A New One-Pot, Three-Component Synthesis of 2,3,5-Substituted or Annulated-6-(Methylthio)pyridines

A. K. Yadav, S. K. S. Yadav, I. Siddiqui, S. Peruncheralathan, H. Ila,* H. Junjappa

Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India Fax +91(512)2597436; E-mail: hila@iitk.ac.in *Received 7 June 2008*

Abstract: A new one-pot, three-component synthesis of 2,3,5-substituted (or 2,3-annulated)-6-(methylthio)pyridines by reacting acyclic or cyclic active methylene ketones, ammonium acetate, and bis(methylthio)acrolein (1) or its 2-phenyl analogue **8** (as 3-carbon-1,3-biselectrophilic components) in the presence of either AcOH– TFA (4:1) or ZnBr₂ (or ZnI₂) catalysts has been reported.

Key words: pyridines, cycloannulation, one-pot, three-component synthesis, bis(methylthio)acrolein, ammonium acetate

Substituted pyridines and their benzo/hetero-fused analogues represent an important class of heterocycles because of their presence in numerous natural products, along with useful biological and pharmacological activities¹ displayed by these compounds. In particular, the pyridine structural motif has assumed considerable importance because of its presence in enzymes (NADP), vitamins (niacin, pyridoxine), highly toxic alkaloids (nicotine),² agrochemicals,³ and in several bioactive drugs (isoniazide, sulfapyridines, and COX-2 specific inhibitors).^{4,5} In addition, pyridine derivatives are extensively utilized in preparative organic, coordination, analytical, and supramolecular chemistry.⁶ Recently, certain pyridinium salts have been used as ionic liquids with potential scope in 'green' industrial applications.^{2,7} Therefore development of new, efficient, and regiospecific methods for the synthesis of pyridine scaffolds with diverse functionalities and substituents remains an area of current interest. Several elegant general syntheses of pyridine ring systems^{8,9} have been developed in recent years which have been elaborated in a review article published in $2004.^{2}$

Among the various routes towards substituted pyridines, a [3+3] approach involving cyclocondensation of a C–C–N fragment, more commonly an enaminone, enaminoester, or enaminonitrile and a 3-carbon-1,3-electrophilic component is the most useful and versatile,² since it allows construction of unsymmetrically substituted pyridines from relatively simple precursors. Several variations of this approach are available in the literature. Thus, Moody and Bagley have applied this approach for the preparation of a modified oxazole-thiazole pyridine core of the promothiocin/sulfomycin antibiotics¹⁰ and for the synthe-

SYNLETT 2008, No. 17, pp 2674–2680 Advanced online publication: 01.10.2008 DOI: 10.1055/s-0028-1083529; Art ID: D21008ST © Georg Thieme Verlag Stuttgart · New York sis of a library of functionalized pyridine scaffolds¹¹ by utilizing various enaminoesters and ethynyl ketones (Bohlmann-Ratz synthesis). In subsequent papers, Bagley and coworkers have further extended the scope and application by effecting this transformation in a one-pot, three-component reaction [3C+2C+N] at lower temperature using either a Brønsted/Lewis acid catalyst, bromine or iodine, or under neutral conditions.¹²⁻¹⁴ Recently, Marcoux and Davies¹⁵ have developed an efficient synthesis of 2,3-diaryl pyridines as COX-2 specific inhibitors involving vinamidinium salts¹⁶ as three-carbon biselectrophilic partners in a one-step annulation with α -arylketones and ammonia [3C+2C+N approach]. Katritzky and coworkers have utilized α , β -unsaturated ketones as 1,3-electrophilic components in a [3+3] annulation with either α -benzotriazolylacetonitrile anion^{17a} or iminophosphoranes^{17b} as nucleophiles.

Our own interest in pyridine synthesis relies upon the synthetic application of α -oxoketene dithioacetal as 3-carbon-1,3-electrophilic component in aromatic and heteroaromatic annulation^{18,19} and we have previously reported efficient and highly regiospecific synthesis of 2,3,4,5,6-substituted and 4,5-annulated (or 5,6-annulated) pyridines by [3+3] cyclocondensation of β -lithioaminoacrylonitriles²⁰ or lithioacetonitrile²¹ with α -oxoketene dithioacetals. In an earlier study, Potts and coworkers²² have demonstrated a useful [5+1] approach for 2,6-disubstituted pyridines via base-induced 1,4-addition of methyl ketones to α -oxoketene dithioacetals to give 1,5-enediones followed by their ring closure with ammonium acetate. We have recently reported the synthesis of bis(methylthio)acrolein²³ and its application as 'surrogate' acrolein in a modified Skraup synthesis of substituted 2-(methylthio)quinolines.²⁴ In continuation of these studies, we report herein a new general synthesis of 2,3,5-substituted/annulated-6-(methylthio)pyridines involving cycloannulation of 3-bis(methylthio)acrolein and its 2-phenyl analogue with various active methylene ketones in a three-component, one-pot process.

We first examined the two-step procedure by subjecting 4-methoxyacetophenone (2a) or the indane-1,3-dione (5a) to aldol condensation with bis(methylthio)acrolein (1) in the presence of sodium ethoxide in ethanol affording the aldol adducts 3a and 6a in high yields (Scheme 1). Subsequent heterocyclization of 3a and 6a to the respective pyridines (4a and 7a) was investigated under various conditions in the presence of Brønsted/Lewis acids or ionexchange resin (Scheme 1, Table 1). In all the reactions, the desired 2-(4-methoxyphenyl)-5-(methylthio)pyridine (4a) and the corresponding annulated pyridine 7a were formed in varying yields under these conditions (Table 1).²⁵ Best yields of 4a or 7a were obtained either in refluxing AcOH–TFA (4:1, Table 1, entry 3) or in the presence of ZnBr₂ catalyst when the reaction was carried out in a sealed tube at higher temperature (110 °C, entry 6). In parallel experiments, we also investigated the possibility of devising a multicomponent condensation process with a view to develop a more efficient pyridine synthesis by reacting the active methylene ketone, bis(methyl-thio)acrolein (1) and ammonium acetate in a one-pot operation in the presence of various acid catalysts and the results are depicted in Scheme 2 and Tables 2 and 3.

 Table 1 Two-Step Synthesis of Pyridines 4a and 7a under Different

 Reaction Conditions

Entry	Reaction conditions ^a	Yield of 4a (%)	Yield of 7a (%)
1	$\rm NH_4OAc, AcOH, \Delta, 8-10 h$	35	50
2	NH ₄ OAc, toluene–AcOH (5:1), Δ , 7–8 h	47	49
3	NH ₄ OAc, AcOH–TFA (4:1), Δ, 8–10 h	58	68
4	Amberlyst 15, toluene, Δ , 8–10 h	32	40
5	ZnBr ₂ (15 mol%), toluene, Δ , 5–6 h	40	45
6	ZnBr ₂ (15 mol%), sealed tube, 110 °C, 5–6 h	50	55

^a General conditions: NH₄OAc (30 mol), 1 (3 equiv).

Thus, under optimized conditions, it was found that the pyridines 4a and 7a were formed in comparable yields to the two-step procedure when the ketone 2a (or 5a), 1 (3 equiv) and excess of ammonium acetate were reacted in refluxing AcOH–TFA (4:1) or in the presence of ZnBr₂ catalyst (15 mol%) in a sealed tube (Table 1, entries 3 and

6 vs. Table 2, entry 1 and Table 3, entry 1). These reaction conditions were employed for the synthesis of other substituted/annulated pyridines.^{25,26} Thus, the active methylene ketones such as aryl/heteroaryl desoxybenzoins **2b**-**d** also underwent smooth cyclocondensation with 1 and ammonium acetate in refluxing AcOH–TFA (conditions A) to give 2,3-diarylpyridines **4b**,**c** and 2-(3-pyridyl)-3-phenylpyridine **4d** in moderate to good yields whereas in the presence of ZnBr₂ catalyst (conditions B) **4b–d** were obtained in decreased yield (Table 2, entries 2–4).

Scheme 2 Reagents and conditions: A: NH_4OAc (20 equiv), AcOH–TFA (4:1), reflux, 8–12 h; B: NH_4OAc (20 equiv), $ZnBr_2$ (15 mol%), 110 °C, 5–6 h, sealed tube.

The versatility of this method was further demonstrated by extending the heteroannulation reaction to few benzoand heterocyclic ketones **5a–d** furnishing the corresponding 2,3-annulated/heteroannulated pyridines **7a–d** in good yields under AcOH–TFA refluxing conditions (A) whereas yields were lower with ZnBr₂ catalyst (Scheme 2, Table 3, entries 1–4).^{25,26}

In order to study the scope of this reaction and to establish its tolerance towards different substrates, a few of the active methylene compounds such as β -ketoesters (Table 2, entries 6 and 7) and malononitrile (entry 5) were reacted with bis(methylthio)acrolein and ammonium acetate following these standard conditions yielding the pyridines **4e–g** in moderate yields under refluxing AcOH–TFA. However, under ZnBr₂-catalyzed conditions, only intractable product mixtures were formed (Table 2, entries 5– 7).²⁵

To further introduce a point of diversity at the 5-position of pyridine ring, this three-component reaction was elaborated to 2-phenyl-3-bis(methylthio)acrolein (8)²⁷ which was reacted with a range of active methylene ketones in the presence of excess of ammonium acetate in either refluxing AcOH–TFA (conditions A) or in the presence of ZnBr₂ (or ZnI₂) catalyst (conditions B)²⁸ yielding various substituted 5-phenyl pyridines **9** and **10c** as depicted in Scheme 3 and Table 4.²⁵

A comparison of yields of product pyridines from bis(methylthio)acrolein (1, Tables 2 and 3) and those from 2phenyl-3-bis(methylthio)acrolein (8, Table 4) shows that higher yields of 5-phenylpyridines 9 and 10c are obtained in the presence of ZnBr_2 (or ZnI_2)²⁸ (conditions B) whereas in refluxing AcOH–TFA (conditions), they are markedly reduced, with the recovery of unreacted ketones. On the other hand, with bis(methylthio)acrolein (1), higher yields of product pyridines 4 and 7 are obtained in refluxing AcOH–TFA (conditions A) in comparison to ZnBr_2 -catalyzed conditions (B, Tables 2 and 3).²⁹

Entry	Ketone 2	4	Yield (%)	
			Conditions A	Conditions B
1	MeO 2a	MeO V SMe	63	50
2	x x x	X N SMe	57	48
	2b , X = H	4b , X = H		
3	2c, X = MeO	4c, X = MeO	63	55
4		M SMe	67	57
5	NC CN 2e	$H_2N = NC$ $H_2N = N$ SMe $4e$	57ª	_
6	2f , R = Ph	$\mathbf{4f}, \mathbf{R} = \mathbf{Ph}$	42	-
7	2g , R = Me	4g , R = Me	47 ^b	-

 Table 2
 Synthesis of 2,3-Substituted-6-(methylthio)pyridines 4

^a Obtained as side product (24%):

^b Could not be isolated under conditions A but in refluxing in toluene–AcOH (5:1) for 6 h.

Scheme 3 Reagents and conditions: A: NH₄OAc (20 equiv), AcOH–TFA (4:1), reflux, 8–12 h; B: NH₄OAc (20 equiv), ZnI_2 or $ZnBr_2$ (15 mol%), 110 °C, 5–6 h, sealed tube.

A few of the selected 6-(methylthio)pyridines were dethiomethylated in the presence of Raney-Ni in refluxing ethanol to afford 6-unsubstituted sulfur-free pyridines **11** and **12** in excellent yields as shown in Scheme 4.^{25,30}

Similarly, the parent tricyclic benzo[h][1,6]naphthyridine 14 could be prepared in high yield by aromatization of the corresponding *N*-sulfonyl derivative 7c in the presence of NaOH and n-Bu₄NBr under refluxing conditions followed by desulfurization of the resulting product 13 with Raney-Ni in refluxing ethanol (Scheme 5).²⁵

Scheme 4

Entry	Cyclic ketone 5	Product 7	Yield of 7 (%)	Yield of 7 (%)	
			Conditions A	Conditions B	
1	5a 5a	7a	78	55	
2		NSMe	64	55	
	5b	7b			
3	PhO ₂ S N	PhO ₂ S N SMe	70	60	
	5c	7c			
4	s o	S N SMe	63	51	
	5d	7d			

Table 3	Synthesis of 2,3-Annulated/Heteroannulated Pyridines 7a-
---------	--

Table 4Synthesis of Pyridines 9 and 10c

Entry	Ketone 2 or 5	Product 9 or 10c	Yield (%)	
			Conditions A	Conditions B
1	x = OMe	X ON	40	64
2	$2\mathbf{h}, \mathbf{X} = \mathbf{Cl}$	9a , X = OMe 9h , X = Cl	42	63
3	Me	Ph N SMe	35	68
4		9i	43	60
5	2b 2b 2d	9b Ph N SMe 9d	41	64

Synlett 2008, No. 17, 2674-2680 © Thieme Stuttgart · New York

Entry	Ketone 2 or 5	Product 9 or 10c	Yield (%)		
			Conditions A	Conditions B	
6	S S O	S N SMe	37	57	
7	2j	9j Fe N SMe Ph	36	55	
8	² K PhO ₂ S _N 5c	9k PhO ₂ S N N SMe 10c	44	66	

Scheme 5 Reagents and conditions: (a) 50% NaOH, Bu_4NBr , toluene, reflux, 2 h; (b) Raney-Ni, EtOH, reflux, 3 h.

In conclusion, we have developed a novel one-pot, three component reaction for the synthesis of 2,3,5-substituted (or 2,3-annulated)-6-methylthiopyridines combining acyclic or cyclic active methylene ketones, ammonia, and bis(methylthio)acrolein or its 2-phenyl analogue (as 3carbon 1,3-bielectrophilic component) in the presence of either protic acid or ZnBr₂/ZnI₂ as catalysts. These reactions proceed in moderate to high yields with total regiocontrol for either ketones or bis(methylthio)acroleins which can be considered as synthetic equivalents of vinamidinium salts. The 2-methylthio group in these newly synthesized pyridines can be replaced either by amines²⁴ or can be reacted with carbon nucleophiles through nickel chloride cross-coupling reactions.19d Further work to improve the yield of pyridine derivatives and to expand the scope of this heteroannulation reaction for acquiring more functional group diversity is in progress.

Acknowledgment

AKY, IS, and SP thank CSIR, New Delhi for senior research fellowship. SKSY thanks ICAR for financial assistance. Financial assistance under CSIR project is also acknowledged.

References and Notes

- (a) Balasubramaniam, M.; Keay, J. G. In *Comprehensive Heterocyclic Chemistry II*, Vol. 5; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Pergamon Press: Oxford, **1996**, Chap. 5.06, 245. (b) Michael, J. P. *Nat. Prod. Rep.* **1997**, *14*, 605.
- (2) Review: Henry, G. D. *Tetrahedron* **2004**, *60*, 6043; and references therein.
- (3) Matolcsy, G. Pesticide Chemistry; Elsevier Scientific: Amsterdam / Oxford, 1998, 427–430.
- (4) (a) *Pharmaceutical Chemistry. Drug Synthesis*, Vol 1; Roth, H. J.; Kleeman, A., Eds.; Prentice Hall Europe: London, **1988**, 407. (b) MDDR; MDL Drug Data Registry; by MDL Informations System, Inc; San Leandro, California USA.
- (5) Li, A.-H.; Moro, S.; Forsyth, N.; Melman, N.; Ji, X.-D.; Jacobson, K. A. J. Med. Chem. 1999, 42, 706.
- (6) Scriven, E.; Berry, D. Speciality Chem. Mag. 2001, May 24.
- (7) (a) Heller, M.; Schubert, U. S. *Eur. J. Org. Chem.* 2003, 947. (b) Kozhevnikov, V. N.; Kozhevnikov, D. N.; Nikitina, T. V.; Rusinov, V. L.; Chupakhin, O. L.; Zabel, M.; König, B. *J. Org. Chem.* 2003, 68, 2882. (c) Branowska, D. *Synthesis* 2003, 2096; and references therein.
- (8) (a) Fischer, M.; Troschutz, R. Synthesis 2003, 1603.
 (b) Keuper, R.; Risch, N. Eur. J. Org. Chem. 1998, 2609.
 (c) Risch, N.; Esser, A. Synthesis 1988, 337. (d) Sharma, U.; Ahmed, S.; Boruah, R. C. Tetrahedron Lett. 2000, 41, 3493. (e) Chetia, A.; Longchar, M.; Lekhok, K. C.; Boruah, R. C. Synlett 2004, 1309. (f) Ramesh, S. S.; Douglas, D. Y.; Alexander, D. Chem. Commun. 2006, 1313.
- (9) (a) Hedge, V. B.; Renga, J. M.; Owen, J. M. *Tetrahedron Lett.* 2001, 42, 1847. (b) Thomas, A. D.; Asokan, C. V. *Tetrahedron Lett.* 2002, 43, 2273. (c) Bhandari, A.; Li, B.; Gallop, M. A. *Synthesis* 1999, 1951. (d) Parthasarathy, K.; Jeganmohan, M.; Cheng, C.-H. *Org. Lett.* 2008, 10, 325. (e) Kase, K.; Goswami, A.; Ohtaki, K.; Tanabe, E.; Saino, N.; Okamoto, S. *Org. Lett.* 2007, 9, 991. (f) Lu, J.-Y.; Arndt, H.-D. J. Org. Chem. 2007, 72, 4205. (g) Gehre, A.; Stanforth, S. P.; Tarbit, B. *Tetrahedron Lett.* 2007, 48, 6974.

- (10) (a) Moody, C. J.; Bagley, M. C. Synlett 1998, 361.
 (b) Moody, C. J.; Bagley, M. C. Chem. Commun. 1998, 2049. (c) Bagley, M. C.; Bashford, K. E.; Hesketh, C. L.; Moody, C. J. J. Am. Chem. Soc. 2000, 122, 3301.
 (d) Bagley, M. C.; Dale, J. W.; Xiong, X.; Bower, J. Org. Lett. 2003, 5, 4421.
- (11) Bashford, K. E.; Burton, M. B.; Cameron, S.; Cooper, A. L.; Hogg, R. D.; Kane, P. D.; MacManus, D. A.; Matrunola, C. A.; Moody, C. J.; Robertson, A. A. B.; Warne, M. R. *Tetrahedron Lett.* **2003**, *44*, 1627.
- (12) (a) Bagley, M. C.; Dale, J. W.; Bower, J. Synlett 2001, 1149.
 (b) Bagley, M. C.; Dale, J. W.; Hughes, D. D.; Ohnesorge, M.; Phillips, N. G.; Bower, J. Synlett 2001, 1523.
 (c) Bagley, M. C.; Singh, N. Synlett 2002, 1718.
 (d) Bagley, M. C.; Hughes, D. D.; Sabo, H. M.; Taylor, P. H.; Xiong, X. Synlett 2003, 1443. (e) Xiong, X.; Bagley, M. C.; Chapaneri, K. Tetrahedron Lett. 2004, 45, 6121.
 (f) Bagley, M. C.; Brace, C.; Dale, J. W.; Ohnesorge, M.; Phillips, N. G.; Xiong, X.; Bower, J. J. Chem. Soc., Perkin Trans. 1 2002, 1663. (g) Xiong, X.; Bagley, M. C.; Chapaneri, K. Tetrahedron Lett. 2004, 45, 6121.
 (h) Bagley, M. C.; Glover, C.; Chevis, D. Synlett 2005, 649.
 (i) Bagley, M. C.; Glover, C.; Merritt, E. A.; Xiong, X. Synlett 2004, 811.
- (13) (a) Review: Bagley, M. C.; Glover, C.; Merritt, E. A. Synlett 2007, 2459. (b) Bagley, M. C.; Dale, J. W.; Bower, J. Chem. Commun. 2002, 1682. (c) Bagley, M. C.; Chapaneri, K.; Dale, J. W.; Xiong, X.; Bower, J. J. Org. Chem. 2005, 70, 1389. (d) Bagley, M. C.; Dale, J. W.; Bower, J. Chem. Commun. 2002, 1682. (e) Merritt, E. A.; Bagley, M. C. Synlett 2007, 954.
- (14) Adlington, R. M.; Baldwin, J. E.; Catterick, D.; Pritchard, G. J.; Tang, L. T. J. Chem. Soc., Perkin Trans. 1 2000, 2311; and references therein.
- (15) (a) Marcoux, J.-F.; Corley, E. G.; Rossen, K.; Pye, P.; Wu, J.; Robbins, M. A.; Davies, I. W.; Larsen, R. D.; Reider, P. J. Org. Lett. 2000, 2, 2339. (b) Davies, I. W.; Marcoux, J.-F.; Reider, P. J. Org. Lett. 2001, 3, 209. (c) Davies, I. W.; Marcoux, J.-F.; Corley, E. G.; Journet, M.; Cai, D.-W.; Palucki, M.; Wu, J.; Larsen, R. D.; Rossen, K.; Pye, P. J.; DiMichele, L.; Dormer, P.; Reider, P. J. J. Org. Chem. 2000, 65, 8415.
- (16) Review: Lloyd, D.; McNab, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 459.
- (17) (a) Katritzky, A. R.; Belyakov, S. A.; Sorochinsky, A. E.; Henderson, S. A.; Chen, J. J. Org. Chem. 1997, 62, 6210.
 (b) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Tymoshenko, D. O.; Essawy, S. A. Synthesis 1999, 2114.
- (18) Reviews: (a) Ila, H.; Junjappa, H.; Mohanta, P. K. In *Progress in Heterocyclic Chemistry*, Vol. 13; Gribble, G. W.; Gilchrist, T. L., Eds.; Pergamon: Oxford, **2001**, Chap. 1, 1. (b) Junjappa, H.; Ila, H.; Asokan, C. V. *Tetrahedron* **1990**, 46, 5423. (c) Junjappa, H.; Ila, H. *Phosphorus, Sulfur Silicon Relat. Elem.* **1994**, 95, 35. (d) Ila, H.; Junjappa, H.; Barun, O. J. Organomet. Chem. **2001**, 624, 34.
- (19) Recent papers: (a) Kumar, S.; Ila, H.; Junjappa, H. *Tetrahedron* 2007, 63, 10067. (b) Misra, N. C.; Panda, K.; Ila, H.; Junjappa, H. J. Org. Chem. 2007, 72, 1246.
 (c) Peruncheralathan, S.; Khan, T. A.; Ila, H.; Junjappa, H. J. Org. Chem. 2005, 70, 10030. (d) Venkatesh, C.; Singh, B.; Mahata, P. K.; Ila, H.; Junjappa, H. Org. Lett. 2005, 7, 9644. (e) Panda, K.; Venkatesh, C.; Ila, H.; Junjappa, H. *Eur. J. Org. Chem.* 2005, 2045. (f) Peruncheralathan, S.; Khan, T. A.; Ila, H.; Junjappa, H. *Tetrahedron* 2004, 60, 3457. (g) Sundarum, G. S. M.; Venkatesh, C.; Syam Kumar, U. K.; Ila, H.; Junjappa, H. J. Org. Chem. 2004, 69, 5760.

- (20) (a) Gupta, A. K.; Ila, H.; Junjappa, H. *Tetrahedron* 1990, 46, 3703. (b) Satyanarayana, J.; Ila, H.; Junjappa, H. *Synthesis* 1991, 889.
- (21) (a) Gupta, A. K.; Ila, H.; Junjappa, H. *Tetrahedron Lett.* 1988, 29, 6633. (b) Gupta, A. K.; Ila, H.; Junjappa, H. *Tetrahedron* 1990, 46, 2572.
- (22) (a) Potts, K. T.; Cipullo, M. J.; Ralli, P.; Theodoridis, G. J. Am. Chem. Soc. 1981, 103, 3584. (b) Potts, K. T.; Cipullo, M. J.; Ralli, P.; Theodoridis, G. J. Org. Chem. 1982, 47, 3027.
- (23) Mahata, P. K.; Barun, O.; Ila, H.; Junjappa, H. Synlett 2000, 1345.
- (24) Panda, K.; Siddiqui, I.; Mahata, P. K.; Ila, H.; Junjappa, H. Synlett 2004, 449.
- (25) The structures of all newly synthesized compounds were confirmed with the help of spectral and analytical data.
- (26) General Procedure for One-Pot, Three-Component Synthesis of 2,3,5-Substituted or 2,3-Annulated-6-(methylthio)pyridines 4, 7, 9, and 10c Procedure A

A solution of appropriate ketone (1.0 mmol), bis(methylthio)acrolein (1, 3.0 mmol) or 2-phenyl-3-bis(methylthio)acrolein (8, 1.1 mmol), and NH₄OAc (20 mol) in AcOH–TFA (5 mL, 4:1) was heated with stirring at 110 °C for 8–10 h (monitored by TLC). The mixture was then neutralized with sat. NaHCO₃ solution (25 mL) and extracted with CH₂Cl₂ (3 × 15 mL). The combined organic extracts were washed with H₂O (2 × 50 mL), brine (50 mL), dried (Na₂SO₄), and evaporated under reduced pressure to afford crude product which was purified by column chromatography over SiO₂ using EtOAc–hexane (1:9) as eluent.

Procedure B

A mixture of appropriate ketone (1.0 mmol), bis(methylthio)acrolein (1, 3.0 mmol) or 2-phenyl-3-bis(methylthio)acrolein (8, 1.1 mmol), NH₄OAc (20 mol), and ZnBr₂ or ZnI₂ (15 mol%) was heated in a sealed tube at 110 °C for 5–8 h (monitored by TLC). The residue was partitioned between sat. NaHCO₃ solution (30 mL) and CHCl₃ (30 mL), and was extracted with CH₂Cl₂ (3 × 15 mL). The organic layer was washed with H₂O (2 × 50 mL), brine (50 mL), dried (Na₂SO₄), and evaporated under reduced pressure to give crude product which was purified by column chromatography on SiO₂ using EtOAc–hexane (1:9) as eluent.

2-(4-Methoxyphenyl)-6-methylthiopyridine (4a) Viold 62% (0.15 c)) white colidi rms 81, 82 %C, B = 6

Yield 63% (0.15 g); white solid; mp. 81–82 °C; $R_f = 0.52$ (hexane–EtOAc, 9:1). IR (KBr): 2919, 1602, 1555, 1448 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99$ (d, J = 9.0 Hz, 2 H, ArH), 7.49 (t, J = 7.8 Hz, 1 H, ArH), 7.35 (d, J = 7.6 Hz, 1 H, ArH), 7.05 (d, J = 7.8 Hz, 1 H, ArH), 6.92 (d, J = 8.8 Hz, 2 H, ArH), 3.85 (s, 3 H, OMe), 2.64 (s, 3 H, SMe). ¹³C NMR (100 MHz, CDCl₃): $\delta = 160.5$, 159.1, 156.2, 136.6, 131.3, 128.1, 119.2, 114.8, 114.0, 55.3, 13.2. ESI-HRMS: m/z calcd for C₁₃H₁₄NOS [M + H]⁺: 232.0796; found: 232.0794.

2,3-Bis(4-methoxyphenyl)-6-methylthiopyridine (4c) Yield 63% (0.21 g); white solid; mp 161–162 °C; $R_f = 0.50$ (hexane–EtOAc, 19.1). IR (KBr): 2950, 1684, 1509 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.49$ (d, J = 8.1 Hz, 1 H, ArH), 7.35 (dd, J = 6.7, 2.1 Hz, 2 H, ArH), 7.14 (d, J = 8.3 Hz, 1 H, ArH), 7.07 (dd, J = 6.6, 2.2 Hz, 2 H, ArH), 6.74–6.81 (m, 4 H, ArH), 3.78 (s, 3 H, OMe), 3.77 (s, 3 H, OMe), 2.62 (s, 3 H, SMe). ¹³C NMR (100 MHz, CDCl₃): $\delta = 159.7$, 158.8, 157.5, 155.1, 139.7, 131.5, 131.4, 131.2, 130.5, 130.4, 119.3, 113.9, 113.3, 55.2, 55.1, 13.7. MS: m/z (%) = 337(100) [M⁺]. Anal. Calcd (%) for C₂₀H₁₉NO₂S (337.43):

C, 71.19; H, 5.68; N, 4.15. Found: C, 71.23; H, 5.70; N, 4.18. 2-Methylthioindeno[1,2-b]pyridin-5-one (7a) Yield 78% (0.18 g); pale yellow solid; mp 145–146 °C; R_f = 0.54 (hexane-EtOAc, 9:1); IR (KBr): 2920, 1720, 1575, 1401 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 7.57 (d, J = 7.3 Hz, 1 H, ArH), 7.49 (d, J = 7.3 Hz, 1 H, ArH), 7.46 (d, J = 8.0 Hz, 1 H, ArH), 7.37 (t, J = 7.4 Hz, 1 H, ArH), 7.24 (t, *J* = 7.4 Hz, 1 H, ArH), 6.84 (d, *J* = 8.1 Hz, 1 H, ArH), 2.51 (s, 3 H, SMe). ¹³C NMR (100 MHz, CDCl₃): δ = 191.1, 167.1, 165.1, 142.7, 135.0, 134.4, 130.7, 130.3, 123.5, 123.4, 120.5, 119.8, 13.3. MS: m/z (%) = 227(100) [M⁺]. Anal. Calcd (%) for C₁₃H₉NOS (227.28): C, 68.70; H, 3.99; N, 6.16. Found: C, 68.76; H, 4.00; N, 6.18. 6-Methylthio-3,5-diphenyl-[2,3']bipyridinyl (9d) Yield 64% (0.23 g); light yellow solid; mp 160–161 °C; R_f = 0.45 (hexane-EtOAc, 5:1). IR (KBr): 2916, 1575, 1445, 1377 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.77 (br s, 1 H, ArH), 8.50 (dd, J = 4.9, 1.4 Hz, 1 H, ArH), 7.71 (dt, J = 8.0, 1.9 Hz, 1 H, ArH), 7.55-7.52 (m, 2 H, ArH), 7.51 (s, 1 H, ArH), 7.50–7.40 (m, 3 H, ArH), 7.33–7.27 (m, 3 H, ArH), 7.23-7.20 (m, 2 H, ArH), 7.17-7.15 (m, 1 H, ArH), 2.60 (s, 3 H, SMe). ¹³C NMR (100 MHz, CDCl₃): δ = 156.6, 151.4, 150.9, 148.7, 139.1, 138.9, 137.4, 137.1, 135.3, 135.0, 131.7, 129.5, 129.1, 128.7, 128.5, 128.4, 127.5, 122.6, 13.8. MS: m/z (%) = 355(100) [M + 1], 354(60) [M⁺]. Anal. Calcd (%) for C₂₃H₁₈N₂S (354.46): C, 77.93; H, 5.12; N, 7.90. Found: 77.97; H, 5.13; N, 7.93.

6-Methylthio-5-phenyl-[2,2']bipyridinyl (9i) Yield 68% (0.19 g); colorless solid; mp 100–101 °C; $R_f = 0.47$ (hexane–EtOAc, 19:1). IR (KBr): 2916, 1546, 1428, 1354 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.71$ (dd, J = 4.9, 0.74 Hz, 1 H, ArH), 8.54 (d, J = 8.1 Hz, 1 H, ArH),

```
8.27 (d, J = 7.8 Hz, 1 H, ArH), 7.88 (td, J = 7.7, 1.7 Hz, 1 H,
ArH), 7.56 (d, J = 7.8 Hz, 1 H, ArH), 7.49–7.40 (m, 5 H,
ArH), 7.37–7.34 (m, 1 H, ArH), 2.62 (s, 3 H, SMe). <sup>13</sup>C
NMR (100 MHz, CDCl<sub>3</sub>): \delta = 157.3, 155.2, 152.9, 148.3,
137.8, 137.3, 136.5, 129.1, 128.4, 128.3, 123.9, 121.4,
116.5, 13.8. MS: m/z (%): 279(100) [M + 1], 278(30). Anal.
Calcd (%) for C<sub>17</sub>H<sub>14</sub>N<sub>2</sub>S (278.37): C, 73.35; H, 5.07; N,
10.06. Found: C, 73.32; H, 5.09; N, 10.09.
```

- (27) Rudorf, W. D. J. Prak. Chem. 1986, 328, 321.
- (28) Comparable yields of pyridines 9 were obtained by using either ZnBr₂ or ZnI₂ catalyst.
- (29) Lower yields of pyridines 4a–g with ZnBr₂ (conditions B) catalyst at 110 °C are presumably due to the decomposition of bis(methylthio)acrolein(1) at higher temperature.
- (30) The ¹H NMR of all desulfurized compounds **11c**,**d**, **12h**,**i** displayed a low field signal between $\delta = 8.63 - 8.96$ ppm due to the pyridine H-6 proton which further confirmed the regiochemistry of the products. 2,3-Bis(4-methoxyphenyl)pyridine (11c) Yield 93% (0.27 g); white solid; mp 82–83 °C; $R_f = 0.5$ (hexane-EtOAc, 19:1). IR (KBr): 2935, 2838, 1607, 1511, 1429 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 8.63 (dd, J = 4.6, 1.7 Hz, 1 H, ArH), 7.67 (dd, J = 7.6, 1.7 Hz, 1 H, ArH), 7.31 (dd, J = 6.7, 2.1 Hz, 2 H, ArH), 7.29–7.26 (m, 1 H, ArH), 7.11 (dd, *J* = 6.7, 2.1 Hz, 2 H, ArH), 6.83 (dd, J = 6.8, 1.9 Hz, 2 H, ArH), 6.78 (dd, J = 6.8, 1.9 Hz, 2 H, ArH), 3.81 (s, 3 H, OMe), 3.79 (s, 3 H, OMe). ¹³C NMR (100 MHz, CDCl₃): δ = 159.2, 158.8, 156.7, 147.9, 138.4, 135.3, 132.8, 132.5, 131.1, 130.6, 121.6, 113.8, 113.3, 55.22, 55.18. MS: m/z (%) = 292(100) [M + 1], 291(40) [M⁺]. Anal. Calcd (%) for C₁₉H₁₇NO₂ (291.34): C, 8.33; H, 5.88; N, 4.81. Found: C, 78.39; H, 5.90; N, 4.84.

Copyright of Synlett is the property of Georg Thieme Verlag Stuttgart and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.