PALLADIUM CATALYZED CYCLIZATIONS OF ENANTIOMERICALLY PURE ACYCLIC 4-ACETOXY-2,8-NONADIENES: EFFICIENT CHIRALITY TRANSFER

Wolfgang Oppolzer^{*}, Timothy N. Birkinshaw and Gérald Bernardinelli

Département de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Abstract: S-4-Acetoxy-6-aza-2,8-nonadienes 9 and 11 were subjected to Pd(0)-catalyzed cyclizations. The S,E-acetate 9 gave exclusively S,E-pyrrolidine 12, whereas the antipodal product R,E-12 was formed from the S,Z-precursor 11 (Scheme 3). X-ray-diffraction analysis of tartrate 13 served to assign the absolute configuration of 12.

1-Acetoxy-2-cycloalkenes <u>A</u> having an olefinic chain attached to C(4) were shown to undergo palladium catalyzed cyclizations $\underline{A} \rightarrow \underline{B} \rightarrow \underline{C}$ with clean transfer of chirality from C(1) in <u>A</u> to C(3) in <u>C</u> (Scheme 1). ¹

The observed overall topicity implies conventional displacement of the acetate group by Pd(0) with inversion ² in first step <u>A</u> \rightarrow <u>B</u>; more notably, the alkene moiety attacks the allylpalladium unit *cis* relative to the metal (suprafacially) in step <u>B</u> \rightarrow <u>C</u>. ¹.

On extending this stereospecific tandem oxidative addition/allylation to acyclic substrates the conformational mobility of acyclic allylpalladium species ³ has to be taken into account. For example, with regard to cyclizations $\underline{D} \rightarrow \underline{G}$ it was interesting to elucidate the extent to which the equilibrium $\underline{E} \neq \underline{F}$ affects the stereochemical outcome.

E and Z acetoxydienes 9⁴ and 11⁴, both having the S configuration at the oxygenated center, were selectively prepared in high stereochemical purity starting from R-2,3-O-isopropylideneglyceraldehyde 1 (Scheme 2). ^{5,6}

This approach to 2 and 11 diverges at the stage of acetylene 5^4 which on reduction with sodium in ammonia provided *E*-alkene <u>7</u>. ⁴ Desilylation of 5 and hydrogenation of acetylenic alcohol 6^4 in the presence of *Lindlar* catalyst furnished *Z*-alkene <u>10</u>. ⁴ The *E*- and *Z*-intermediates <u>7</u> and <u>10</u> were purified by chromatography on AgNO₃-pretreated silica gel and then converted into the key precursors *S*,*E*-acetate 2 and *S*,*Z*-acetate <u>11</u>.

The results of our cyclization studies are summarized in Scheme 3.

Heating a 0.2 <u>M</u> solution of acetate 2 (e.e. = 98.6%, E/Z = 99.6:0.4)⁷ in acetic acid together with 1 mol% of Pd(PPh₃) under N₂ at 70°C for 3 h, shaking of the mixture with aq. NaHCO₃/Et₂O, workup and flash chromatography (FC) afforded *E*-propenylpyrrolidine $S-\underline{12}$ ⁴ (58% yield) as the only isolable product. N-deprotection of $S-\underline{12}$ (TFA, r.t., 1 h), N-acylation with the acid chloride prepared from $R-(+)-\alpha$ -methoxy- α -(trifluoromethyl)phenylacetic acid and GC analysis (*Carbowax 20* capillary column) of the resulting *Mosher* derivative ^{8a} revealed that cyclization product $S-\underline{12}$ is enantiomerically pure within the limits of detection (>96% *e.e.*).

Subjecting the acetoxydiene <u>11</u> (e.e. = 98.6%, E/Z = 1.3:98.7)⁷ to the same Pd-catalyzed cyclization conditions provided the <u>antipodal</u> *E*-propenyl-substituted pyrrolidine $R-\underline{12}^4$ (70% yield). GC-analysis of its *Mosher* derivative ^{8a} (from $S(-)-\alpha$ -methoxy- α -(trifluoromethyl)phenylacetic acid) showed for $R-\underline{12}$ an enantiomeric excess of >96%.

To assign the absolute configuration of the cyclization products 12 the (-)-pyrrolidine obtained from S,Eacetoxydiene 2 was converted into the crystalline tartrate 13 (1) TFA, MeOH; 2) aq. K_2CO_3 ; 3) R,R-tartaric acid, EtOH). X-ray diffraction analysis of recrystallized salt 13 ⁹ (MeOH/*i*PrOH, m.p. 136-137.5°C) (Figure 1) proved unambiguously the S-configuration of the pyrrolidinium cation (considering the R,R-configuration of the tartrate anion).

Figure 1: X-ray diffraction analysis of tartrate 13

It thus follows that S, E-acetoxydiene 2 gives pyrrolidine $S-\underline{12}$ with net inversion at C(3) and retention of the olefinic E-configuration. This result can be easily explained (Scheme 4).

Displacement of the acetate group in 2 by palladium(0) proceeds with inversion to afford the conformationally stable $syn/syn-\pi$ -allyl complex 1R,2S,3R-15. Subsequent allylpalladium/olefin insertion occurs *cis* relative to the palladium ¹ giving cyclized alkylpalladium species S-17. β -Elimination of S-17 yields the isolated product S-12.

On the other hand, net retention at C(3) coupled with complete $Z \rightarrow E$ -isomerization was observed on analogous cyclization of the S,Z-acetoxydiene 11. The overall topicity 11 $\rightarrow R$ -12 apparently reflects the conformational mobility of the initially formed anti/syn- π -allyl complex 19 (Scheme 5) which isomerizes via the σ -allylpalladium conformers S-16a = S-16b giving the more stable syn/syn- π -allyl isomer 1S,2R,3S-15.²

This π - σ - π rearrangement thus produces the π -allyl intermediate <u>15</u> which is antipodal to the one formed more directly from the *S*,*E*-dienylacetate <u>2</u> (*c*.*f*., Scheme 4). The observed high stereoselectivity of the overall transformation <u>11</u> \rightarrow *R*-<u>12</u> leads to the conclusion that the *anti* \rightarrow *syn* isomerization <u>19</u> \rightarrow 1*S*,2*R*,3*S*-<u>15</u> is significantly faster than the succeeding allylpalladium/alkene insertion.

It was, therefore, not surprising that the terminally non-substituted, enantiomerically pure 3-acetoxy-1.7octadiene $20^{4,10}$ yielded only racemic product 23^4 under similar Pd-catalyzed cyclization conditions (Scheme 6).

Nonetheless, excellent chirality transfer can be expected on palladium catalyzed intramolecular alkene additions to open-chain 1,3-disubstituted allylacetates as exemplified here by the enantiodivergent transformations $5 \rightarrow S-12$ and $5 \rightarrow R-12$.

Acknowledgements: Financial support of this work by the Swiss National Science Foundation, Sandoz Ltd., Basel and Givaudan SA, Vernier, is gratefully acknowledged. We thank The Royal Society, London for a European Fellowship to T.N.B. We are grateful to Mr. J.P. Saulnier, Mr. A. Pinto and Mrs. C. Clément for NMR and MS measurements.

REFERENCES AND NOTES

- W. Oppolzer, J.-M. Gaudin, T.N. Birkinshaw, *Tetrahedron Lett.* <u>1988</u>, 29, 4705. W. Oppolzer, T.H. Keller, M. Bedoya-Zurita, C. Stone, *ibid.*, <u>1989</u>, 30, 5883. Review on catalytic "palladium-ene type cyclizations": W. Oppolzer, *Angew. Chem.* <u>1989</u>, 101, 39; *Angew. Chem. Int. Ed. Engl.* <u>1989</u>, 28, 38.
- 'Principles and Applications of Organotransition Metal Chemistry', Eds. J.P. Collman, L.S. Hegedus, J.R. Norton, R.G. Finke, University Science Books, Mill Valley, California, 1987, p. 881.
- 3) Pd(0)-catalyzed reactions of acyclic 1,3-disubstituted 1-acyloxy-2-alkenes with malonate anions proceeding with high chirality transfer and concomitant Z → E isomerization have been previously observed and attributed to a relatively fast π-σ-π rearrangement of anti/syn- to syn/syn π-allylpalladium intermediates: B.M. Trost, T.P. Klun, J. Am. Chem. Soc. <u>1981</u>, 103, 1864; T. Hayashi, A. Yamamoto, T. Hagihara, J. Org. Chem. <u>1986</u>, 51, 723; M. Uemura, T. Minami, K. Hirotsu, Y. Hayashi, *ibid.*, <u>1989</u>, 54, 469. Similar Z → E isomerizations accompany the stereospecific Pd(0)-catalyzed hydrogenolysis of alkenyloxiranes with formic acid: M. Oshima, H. Yamazaki, I. Shimizu, M. Nisar, J. Tsuji, J. Am. Chem. Soc. <u>1989</u>, 111, 6280.
- All new compounds were characterized by IR, ¹H-NMR, ¹³C-NMR and MS. [α]_D values, (CHCl₃, c = g/100 ml) = 5: +53.3° (1.41, 28°C); 9: +29.5° (1.15, 20°C); <u>11</u>: -2.65° (1.13, 20°C); S-<u>12</u>: -37.6° (0.55, 20°C); R-<u>12</u>: +35.7° (0.79, 20°C); <u>20</u>: +10.2° (1.27, 25°C).
- 5) Stereodivergent preparation of acetoxydienes 2 and 11 from R-2,3-O-isopropylideneglyceraldehyde 1: [i] PPh3 (2.2 equiv), CBr₄ (1.1 equiv), CH₂Cl₂, 0°C; addition of 1 (prepared from 1,2:5,6-di-O-isopropylidene-D-mannitol (Fluka) ⁶, 1 equiv), -78°C; 30 min, -78°C; MeOH, Na₂CO₃, -78°C → r.t.; FC (63% yield). [ii] Addition of MeLi in Et₂O (2 equiv) to 2 (1 equiv), THF, -78°C; 1 h, -78°C; 1 h, r.t.; addition of MeI (1.2 equiv), 3 h, r.t.; workup; MeOH, p-TsOH (cat.), 16 h r.t.; FC, crystallization (65% yield, m.p. 71-73°C). [iii] resulting diol (1 equiv), TsCl (1.2 equiv), pyridine/CH₂Cl₂ (9:5), 0°C, 10 h; r.t., 13 h; FC (58% yield). [iv] 3 (1 equiv), TBDMS chloride (1.2 equiv), imidazole (2.7 equiv), DMF, r,t., 3 h; FC (94% yield). [v] 4 (1 equiv), allylamine (excess), 50°C, 40 h, evaporation; (BOC)₂O (1.2 equiv), r.t., 1 h; FC (86% yield). [vi] 5 (1 equiv), Bu₄N⁺F⁻ (1.25 equiv), THF, r.t., 1-2 h; FC (87-90% yield). [vii] 6, Lindlar catalyst, quinoline, THF, stirring under H₂ (1 atm), 4 h; FC on AgNO₃-impregnated SiO₂ (75% yield). [ix] Alcohol (1 equiv), Ac₂O/pyridine (3:4, excess), DMAP (cat.), CH₂Cl₂, r.t., 16 h; FC (96% yield).
- 6) Review on 2,3-O-isopropylideneglyceraldehyde: J. Jurczak, S. Pikul, T. Bauer, Tetrahedron, 1986, 42, 447.
- E/Z-ratios of acetoxydienes 2 and 11 determined by capillary GC (OV-1). Enantiomeric excess values of 2 and 11 determined by HPLC (Merck Hibar Lichrosorb 5μ, hexane/THF 97:3) of the esters prepared either from Ealcohol 8 and R-α-methoxyphenylacetic acid 8b or from Z-alcohol 10 and S-α-methoxyphenylacetic acid, 8b respectively.
- 8) a) J.A. Dale, H.S. Mosher, J. Am. Chem. Soc. 1973, 95, 512; b) Idem, ibid., 1968, 90, 3732.
- 9) Crystallographic data have been deposited at the Cambridge Data Centre. Structure factors may be obtained from one of us (G.B.). Philips PW 1100 diffractometer (MoKα). The structure was solved by a direct method (Multan-87) and refined by least square analyses. The crystals of tartrate 13 are monoclinic, a = 7.2192 (12), b = 8.5015 (12), c = 11.558 (2) Å; P21, Z = 2; d_c = 1.29 g. cm⁻³; F(000) = 292. R = 0.060, (ωR = 0.043; ω = 1/σ²(Fo)) for 932 observed reflections [[Fo] ≥ 4σ (Fo)].
- Acetoxyoctadiene <u>20</u> was prepared from <u>1</u> via Wittig reaction ⁶ followed by acetal cleavage, monotosylation, amination with allylamine, N-protection and O-acetylation using analogous reaction conditions as described in 5.