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Abstract: Reaction of allyl bromide (Z)-1 and (Z)-2 with N-substituted hydroxylamine 

hydrochlorides in presence of tert-butoxide in tert-butanol at reflux provides a short and 

effective route to [1,2]isoxazolidin-5-ones 3 and [1,2]oxazin-6-ones 4. 
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1. Introduction  

Acrylic compounds have become highly attractive and building blocks for the synthesis of several 

biologically active molecules such as α-methylene-γ-butyrolactones [1–5] and γ-butyrolactams [6–9]. 

Several studies have proposed methods for the preparation of compounds bearing a α-bromomethyl 

moiety [10–14] commonly called Baylis-Hillman bromides [15–19]. In an ongoing project aimed at 

further illustrating the potential of readily prepared α-bromomethylated esters analogs 2 [9,20], we 

have shown the importance of functional allylic bromide 2 as an electrophilic reagent for access to 

pyrrolidin-2-ones [9], α-alkyl-β-carbomethoxy-γ-butyrolactams [21,22], (E,Z)-α-alkylidene-γ-butyro-

lactones
 
[23] and 4-methoxycarbonyl-1-N-alkyl-∆

2
-pyrrolidin-2-ones. In order to explore the potential 

of hydroxylamines in organic synthesis, we have been examining their nucleophilic reactivity as an 

N,O-centered tandem nucleophile. We report here a direct synthesis of isoxazolidin-5-ones 3 and 
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oxazin-6-ones 4 via Michael addition then intramolecular cyclization of N-substituted hydroxylamines 

to functional allyl bromides (Z)-1 and (Z)-2 (Scheme 1). 

Scheme 1. Synthesis of [1,2]oxazin-6-ones and [1,2]isoxazolidin-5-ones from allyl 

bromides 1-Z and 2-Z. 
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2. Results and Discussion  

Despite the interesting potential synthetic and pharmacological value of the isoxazolidin-5-ones 3, 

there are only a few works in the literature reporting their synthesis [24,25]. The majority of the 

recorded examples have been prepared by condensation of ester enolates and their equivalents [26–29] 

or pyrazolidinone acrylamides [30] with N-substituted hydroxylamines. More recently, α,β-sugar 

lactones [31–33] were used as good starting Michael acceptors to produce the isoxazolidin-5-one ring 

system, thus providing an effective route for the selective formation of substituted azetidin-2-ones 

[34,35] or β-substituted-β-amino acids [36]. In order to examine the feasibility of the route outlined in 

Scheme 2, available allyl bromides (Z)-1 were prepared. Then, their condensation with a variety of N-

substituted hydroxylamine hydrochlorides in the presence of potassium tert-butoxide in tert-butanol at 

reflux was carried out, which results in the formation of isoxazolidin-5-ones 3 in good yields, as 

shown in Table 1.  

Scheme 2. Synthesis of (E)-4-alkylidene-2-alkylisoxazolidin-5-ones 3 from allyl bromide (Z)-1. 

 

 

Table 1. (E)-4-Alkylidene-2-alkylisoxazolidin-5-ones 3a-e prepared. 

Product R
1
 R

2
 Yield

a
 (%) 

3a
 n

C3H7
 t

C4H9 60 

3b
 

 C6H5 
t
C4H9 83

 

3c
 n

C3H7 
       c

C6H11 48 

3d
 

C6H5  
c
C6H11 61 

3e
 n

C5H11  
c
C6H11 56 

a 
Isolated yield after chromatography. 

 

The initial reaction was considered to be, as described before in our previous work [37], a 

conjugated addition of the hydroxylamine amino group to the allyl bromide (Z)-1 leaving an 

ammonium intermediate which reacted with second hydroxylamine equivalent leading to an expected 
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SN2 product followed by a reasonable transesterification (5-exo-trig process) to give (E)-4-alkylidene-2-

alkylisoxazolidin-5-ones 3 as only isolated products in fair to good yields (48–83%) and with total (E)-

stereoselectivity (Scheme 2, Table 1). 

Although this route in fact proved a successful strategy to access to the five-membered ring 

heterocyclic system of [1,2]isoxazolidin-5-ones 3, we considered the possibility of a more efficient and 

shorter sequence to generate uncommon six member structures bearing the N-O linkage, in particular 

[1,2]oxazin-6-ones 4. Since the [1,2]oxazine and [1,2]oxazinone skeletons have recently been found to 

be the central features in antitumor and antibiotic products [38–40], synthetic methods providing 

access to these skeletons have gained considerable attention [41–44]. To the best of our knowledge, 

there are only a few literature reports on this topic [45–47].
 
As shown in Scheme 3, we found that the 

conjugate addition of N-substituted hydroxylamine hydrochlorides (3 equiv.) to dimethyl (Z)-2-

(bromomethyl) fumarate (2) afforded pure [1,2]oxazin-6-ones 4 in fair to good yields.  

Scheme 3. N-Substituted hydroxylamine addition to dimethyl (Z)-2-(bromomethyl) fumarate (2). 

 

Table 2. Methyl 2-alkyl-6-oxo-5,6-dihydro-2H-1,2-oxazine-4-carboxylate 4a-e prepared. 

Product R Yield
a
 (%) 

4a
 i

C3H7
 

79 

4b
 t

C4H9 76
 

4c
   c

C6H11 58 

4d
 

 C6H5 35 

4e
 

CH2C6H5 6 
a 
Isolated yield after chromatography. 

 

The synthetic approach proceeds through a two-step sequence as expected: allylic substitution 

(SN2’) of allyl bromide 2 by the N,O-binucleophilic reagent providing a zwitterion cyclobutane 

intermediate whose opening leads to the most stable (E) enaminic structure, then a spontaneous 6-exo-

trig [48] cyclization process, leading to the formation of 4. Additional proof of the enaminic system in 

[1,2]oxazin-6-one 4a came from the 
1
H- and 

13
C-NMR data, which unequivocally showed the high and 

low values of the shifts of the vinylic proton at 8.04 ppm and both allylic carbon atom at 27.1 ppm, 

respectively. Surprisingly, the chemical yields were notably lower when N-substituted hydroxylamine 
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moieties bearing phenyl and benzyl groups were used; this is probably due to the low solubility of the 

intermediary imine in the tert-butanol solvent before cyclization.  

 

3. Experimental 

3.1. General 

All reactions were monitored by TLC on silica gel plates (Fluka Kieselgel 60 F254). For column 

chromatography, Fluka Kieselgel 70-230 mesh was used. 
1
H- and 

13
C-NMR spectra (fully decoupled) 

were recorded on a Bruker AMX 300 instrument in CDCl3 as solvent and with TMS as the internal 

standard. IR spectra were recorded with a Perkin-Elmer Paragon 1000 FT-IR spectrophotometer. Mass 

spectrometry was performed on an Autospec 200 Micromass instrument (Waters). Most of the 

reagents and solvents were obtained from commercial sources (Aldrich, Merck, Fluka) and used as 

received. Except for the commercially available dimethyl itaconate, allyl bromides 1 and 2 were 

prepared as described in references [16] and [8], respectively. 

3.2. General procedure for the synthesis of (E)-4-alkylidene-2-alkylisoxazolidin-5-ones 3 

N-Alkylhydroxylammonium chloride (30 mmol) and potassium tert-butoxide (28 mmol) in tert-

butanol (45 mL) were placed in a 100 mL flask under a nitrogen atmosphere. The reaction mixture was 

stirred at reflux for 10 minutes then allyl bromide 1-Z (10 mmol) was added. After the disappearance 

of the substrate (TLC), the mixture was filtered under reduced pressure, evaporated and purified by 

chromatography on silica gel (CH2Cl2) to afford the pure 3. 

(E)-2-N-tert-Butyl-4-butylidene isoxazolidin-5-one (3a): Yield: 60% as a viscous yellow oil; IR (neat) 

1,760, 1,645 cm
-1

; 
1
H-NMR (δ ppm, J Hz): 6.68 (m, 1H), 4.00 (s, 2H), 2.14 (m, 2H), 1.49 (m, 2H), 

1.17 (s, 9H), 0.97 (t, 3H, J = 7); 
13

C-NMR (δ ppm): 168.9 (C=O), 139.9 (=CH), 126.8 (=C), 59.9 

(C(CH3)3), 49.7 (CH2-N), 32.3 (CH2), 24.4 (CH3), 21.4 (CH2), 13.8 (CH3); MS m/z (EI) 197 (M
+.

, 11), 

182 (28), 141 (43), 57 (100), 56 (40), 44 (3), 41 (47), 29 (25); HRMS calcd. for C11H19NO2: 197.1416; 

found: 197.1407.  

(E)-4-Benzylidene-2-N-tert-butylisoxazolidin-5-one (3b): Yield: 83% as a viscous yellow oil; IR (neat) 

1,730, 1,595 cm
-1

; 
1
H-NMR (δ ppm): 7.53 (m, 5H), 7.52 (s, 1H), 3.36 (s, 2H), 1.22 (s, 9H); 

13
C-NMR 

(δ ppm): 170.2 (C=O), 140.3 (=CH), 135.4 (aromatic =C), 130.1 (aromatic =CH), 128.9 (aromatic 

=CH), 128.1 (=C), 124.6 (aromatic =CH), 60.4 (C(CH3)3), 40.2 (NCH2), 24.5 (CH3); MS m/z (EI) 231 

(M
+.

, 14), 216 (24), 175 (49), 130 (48), 115 (64), 57 (100), 56 (45), 44 (4), 41 (53); HRMS calcd. for 

C14H17NO2: 231.1259; found: 231.1270. 

(E)-4-Butylidene-2-N-cyclohexylisoxazolidin-5-one (3c): Yield: 48% as a viscous yellow oil; IR (neat) 

1,725, 1,614 cm
-1

; 
1
H-NMR (δ ppm, J Hz): 6.68 (m, 1H), 3.40 (s, 2H), 2.73 (m, 1H), 2.17 (m, 2H), 

1.96 (m, 10H), 1.27 (m, 2H), 0.96 (t, 3H, J = 7.00); 
13

C-NMR (δ ppm): 168.9 (C=O), 140.4 (=CH), 

126.2 (=C), 67.8 (NCH), 54.7 (NCH2), 31.4 (CH2), 30.8 (CH2), 27.8 (CH2), 25.8 (CH2), 24.2 (CH2), 
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13.9 (CH3); MS m/z (EI) 150 (69), 136 (100), 94 (29), 82 (40), 80 (45), 67 (33), 56 (39), 55 (71), 53 

(34), 44 (6), 41 (71); HRMS calcd. for C13H21NO2: 223.1572; found: 223.1583. 

3.3. General procedure for the synthesis of methyl 2-alkyl-6-oxo-5,6-dihydro-2H-1,2-oxazine-4- 

carboxylates 4 

N-Alkylhydroxylammonium chloride (31 mmol) and potassium tert-butoxide (30 mmol) in tert-

butanol (45 mL) were placed in a 100 mL flask under a nitrogen atmosphere. The reaction mixture was 

stirred at reflux for 10 minutes then was added 2-Z (10 mmol). After disappearance of the substrate 

(TLC), the solution was filtered under reduced pressure, evaporated and purified by chromatography 

on SiO2 with chloroform as an eluent to provide the pure 4. 

Methyl 2-N-iso-propyl-6-oxo-5,6-dihydro-2H-1,2-oxazine-4-carboxylate (4a): Yield: 79% as a yellow 

oil; IR (neat) 1,775, 1,730, 1,620 cm
-1

; 
1
H-NMR (δ ppm, J Hz): 8.04 (s, 1H), 4.01(m, 1H), 3.72 (s, 

3H), 3.31 (s, 2H), 1.33 (d, 6H, J = 6.8); 
13

C-NMR (δ ppm): 171.1 (C=O), 170.5 (C=O), 149.0 (=C), 

95.6 (=CH), 55.3 (CH(CH3)2), 51.8 (OCH3), 27.1 (NCH2), 19.4 (CH3); MS m/z (EI) 199 (M
+.

, 42), 168 

(1), 157 (47), 125 (33), 98 (100); HRMS calcd. for C9H13NO4: 199.0845; found: 199.0855. 

Methyl 2-N-tert-butyl-6-oxo-5,6-dihydro-2H-1,2-oxazine-4-carboxylate (4b): Yield: 76% as a pale 

yellow oil; IR (neat) 1,778, 1,740, 1,660 cm
-1

; 
1
H-NMR (δ ppm): 7.90 (s, 1H), 3.54 (s, 3H), 3.13 (s, 

2H), 1.22 (s, 9H); 
13

C-NMR (δ ppm): 170.9 (C=O), 170.5 (C=O), 147.4 (=CH), 95.8 (=C), 61.2 

(C(CH3)3), 51.7 (OCH3), 27.1 (NCH2), 26.0 (CH3); MS m/z (EI) 213 (M
+.

, 5), 198 (1), 182 (47), 154 

(3), 98 (6), 57 (100); HRMS calcd. for C10H15NO4: 213.1001; found: 213.1012.  

Methyl 2-N-cyclohexyl-6-oxo-5,6-dihydro-2H-1,2-oxazine-4-carboxylate (4c): Yield: 58% as a 

colorless oil; IR (neat) 1,757, 1,735, 1,624 cm
-1

; 
1
H-NMR (δ ppm): 8.03 (s, 1H), 3.72 (s, 3H), 3.30 (s, 

2H), 2.02 (m, H), 1.53 (m, 10H); 
13

C-NMR (δ ppm): 170.9 (C=O), 170.7 (C=O), 148.2 (=CH), 94.4 

(=C), 62.2 (NCH), 51.8 (OCH3), 29.7 (OCCH2), 27.2 (CH2), 24.8 (CH2), 24.2 (CH2); MS m/z (EI) 239 

(M
+.

, 21), 180 (11), 126 (17), 83 (74). HRMS calcd. for C12H17NO4: 239.1158; found: 239.1170.  

4. Conclusions  

We have developed a versatile synthetic approach to obtain [1,2]isoxazolidin-5-ones 3 in good 

yields and with total stereoselectivity. In addition, the method was used in the preparation of  

4-functional heterocyclic compounds 4 in good overall yields.  
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