 (C-3), 127.6, 128.4, 131.4, 134.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|          |                                                    | 7.27-7.86 (m, 4H, Ar-H)                                                                                                                                                   | (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |
| 7a       | 1122, 1334 (SO <sub>2</sub> ),                     | 3.72 (s, 3H, OCH <sub>3</sub> ), 4.21 (s, 2H, SO <sub>2</sub> -CH <sub>2</sub> ),                                                                                         | 53.2 (OCH <sub>3</sub> ), 59.5 (SO <sub>2</sub> -CH <sub>2</sub> ), 106.8 (C-3),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                  |
|          | 1744 (C=O), 3375                                   | 6.96 (s, 1H, $C_2$ -H), 7.09 (s, 1H, $C_5$ -H), 10.21                                                                                                                     | 109.6 (C-4), 115.4 (C-2), 118.3 (C-5), 168.2 (C-2), 120.4, 120.4, 120.2 (C-5), 168.2 (C-5), 16 |                    |
|          | (NH)                                               | (br s, 1H, NH), 7.35–7.81 (m, 5H, Ar–H)                                                                                                                                   | $(CO_2CH_3)$ , 128.2, 129.4, 132.4, 133.3<br>(aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |
| 7b       | 1132, 1323 (SO <sub>2</sub> )                      | 2.31 (s. 3H. Ar-CH <sub>2</sub> ), 3.65 (s. 3H. OCH <sub>2</sub> ), 4.18                                                                                                  | 22.7 (Ar-CH2) 52.7 (OCH2) 59.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                  |
| 10       | 1743 (C=0), 3368                                   | $(s, 2H, SO_2-CH_2), 6.86 (s, 1H, C_2-H), 7.02$                                                                                                                           | $(SO_2-CH_2), 105.6 (C-3), 108.9 (C-4), 115.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |
|          | (NH)                                               | (s, 1H, C <sub>5</sub> –H), 10.15 (br s, 1H, NH), 7.31–7.78                                                                                                               | (C-2), 117.1 (C-5), 168.5 (CO <sub>2</sub> CH <sub>3</sub> ), 128.8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|          |                                                    | (m, 4H, Ar-H)                                                                                                                                                             | 129.6, 131.2, 132.1 (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
| 7c       | 1120, 1332 (SO <sub>2</sub> ),                     | 3.74 (s, 3H, OCH <sub>3</sub> ), 4.25 (s, 2H, SO <sub>2</sub> -CH <sub>2</sub> ),                                                                                         | 53.5 (OCH <sub>3</sub> ), 58.7 (SO <sub>2</sub> -CH <sub>2</sub> ), 104.8 (C-3),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                  |
|          | 1749 (C=O), 3378                                   | 6.88 (s, 1H, C <sub>2</sub> -H), 7.11 (s, 1H, C <sub>5</sub> -H), 10.26                                                                                                   | 109.1 (C-4), 115.2 (C-2), 117.9 (C-5), 169.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |
|          | (NH)                                               | (br s, 1H, NH), 7.24–7.84 (m, 4H, Ar–H)                                                                                                                                   | $(CO_2CH_3)$ , 128.4, 129.2, 131.4, 133.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
| 80       | 1122 1221 (50)                                     |                                                                                                                                                                           | (aromatic carbons) $50.2 (SO - CH) = 102.6 (C, 2) = 108.2 (C, 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
| od       | $1152, 1551 (50_2),$<br>1646 (C-O) 3210            | $4.24$ (s, $2\pi$ , $5U_2 - C\pi_2$ ), $5.10$ (or s, $2\pi$ , $NH_2$ ),<br>6.90 (s. 1H C <sub>2</sub> -H) 7.06 (s. 1H C <sub>2</sub> -H) 0.46                             | $39.2 (30_2 - C\pi_2), 103.0 (C-3), 108.2 (C-4), 114.9 (C-2), 117.2 (C-5), 167.4 (CO), 129.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                  |
|          | $(NH_2)$ , 3381 (NH)                               | (br s 1H NH) 10 12 (br s 1H NH) 7 29 $-774$                                                                                                                               | 129.4 131.3 132.8 (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|          | (1112), 2001 (111)                                 | (m, 5H, Ar-H)                                                                                                                                                             | 125.1, 191.5, 192.6 (aromatic caroons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
| 8b       | 1128, 1329 (SO <sub>2</sub> ),                     | 2.35 (s, 3H, Ar–CH <sub>3</sub> ), 4.20 (s, 2H, SO <sub>2</sub> –CH <sub>2</sub> ),                                                                                       | 22.4 (Ar-CH <sub>3</sub> ), 58.7 (SO <sub>2</sub> -CH <sub>2</sub> ), 103.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                  |
|          | 1642 (C=O), 3221                                   | 5.04 (br s, 2H, NH <sub>2</sub> ), 6.84 (s, 1H, C <sub>2</sub> -H), 7.13                                                                                                  | (C-3), 108.4 (C-4), 115.2 (C-2), 116.8 (C-5),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|          | (NH <sub>2</sub> ), 3374 (NH)                      | (s, 1H, C <sub>5</sub> -H), 9.20 (br s, 1H, NH), 10.06                                                                                                                    | 167.7 (CO), 127.8, 128.9, 130.6, 131.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|          |                                                    | (br s, 1H, NH), 7.22-7.76 (m, 4H, Ar-H)                                                                                                                                   | (aromatic carbons)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |

(continued on next page)

Table 2 (continued)

| Compound no. | IR (KBr) $cm^{-1}$                                                                                | <sup>1</sup> H NMR (CDCl <sub>3</sub> ) $\delta$ ppm                                                                                                                                                                                                           | <sup>13</sup> C NMR (CDCl <sub>3</sub> ) $\delta$ ppm                                                                                                                                                        | Mass $m/z$<br>(M <sup>+•</sup> ) |
|--------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 8c           | 1135, 1333 (SO <sub>2</sub> ),<br>1650 (C=O), 3227<br>(NH <sub>2</sub> ), 3389 (NH)               | 4.22 (s, 2H, SO <sub>2</sub> -CH <sub>2</sub> ), 5.14 (br s, 2H, NH <sub>2</sub> ),<br>6.87 (s, 1H, C <sub>2</sub> -H), 7.08 (s, 1H, C <sub>5</sub> -H), 9.27<br>(br s, 1H, NH), 10.09 (br s, 1H, NH), 7.27-7.81<br>(m, 4H, Ar-H)                              | 59.5 (SO <sub>2</sub> -CH <sub>2</sub> ), 103.2 (C-3), 108.9 (C-4),<br>115.8 (C-2), 117.2 (C-5), 167.9 (CO), 128.2,<br>131.3, 132.6, 133.9 (aromatic carbons)                                                |                                  |
| 9a           | 1125, 1307 (SO <sub>2</sub> ),<br>1038 (C=S), 1690<br>(CO), 3436 (NH)                             |                                                                                                                                                                                                                                                                | _                                                                                                                                                                                                            | _                                |
| 9b           | 1120, 1310 (SO <sub>2</sub> ),<br>1042 (C=S), 1682<br>(CO), 3436 (NH)                             | _                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                            | _                                |
| 9c           | 1128, 1314 (SO <sub>2</sub> ),<br>1043 (C=S), 1692<br>(CO), 3442 (NH)                             | _                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                            | _                                |
| 10a          | 1125, 1330 (SO <sub>2</sub> ),<br>1628 (C=N), 2551<br>(SH), 3368 (NH)                             | 4.24 (s, 2H, SO <sub>2</sub> -CH <sub>2</sub> ), 6.91 (s, 1H, C <sub>2</sub> -H),<br>7.12 (s, 1H, C <sub>5</sub> -H), 10.18 (br s, 1H, NH), 10.21<br>(s, 1H, SH), 7.22-7.73 (m, 5H, Ar-H)                                                                      | 58.1 (SO <sub>2</sub> CH <sub>2</sub> ), 102.8 (C-3), 108.2 (C-4),<br>115.2 (C-2), 116.6 (C-5), 163.7 (C-2'), 168.2<br>(C-5'), 128.9, 129.3, 131.8, 132.8 (aromatic<br>carbons)                              | 401.5                            |
| 10b          | 1132, 1337 (SO <sub>2</sub> ),<br>1632 (C=N), 2556<br>(SH), 3352 (NH)                             | 2.29 (s, 3H, Ar–CH <sub>3</sub> ), 4.23 (s, 2H, SO <sub>2</sub> –CH <sub>2</sub> ),<br>6.97 (s, 1H, C <sub>2</sub> –H), 7.08 (s, 1H, C <sub>5</sub> –H), 10.18<br>(br s, 1H, NH), 10.23 (s, 1H, SH), 7.24–7.78<br>(m, 4H, Ar–H)                                | 22.8 (Ar–CH <sub>3</sub> ), 58.4 (SO <sub>2</sub> –CH <sub>2</sub> ), 102.4 (C-3), 109.4 (C-4), 114.9 (C-2), 118.2 (C-5), 163.4 (C-2'), 168.6 (C-5'), 128.4, 129.7, 131.3, 131.6 (aromatic carbons)          | 415.53                           |
| 10c          | 1137, 1331 (SO <sub>2</sub> ),<br>1639 (C=N), 2552<br>(SH), 3364 (NH)                             | 4.26 (s, 2H, SO <sub>2</sub> -CH <sub>2</sub> ), 6.91 (s, 1H, C <sub>2</sub> -H),<br>7.13 (s, 1H, C <sub>5</sub> -H), 10.06 (br s, 1H, NH), 10.27<br>(s, 1H, SH), 7.28-7.84 (m, 4H, Ar-H)                                                                      | 58.9 (SO <sub>2</sub> CH <sub>2</sub> ), 101.9 (C-3), 109.7 (C-4),<br>115.4 (C-2), 119.4 (C-5), 163.2 (C-2'), 168.9<br>(C-5'), 128.1, 129.9, 131.7, 133.4 (aromatic<br>carbons)                              | 435.95                           |
| 11a          | 1131, 1338 (SO <sub>2</sub> ),<br>1621 (C=N), 3347<br>(NH)                                        | 4.27 (s, 2H, SO <sub>2</sub> -CH <sub>2</sub> ), 6.87 (s, 1H, C <sub>2</sub> -H),<br>7.09 (s, 1H, C <sub>5</sub> -H), 10.02 (br s, 1H, NH), 10.24<br>(s, 1H, SH), 7.27-7.81 (m, 5H, Ar-H)                                                                      | 58.8 (SO <sub>2</sub> -CH <sub>2</sub> ), 102.4 (C-3), 110.3 (C-4),<br>114.9 (C-2), 119.5 (C-5), 161.2 (C-2'), 168.6<br>(C-5'), 128.3, 129.6, 131.7, 132.2 (aromatic<br>carbons)                             | 385.44                           |
| 11b          | 1127, 1330 (SO <sub>2</sub> ),<br>1633 (C=N), 2634<br>(SH), 3338 (NH)                             | 2.26 (s, 3H, Ar–CH <sub>3</sub> ), 4.24 (s, 2H, SO <sub>2</sub> –CH <sub>2</sub> ),<br>6.84 (s, 1H, C <sub>2</sub> –H), 7.12 (s, 1H, C <sub>5</sub> –H), 10.07<br>(br s, 1H, NH), 10.18 (s, 1H, SH), 7.23–7.77 (m,<br>4H, Ar–H)                                | 22.3 (Ar–CH <sub>3</sub> ), 58.4 (SO <sub>2</sub> –CH <sub>2</sub> ), 102.8<br>(C-3), 109.6 (C-4), 114.3 (C-2), 119.1 (C-5),<br>160.8 (C-2'), 168.2 (C-5'), 128.4, 129.3,<br>130.9, 131.7 (aromatic carbons) | 399.47                           |
| 11c          | 1134, 1337 (SO <sub>2</sub> ),<br>1622 (C=N), 2631<br>(SH), 3332 (NH)                             | 4.30 (s, 2H, SO <sub>2</sub> -CH <sub>2</sub> ), 6.89 (s, 1H, C <sub>2</sub> -H),<br>7.16 (s, 1H, C <sub>5</sub> -H), 10.08 (br s, 1H, NH), 10.21<br>(s, 1H, SH), 7.25-7.84 (m, 4H, Ar-H)                                                                      | 58.8 (SO <sub>2</sub> -CH <sub>2</sub> ), 103.3 (C-3), 109.9 (C-4),<br>114.8 (C-2), 119.7 (C-5), 160.6 (C-2'), 168.5<br>(C-5'), 128.7, 129.8, 130.4, 132.3 (aromatic<br>carbons)                             | 419.88                           |
| 12a          | 1126, 1334 (SO <sub>2</sub> ),<br>1632 (C=N), 2571<br>(SH), 3256 (NH <sub>2</sub> ),<br>3328 (NH) | 4.23 (s, 2H, SO <sub>2</sub> -CH <sub>2</sub> ), 6.85 (s, 1H, C <sub>2</sub> -H),<br>7.05 (s, 1H, C <sub>5</sub> -H), 5.42 (s, 2H, NH <sub>2</sub> ), 10.03<br>(br s, 1H, NH), 10.19 (s, 1H, SH), 7.24–7.79<br>(m, 5H, Ar-H)                                   | 58.2 (SO <sub>2</sub> -CH <sub>2</sub> ), 102.6 (C-3), 109.4 (C-4),<br>114.5 (C-2), 119.5 (C-5), 143.8 (C-3'), 167.3<br>(C-5'), 128.1, 129.4, 131.2, 132.7 (aromatic<br>carbons)                             | 399.47                           |
| 12b          | 1133, 1332 (SO <sub>2</sub> ),<br>1637 (C=N), 2564<br>(SH), 3261 (NH <sub>2</sub> ),<br>3321 (NH) | 2.25 (s, 3H, Ar–CH <sub>3</sub> ), 4.26 (s, 2H, SO <sub>2</sub> –CH <sub>2</sub> ),<br>6.82 (s, 1H, C <sub>2</sub> –H), 7.10 (s, 1H, C <sub>5</sub> –H), 5.36<br>(s, 2H, NH <sub>2</sub> ), 9.98 (br s, 1H, NH), 10.25<br>(s, 1H, SH), 7.32–7.83 (m, 4H, Ar–H) | 22.6 (Ar–CH <sub>3</sub> ), 58.2 (SO <sub>2</sub> –CH <sub>2</sub> ), 102.4<br>(C-3), 109.2 (C-4), 114.7 (C-2), 119.2 (C-5),<br>143.2 (C-3'), 167.9 (C-5'), 128.7, 129.9,<br>131.7, 132.5 (aromatic carbons) | 413.5                            |
| 12c          | 1139, 1341 (SO <sub>2</sub> ),<br>1643 (C=N), 2579<br>(SH), 3252 (NH <sub>2</sub> ),<br>3334 (NH) | 4.21 (s, 2H, SO <sub>2</sub> -CH <sub>2</sub> ), 6.47 (s, 1H, C <sub>2</sub> -H),<br>6.72 (s, 1H, C <sub>5</sub> -H), 5.45 (s, 2H, NH <sub>2</sub> ), 10.06<br>(br s, 1H, NH), 10.28 (s, 1H, SH), 7.29–7.79<br>(m, 4H, Ar-H)                                   | 58.4 (SO <sub>2</sub> -CH <sub>2</sub> ), 102.9 (C-3), 109.7 (C-4),<br>114.8 (C-2), 119.8 (C-5), 144.6 (C-3'), 168.4<br>(C-5'), 128.4, 129.5, 131.1, 132.3<br>(aromatic carbons)                             | 433.91                           |

were poured onto crushed ice and neutralized with conc. HCl. The aqueous layer was extracted with ethyl acetate and the solvent was removed under reduced pressure. The resultant solid was recrystallized from water.

## 5.1.2. General procedure for the synthesis of E-arylsulfonylethenesulfonylacetic acid **3a**-c

The compound **2** (1 mmol) was subjected to oxidation with 30% hydrogen peroxide (4.37 ml) in glacial acetic acid (7 ml). The contents were stirred at  $0 \degree C$  for 4 h and kept aside for

36 h. Then the reaction mixture was poured onto crushed ice. The solid separated was filtered, dried and recrystallized from water.

## 5.1.3. General procedure for the synthesis of E-arylsulfonylethenesulfonylacetic acid methyl ester **4***a*–*c*

To a solution of compound 3 (1 mmol) in methanol (10 ml), sulfuric acid (2 ml) was added and refluxed for 6-8 h. The contents were cooled and poured onto crushed

Table 3 Antibacterial activity of compounds **10–12** 

| Compound      | Concentration | Zone of inhibition (mm) |                        |         |                           |  |
|---------------|---------------|-------------------------|------------------------|---------|---------------------------|--|
|               | (µg/disc)     | Gram-pos<br>bacteria    | Gram-positive bacteria |         | Gram-negative<br>bacteria |  |
|               |               | S. aureus               | B. subtilis            | E. coli | K. pneumoniae             |  |
| 10a           | 100           | 18                      | 21                     | 16      | 17                        |  |
|               | 200           | 20                      | 23                     | 20      | 21                        |  |
| 10b           | 100           | 16                      | 17                     | 18      | 16                        |  |
|               | 200           | 17                      | 19                     | 20      | 19                        |  |
| 10c           | 100           | 25                      | 28                     | 22      | 23                        |  |
|               | 200           | 30                      | 32                     | 27      | 28                        |  |
| 11a           | 100           | 12                      | 11                     | 14      | 13                        |  |
|               | 200           | 15                      | 13                     | 17      | 16                        |  |
| 11b           | 100           | 11                      | 12                     | 11      | 11                        |  |
|               | 200           | 14                      | 16                     | 14      | 13                        |  |
| 11c           | 100           | 14                      | 14                     | 10      | 11                        |  |
|               | 200           | 17                      | 18                     | 12      | 13                        |  |
| 12a           | 100           | 28                      | 31                     | 22      | 21                        |  |
|               | 200           | 32                      | 35                     | 26      | 22                        |  |
| 12b           | 100           | 24                      | 25                     | 20      | 21                        |  |
|               | 200           | 28                      | 27                     | 24      | 23                        |  |
| 12c           | 100           | 32                      | 34                     | 23      | 26                        |  |
|               | 200           | 35                      | 38                     | 25      | 28                        |  |
| Ciprofloxacin | 100           | 34                      | 36                     | 40      | 37                        |  |
| 1             | 200           | 38                      | 42                     | 45      | 42                        |  |

ice. The solid separated was filtered, dried and recrystallized from methanol.

### 5.1.4. General procedure for the synthesis of N-methyl-3-arylsulfonylpyrazole **6a-c**

To a cooled solution of arylsulfonylethenesulfonylacetic acid methyl ester 4a-c (5 mmol) in dichloromethane (20 ml), an ethereal solution of diazomethane (40 ml, 0.4 M) and triethylamine (0.12 g) were added. The reaction mixture was kept at -20 to -15 °C for 40-48 h. The solvent was removed under reduced pressure. The resultant solid was purified by column chromatography (hexane/ethyl acetate, 4:1).

## 5.1.5. General procedure for the synthesis of (4-arylsulfonyl-1H-pyrrole-3-sulfonyl)- acetic acid methyl ester **7a-c**

An equimolar mixture (1 mmol) of TosMIC and 4a-c in Et<sub>2</sub>O/DMSO (10 ml, 2:1) was added dropwise to a stirred suspension of NaH (50 mg) in dry Et<sub>2</sub>O (10 ml) at room temperature. Then stirring was continued for 24 h and diluted with water. It was extracted with Et<sub>2</sub>O and the organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. Removal of the solvent gave crude product which was purified by filtration through a column of silica gel (BDH, 60–120 mesh with hexane/EtOAc, 4:1) as eluent.

| Table 4    |          |        |        |         |
|------------|----------|--------|--------|---------|
| Antifungal | activity | of com | pounds | 10 - 12 |

| Compound     | Concentration (µg/disc) | Zone of in | Zone of inhibition (mm) |          |  |  |
|--------------|-------------------------|------------|-------------------------|----------|--|--|
|              |                         | F. solani  | C. lunata               | A. niger |  |  |
| 10a          | 100                     | 25         | 28                      | 24       |  |  |
|              | 200                     | 27         | 29                      | 29       |  |  |
| 10b          | 100                     | 25         | 22                      | 21       |  |  |
|              | 200                     | 27         | 24                      | 24       |  |  |
| 10c          | 100                     | 26         | 23                      | 26       |  |  |
|              | 200                     | 31         | 25                      | 28       |  |  |
| 11a          | 100                     | 18         | 17                      | 15       |  |  |
|              | 200                     | 20         | 21                      | 20       |  |  |
| 11b          | 100                     | 16         | 15                      | 17       |  |  |
|              | 200                     | 19         | 18                      | 21       |  |  |
| 11c          | 100                     | 18         | 17                      | 15       |  |  |
|              | 200                     | 21         | 20                      | 18       |  |  |
| 12a          | 100                     | 33         | 34                      | 30       |  |  |
|              | 200                     | 36         | 36                      | 34       |  |  |
| 12b          | 100                     | 29         | 28                      | 34       |  |  |
|              | 200                     | 33         | 35                      | 36       |  |  |
| 12c          | 100                     | 35         | 38                      | 34       |  |  |
|              | 200                     | 40         | 41                      | 37       |  |  |
| Ketoconazole | 100                     | 38         | 41                      | 36       |  |  |
|              | 200                     | 42         | 44                      | 39       |  |  |

## 5.1.6. General procedure for the synthesis of (4-arylsulfonyl-1H-pyrrole-3-sulfonyl)-acetic acid hydrazide **8a**-c

To a solution of  $7\mathbf{a}-\mathbf{c}$  (1 mmol) in absolute ethanol (5 ml), hydrazine hydrate (4.5 mmol) and pyridine (0.4 ml) were added and stirred for 6 h at room temperature. The resultant solid was filtered, dried and recrystallized from ethanol.

## 5.1.7. General procedure for the preparation of potassium (4-arylsulfonyl-1H-pyrrole-3-sulfonylacetyl)-hydrazine-N'-carbodithioate **9a**-c

To a mixture of potassium hydroxide (2 mmol) and 8a-c (1 mmol) in absolute ethanol (5 ml), carbon disulfide (4 mmol) was added and sonicated for 12 h. The separated solid was filtered and dried.

### 5.1.8. General procedure for the synthesis of 5'-(4-arylsulfonyl-1H-pyrrole-3-sulfonylmethyl)-[1',3',4']thiadiazole-2'-thiol **10a**-c

A mixture of 9a-c (1 mmol) and acetic acid (4 ml) was refluxed for 24 h. The contents of the flask were cooled and poured onto crushed ice. The solid obtained was filtered, dried and recrystallized from 2-propanol.

### 5.1.9. General procedure for the synthesis of 5'-(4-arylsulfonyl-1H-pyrrole-3-sulfonylmethyl)-[1',3',4']oxadiazole-2'-thiol **11a**-c

The compound 9a-c (1 mmol) was dissolved in 6 ml of water and acidified with conc. HCl (1-2 ml). The regenerated solid was filtered, dried and purified by recrystallization from 2-propanol.

| Compound      | Minimal inhibitory concentration (MIC, µg/ml) |             |         |               |           |           |          |  |
|---------------|-----------------------------------------------|-------------|---------|---------------|-----------|-----------|----------|--|
|               | S. aureus                                     | B. subtilis | E. coli | K. pneumoniae | F. solani | C. lunata | A. niger |  |
| 10c           | 100                                           | 200         | 200     | 200           | 100       | 100       | 200      |  |
| 12a           | 25                                            | 100         | 100     | 100           | 100       | 100       | 100      |  |
| 12c           | 12.5                                          | 50          | 50      | 50            | 50        | 12.5      | 25       |  |
| Ciprofloxacin | 6.25                                          | 6.25        | 6.25    | 6.25          | _         | _         | _        |  |
| Ketoconazole  | _                                             | _           | _       | _             | 12.5      | 6.25      | 6.25     |  |

Table 5 The minimal inhibitory concentration (MIC,  $\mu$ g/ml) of compounds 10c, 12a and 12c

### 5.1.10. General procedure for the preparation of 4'amino-5'-(4-arylsulfonyl-1H-pyrrole-3-sulfonylmethyl)-[1',2',4']triazole-3'-thiol **12a**-c

To a solution of 9a-c (1 mmol) in 6 ml of water, hydrazine hydrate (2 mmol) was added and refluxed for 8-9 h. The contents of the flask were cooled, diluted with water and acidified with acetic acid (2 ml). The separated solid was filtered, dried and recrystallized from 2-propanol.

### 5.2. Biological assays

### 5.2.1. Compounds

The compounds 10-12 were dissolved in DMSO at different concentrations of 100, 200 and 800 µg/ml.

### 5.2.2. Cells

Bacterial strains *S. aureus*, *B. subtilis*, *E. coli*, *K. pneumonie* and fungi *F. solani*, *C. lunata* and *A. niger* were obtained from NCIM, Pune, India.

### 5.2.3. Antibacterial and antifungal assays

Preliminary antimicrobial activities of **10–12** compounds were tested by Agar disc-diffusion method. Sterile filter paper discs (6 mm diameter) moistened with the test compound solution in DMSO of specific concentration 100 and 200  $\mu$ g/ disc were carefully placed on the agar culture plates that had been previously inoculated separately with the microorganisms. The plates were incubated at 37 °C and the diameter of the growth inhibition zones were measured after 24 h in case of bacteria and after 48 h in case of fungi.

The MICs of the compound assays were carried out using microdilution susceptibility method. Ciprofloxacin was used as reference antibacterial agent. Ketoconazole was used as reference antifungal agent. The test compounds, ciprofloxacin and ketoconazole were dissolved in DMSO at concentration of 800  $\mu$ g/ml. The twofold dilution of the solution was prepared (400, 200, 100, ..., 6.25  $\mu$ g/ml). The microorganism suspensions were inoculated to the corresponding wells. The plates were incubated at 36 °C for 24 and 48 h for bacteria and fungi, respectively. The minimum inhibitory concentrations of the compounds were recorded as the lowest concentration of each chemical compounds in the tubes with no turbidity (*i.e.* no growth) of inoculated bacteria/fungi.

### Acknowledgements

The authors are thankful to DST New Delhi, India for the financial assistance under major research project and to Prof. P. Kondaiah, Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore for providing necessary facilities to carryout the cytotoxic activity of the compounds.

### References

- [1] W.R. Tully, C.R. Gardner, R.J. Gillespie, R. Westwood, J. Med. Chem. 34 (1991) 2060.
- [2] C. Chen, C.H. Senanayake, T.J. Bill, R.D. Larsen, T.R. Veshoeven, P.J. Reider, J. Org. Chem. 59 (1994) 3738.
- [3] J. Saunders, M. Cassidy, S.B. Freedman, E.A. Harley, L.L. Iversen, C. Kneen, A.M. Macleod, K.J. Merchant, R.J. Snow, R. Baker, J. Med. Chem. 33 (1990) 1128.
- [4] C.J. Swain, R. Baker, C. Kneen, J. Moseley, J. Saunders, E.M. Seward, G. Stevenson, M. Beer, J. Stanton, K. Walting, J. Med. Chem. 34 (1991) 140.
- [5] T. Ladduwahetty, R. Baker, M.A. Cascieri, M.S. Chambers, K. Haworth, L.E. Keown, D.E. MacIntyre, J.M. Metzer, S. Owen, W. Rycroft, S. Sadowski, E.M. Seward, S.L. Shepheard, C.J. Swain, F.D. Tattersall, A.P. Watt, D.W. Williamson, R.J. Hargreaves, J. Med. Chem. 39 (1996) 2907.
- [6] G.D. Diana, D.L. Volkots, T.J. Nitz, T.R. Baily, M.A. Long, N. Vesico, A. Aldous, D.C. Pevear, F.J. Dukto, J. Med. Chem. 37 (1994) 2421.
- [7] F.A. Omar, N.M. Mahfouz, M.A. Rahman, Eur. J. Med. Chem. 31 (1996) 819.
- [8] S. Borg, G. Estenne-Bouhtou, K. Luthman, I. Csoregh, W. Hesselink, U. Hacksell, J. Org. Chem. 60 (1995) 3112.
- [9] S. Borg, R. Vollinga, M. Labarre, K. Payza, L. Terenius, K. Luthman, J. Med. Chem. 42 (1999) 4331.
- [10] S.K. Srivastava, R.B. Pathak, S.C. Bahel, J. Indian Chem. Soc. 66 (1989) 210.
- [11] A.J. Srivastava, S. Swarup, B.L. Chowdhuri, J. Indian Chem. Soc. 68 (1991) 103.
- [12] S.N. Swamy, B.S. Basappa, P.B. Prabhuswamy, B.H. Doreswamy, J.S. Prasad, K.S. Rangappa, Eur. J. Med. Chem. 41 (2006) 531.
- [13] Z. Wang, T. You, Yu Xu, S. Haijian, S. Haoxin, Molecules 1 (1996) 68.
- [14] R.H. Udupi, A. Kushnoor, A.R. Bhat, J. Indian Chem. Soc. 76 (1999) 461.
- [15] R. Gupta, S. Sudan, P.L. Kachroo, Indian J. Chem. 23B (1984) 793.
- [16] R. Gupta, Satya Paul, A.K. Gupta, P.L. Kachroo, S. Bani, Indian J. Chem. 37B (1998) 498.
- [17] M.D. Mullican, M.W. Wilson, D.T. Connor, C.R. Kostlan, d.J. Schrier, R.D. Dyer, J. Med. Chem. 36 (1993) 1090.
- [18] H.M. Hirpara, V.A. Sodha, A.M. Trivedi, B.L. Khatri, A.R. Parikh, Indian J. Chem. 42B (2003) 1756.
- [19] J. Heeres, L.J. Backx, J. Med. Chem. 27 (1984) 894.
- [20] G. Dannhard, W. Kiefer, G. Kramer, S. Maehrlein, U. Nowe, Eur. J. Med. Chem. 35 (2000) 499.

- [21] V. Padmavathi, P. Thriveni, A. Padmaja, J. Chem. Res., Synop. (2004) 556.
- [22] V. Padmavathi, P. Thriveni, B. Chandra Obula Reddy, K. Mahesh, J. Heterocycl. Chem. 44 (2007) 93.
- [23] V. Padmavathi, A.V. Nagendra Mohan, K. Mahesh, A. Padmaja, Chem. Pharm. Bull., in press.
- [24] National Committee for Clinical Laboratory Standards (NCCLS) Approved Standard Document M-7A, Villanova, PA, 1985.
- [25] G.L. Woods, J.A. Washington, Antibacterial susceptibility tests: dilution and disk diffusion methods, in: P.R. Murray, E.J. Baron, M.A. Pfaller, F.C. Tenover, R.H. Yolken (Eds.), Manual of Clinical Microbiology, sixth ed., ASM Press, Washington, DC, 1995, pp. 1327–1341.
- [26] T. Mosmann, J. Immunol. Methods 65 (1983) 55.
- [27] M.B. Hansen, S.E. Nielsen, K. Berg, J. Immunol. Methods 119 (1989) 203.
- [28] D.B. Reddy, N. Chandrasekhar Babu, V. Padmavathi, R.P. Sumathi, Synthesis (1999) 491.