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PALLADIUM CATALYZED CYCLIZATIONS OF ENANTIOMERICALLY PURE
ACYCLIC 4-ACETOXY-2,8-NONADIENES: EFFICIENT CHIRALITY TRANSFER

Wolfgang Oppolzer®, Timothy N. Birkinshaw and Gérald Bernardinelli
Département de Chimie Organique, Université de Genéve, CH-1211 Genéve 4, Switzerland

Abstract: S-4-Acetoxy-6-aza-2,8-nonadienes 9 and 11 were subjected to Pd(0)-catalyzed cyclizations. The S.E-
acetate 9 gave exclusively S,E-pyrrolidine }2, whereas the antipodal product R,E-]12 was formed from the S.Z-
precursor 11 (Scheme 3). X-ray-diffraction analysis of tartrate 13 served to assign the absolute configuration of 12.

1-Acetoxy-2-cycloalkenes A having an olefinic chain attached to C(4) were shown to undergo palladium
catalyzed cyclizations A — B — C with clean transfer of chirality from C(1) in A to C(3) in C (Scheme 1). 1
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The observed overall topicity implies conventional displacement of the acetate group by Pd(0) with inversion 2
in first step A — B; more notably, the alkene moiety attacks the allylpalladium unit cis relative to the metal
(suprafaciaily) in step B — C. 1.

On extending this stereospecific tandem oxidative addition/allylation to acyclic substrates the conformational
mobility of acyclic allylpalladium species 3 has to be taken into account. For example, with regard to cyclizations D
— G it was interesting to elucidate the extent to which the equilibrium E = F affects the stereochemical outcome.

E and Z acetoxydienes 9 4 and 11 4, both having the S configuration at the oxygenated center, were selectively
prepared in high stereochemical purity starting from R-2,3-O-isopropylideneglyceraidehyde 1 (Scheme 2). 5.6
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This approach to 9 and 11 diverges at the stage of acetylene 5 4 which on reduction with sodium in ammonia
provided E-alkene 7. 4 Desilylation of 5 and hydrogenation of acetylenic alcohol 6 4 in the presence of Lindlar

catalyst furnished Z-alkene 10. 4 The E- and Z-intermediates 7 and 10 were purified by chromatography on

AgNOs3-pretreated silica gel and then converted into the key precursors S.E-acetate 9 and S,Z-acetate 11.
The results of our cyclization studies are summarized in Scheme 3.
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Heating a 0.2 M solution of acetate 9 (e.e. = 98.6%, E/Z = 99.6:0.4) 7 in acetic acid together with 1 mol% of
Pd(PPh3) under N3 at 70°C for 3 h, shaking of the mixture with aq. NaHCOj3/Ety0, workup and flash
chromatography (FC) afforded E-propenylpyrrolidine S-12 4 (58% yield) as the only isolable product. N-
deprotection of S§-12 (TFA, r.t., 1 h), N-acylation with the acid chloride prepared from R-(+)-a-methoxy-a-
(trifluoromethyl)phenylacetic acid and GC analysis (Carbowax 20 capillary ~column) of the resulting Mosher
derivative 32 revealed that cyclization product S-12 is enantiomerically pure within the limits of detection (>96%
e.e.).

Subjecting the acetoxydiene 11 (e.e. = 98.6%, E/Z = 1.3:98.7) 7 to the same Pd-catalyzed cyclization conditions
provided the antipodal E-propenyl-substituted pyrrolidine R-12 4 (70% yield). GC-analysis of its Mosher derivative
83 (from S(-)-a-methoxy-a-(trifluoromethyl)phenylacetic acid) showed for R-12 an enantiomeric excess of >96%.

To assign the absolute configuration of the cyclization products 12 the (-)-pyrrolidine obtained from S.E-
acetoxydiene 9 was converted into the crystalline tartrate 13 (1) TFA, MeOH; 2) aq. K»COj3; 3) R.R-tartaric acid,
EtOH). X-ray diffraction analysis of recrystallized salt }3 9 (MeOH/iPrOH, m.p. 136-137.5°C) (Figure 1) proved
unambiguously the S-configuration of the pyrrolidinium cation (considering the R,R-configuration of the tartrate
anion).

Figure 1: X-ray diffraction analysis of tartrate 13
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It thus follows that S,E-acetoxydiene 9 gives pyrrolidine S§-12 with net inversion at C(3) and retention of the
olefinic E-configuration. This result can be easily explained (Scheme 4).
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Displacement of the acetate group in 9 by palladium(0) proceeds with inversion to afford the conformationally
stable syn/syn-=z-allyl complex 1R,25,3R-15. Subsequent allylpalladium/olefin insertion occurs cis relative to the
palladium ! giving cyclized alkylpalladium species S-17. -Elimination of §-17 yields the isolated product §- 12.

On the other hand, net retention at C(3) coupled with complete Z — E-isomerization was observed on analogous
cyclization of the S,Z-acetoxydieme ll. The overall topicity 11 — R-12 apparently reflects the conformational
mobility of the initially formed anti/syn-x-allyl complex 19 (Scheme 5) which isomerizes via the o-allylpalladium
conformers S-16a = S-16b giving the more stable syn/syn-x-allyl isomer 1§,2R,35-13. 2
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This x-o-7 rearrangement thus produces the =-allyl intermediate 15 which is antipodal to the one formed more
directly from the S,E-dienylacetate 9 (c.f., Scheme 4). The observed high stereoselectivity of the overall
transformation 11 — R-12 leads to the conclusion that the anti—syn isomerization 19 — 18,2R,35-15 is significantly
faster than the succeeding allylpalladium/alkene insertion.

It was, therefore, not surprising that the terminally non-substituted, enantiomerically pure 3-acetoxy-1.7-
octadiene 20 410 yielded only racemic product 23 4 ynder similar Pd—catalyzed cyclization conditions (Scheme 6).
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Nonetheless, excellent chirality transfer can be expected on palladium catalyzed intramolecular alkene additions
to open-chain 1,3-disubstituted allylacetates as exemplified here by the enantiodivergent transformations 5 — S-12
and § — R-]12.
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