VIBRATIONAL SPECTRA, NORMAL VIBRATIONS AND ROTATIONAL ISOMERISM OF ETHYL ACETATE AND THREE DEUTERATED ANALOGUES

YOSHIYUKI MIDO* and HIDENORI SHIOMI

Department of Chemistry, Faculty of Science, Kobe University, Nada-ku, Kobe 657 (Japan) HIROATSU MATSUURA

Department of Chemistry, Faculty of Science, Hiroshima University, Higashisenda-machi, Naka-ku, Hiroshima 730 (Japan)

MIGUEL ANGEL RASO, M. VICTORIA GARCIA and JESUS MORCILLO

Departamento de Estructura Atómico-Molecular y Espectroscopía, Facultad de Ciencias Químicas, Universidad Complutense, 28040 Madrid (Spain)

(Received 7 October 1987)

ABSTRACT

IR and Raman spectra of ethyl acetates, $CH_3COOC_2H_5$, $CD_3COOC_2H_5$, $CH_3COOC_2D_5$ and $CD_3COOC_2D_5$, in the liquid and crystalline states have been recorded in the $3500-200 \text{ cm}^{-1}$ region. These spectra are analysed on the basis of spectral comparison both among themselves and with spectra of the trichloro analogues $CCl_3COOC_2H_5$ and $CCl_3COOC_2D_5$ previously studied. All the ethyl acetates in the crystalline state give two completely separated carbonyl stretching Raman bands, suggesting that two, or an even number of molecules, exist in the crystal unit. Liquid-state spectra exhibit many band pairs arising from the *trans-trans* and *trans-gauche* conformers around $CX_3CO-O-CX_2CX_3$ axes (X = H and D) and the bands of the *trans-trans* conformer persist in the crystalline state. Normal coordinate calculations for the four species have been carried out on the two isomeric models using an MVIB program. The results explain wavenumber shifts on deuteration and the nature and separation of band pairs satisfactorily, and suggest that a large amount of vibrational coupling exists among skeletal stretching vibrations.

INTRODUCTION

Many vibrational studies on esters have focused on carbonyl stretching vibrations, characteristic ν C=O frequencies for specific rotamers, solvent effect and the influence of temperature on ν C=O band intensity [1, 2]. Such studies, although they have provided important information on the rotational isomerism of α -substituents, are less informative on that of the -O (CH₂)_nCH₃ group.

^{*}To whom all correspondence should be addressed.

Moreover, it has been pointed out that criteria based on position of bands in the ν C=O region are insufficient in some cases [3, 4]. Thus, it is of importance to examine all fundamental bands and spectral changes in relation to change of physical state.

We have examined a series of haloacetates, concentrating on vibrational spectra, rotational isomers and band pairs, conformations of rotamers and polymorphism, as well as studies on the ν C=O region [5-12]. To date, the IR spectra in the 3500-700 cm⁻¹ region of ethyl acetate and its deuterates in the liquid state have been published and the bands observed in the 3500-1300 cm⁻¹ region assigned by Nolin and Jones [13]. The IR and Raman spectra of ethyl acetate (not deuterates) in the liquid and crystalline states (1000-280 cm⁻¹) were studied by Ogawa [14]. However, the problems of rotational isomerism, explanations of Raman spectra and far IR spectra, etc. have not been discussed fully.

In this paper, a detailed study of the IR and Raman spectra of ethyl acetate and three deuterates, $CD_3COOC_2H_5$, $CH_3COOC_2D_5$, and $CD_3COOC_2D_5$ (E-NCA-d₀, -d₃, -d₅ and -d₈, respectively), in the liquid and crystalline states is presented together with the results of normal coordinate calculations for two rotamers with the *trans-trans* and *trans-gauche* conformations about the $CH_3CO-O-CH_2CH_3$ axes.

EXPERIMENTAL

E-NCA was prepared by reacting acetic acid and ethyl alcohol in benzene and the three deuterates by the same reaction using as starting materials the corresponding light and heavy acetic acids, and light and heavy ethyl alcohols. The samples synthesized were purified by repeated distillations. Each purified sample was checked by gas chromatography to have purity of above 96.5%. Each E-NCA was prepared independently twice and the spectra of the two were compared to check for the existence of impurity bands.

The IR and Raman spectra were recorded on Hitachi EPI 2G, Perkin-Elmer 580 and Nicolet 60-SX FT IR and SPEX Ramalog 5M (480 nm excitation of a Coherent Radiation CR-4 Ar⁺ laser) spectrometers. Calibrated wavenumbers are believed to be accurate to within $\pm 2 \text{ cm}^{-1}$, unless observed bands are very weak and/or broad.

The liquid-state spectra were recorded by a capillary method (between two CsI plates for IR and in a tube for Raman). The crystalline-state IR spectra were measured by a deposition method (slow spraying of a sample on a cooling CsI plate and annealing) using an RIIC VLT-2 cell. The crystalline-state Raman data were obtained from a sample, packed in an ampoule and indirectly cooled, in a conventional Raman cryostat, by the method described previously [8]. The Raman spectra of E-NCAs in the liquid and crystalline states are shown in Figs. 1–4, the crystalline-state IR spectra in Figs. 5 and 6, together

Fig. 1. Raman spectra of E-NCA- d_0 in the crystalline state at ca. 80 K (top) and liquid state at room temperature (bottom).

Fig. 2. Raman spectra of E-NCA- d_3 in the crystalline state at ca. 80 K (top) and liquid state at room temperature (bottom).

Fig. 3. Raman spectra of E-NCA- d_5 in the crystalline state at ca. 80 K (top) and liquid state at room temperature (bottom).

Fig. 4. Raman spectra of E-NCA-d₈ in the crystalline state at ca. 80 K (top) and liquid state at room temperature (bottom).

Fig. 5. IR spectra of E-NCA- $_0$ (bottom) and E-NCA- d_3 (top) in the crystalline state at ca. 130 K and liquid state at room temperature (800–200 cm⁻¹, dotted line).

Fig. 6. IR spectra of E-NCA-d₅ (bottom) and E-NCA-d₈ (top) in the crystalline state at ca. 130 K and liquid state at room temperature (800–200 cm⁻¹, dotted line).

Observed w	ivenumbers, in	cm^{-1} , for CH ₅	³ COOC' H ₂ CH ₃	, and CD ₃ COO	C'H ₂ CH ₃ (E-1	NCA-d ₀ and E	-NCA-d ₃) ^{a,b}		
CH _a COOC'	H ₂ CH ₃ (E-NC	A-d ₀)		CD3COOC'H	I2CH3 (E-NC/	A-d ₃)		Assignment	
Liquid		Crystal		Liquid		Crystal			
IR	Raman	IR	Raman	IR	Raman	IR	Raman		
		3022 vw	3030 w-m 3022 w-m				Γ	vdCH ₃ 0	
		2988 m	2989 m		2994 s		2991 s	$\nu d C H_s C$	
2985 m	2985 mb	2979 m	2981 m	2985 m	2983 s	2980 m	2983 s		
2963 sh	2970 mb	2968 sh	2968 s			$2974 \mathrm{sh}$	2971 s	$\nu a \mathrm{CH}_2$	
			2942 s			$2948 \mathrm{sh}$	2945 m	$\nu d C H_s C$	
2942 w	2940 w	2940 w	2936 s	2941 w	2941 vs	2940 w	2937 s 🖵	$\nu s CH_3 O$	
		2912 w	2916 w-m			2 913 w	2914 m	<i>▶s</i> CH ₃ C	
2907 w	2904 w			2908 w	2907 m		2910 sh —		
2877 w	2877 m	2876 w	2881 w-m	2878 w	2881 m	2879 w	2885 m 2881 m	$\nu s \mathrm{CH}_2$	
	$2851 \mathrm{sh}$	2848 w				2850 vw			
				2266 w	2275 w	2269 vw	2273 s	$\nu d \text{CD}_3 \text{O}$	
				2238 vw	2244 w		2240 s		
				2168 vw	2176 m		2171 m		
				2123 vw	2126 s	2124 w 2116 w	2125 vs 2120 sh	$\nu s CD_3 O$	
1742 vs	1736 s	1739 vs	1738 s	1740 vs	1740 vs	1739 vs	1733 s 🔤	ν C=O	
		1732 vs	1724 s			$1728 { m ssh}$	1720 s		
1480 m	$1480 \mathrm{sh}$	1485 w	1483 w	1479 wsh		1485 w-m	1483 m	$\delta \mathrm{CH}_2$	
		1473 w-m	1473 w		1476 sh	1474 w-m	1472 m —		
1466 m		1461 vw	1464 s	1467 m		1461 w	1461 vs –	δdCH_3C	
	1455 s	1451 m	1453 s		1455 s	1452 m	1451 vs		t
1448 w				1447 m	$1449 \mathrm{sh}$		7		(\mathbf{G})

TABLE 1

257

ļ									
CH ₃ COOC'1	H ₂ CH ₃ (E-NC.	A-d ₀)		CD ₃ COOC'H	L2CH3 (E-NCA	d ₃)		Assignment	
Liquid		Crystal		Liquid		Crystal			
IR	Raman	IR	Raman	IR	Raman	IR	Raman		
1429 sh	1427 sh	1433 w 1425 vw	1425 m					δdCH ₃ 0	
		1399 w-m	1397 w			1401 w	1402 m	SsCH_S	
1393 w	1395 vw			1389 w-m	1392 sh		1389 m —)	
1374 m		1375 m-s	1376 w			1380 w-m	Г	δsCH ₃ O	
	1370 w	1368 m		1367 s		1370 m		$\delta w \mathrm{CH}_2$	
1361 w	1360 vw	1357 m	1361 m			1359 m	٦		
1315 sh		1316 w				1325 sh			
1301 m	1300 vw			1298 sh	1302 w			$\delta t CH_2$	(C)
$1267 \mathrm{sh}$	1271 w	1275 s	1276 m		1270 w-m	1276 s	1273 m	<i>bt</i> CH ₂	(L)
		1262 s	1269 m			1268 s	1267 m	vC-0	(J
1241 vs	1245 w			1259 vs				vC-0	(<u>6</u>)
1172 vw	1170 vw	1165 w						SrCH ₃ C	(9)
1160 w		1165 w 1155 w-m				1153 w-m 1153 w-m	1159 wb	δ _r CH ₃ C	(T)
		1122 w-m							
1113 m	1114 m	1117 sh	1118s	1114 sh	1116 s	1124 m	1120 vs	δrCH ₃ C	(J)
1098 m	1099 m			1095 ssh	1098 m			δ _r CH _s C	(C)
				1 077 s	1078 m	1083 m 1074 m-s	1082 w-т 1078 w-т	$\delta s CD_3 O$	
						1044 m	$1048 \mathrm{m}$	$\delta d C D_3 O$	
1048 s	1048 w-m	1048 s 1042 s	1043 m	1027 s	1029 m	1031 s	1030 s	v0-C'/vC'(•
						1021 msh	$1023 \mathrm{ sh}$	$\delta d C D_3 O$	
1004 w	1002 w	1002 w	1004 m					δ ₇ CH ₃ O	(TG)

TABLE 1 (continued)

	TIT-M COC	m-w 046	942 m	915 m-s	911 w	$916 v_8$	911s	VC' -C	(T)
918 w	917 w-m			900 sh	897 w-m			U-,'U^	<u>(</u>
847 w	846 s	852 w-m	851 vs	882 w-m	880 vs	885 w	885 vs		(J)
808 sh	814 vw	811 w 811 w		811 wsh	811 w	820 w-m 811 w-m	820 vw	δrCH ₂	(T)/(TG)
786 w	786 w					-		δrCH.	(9)
				789 m	790 m	789 m	$790 \mathrm{m}$	årCD_0	Ê
				760 m	760 m			årCD ₂ O	(<u>)</u>
635 w	633 vs	634 w-m	635 vs	594 m	593 vs	595 w-m	595 vs	ðC=0	(L) (L) (L) (L) (L) (L) (L) (L) (L) (L)
608 w	$611 \mathrm{sh}$			531 m	532 w			#C=0	69
		602 w-m	604 w-m			521 m	523 m	#C=0) E
463 m	463 vw			441 vw	439 w				Ì
441 w	439 vw	439 w	438 w-m	407 vw	409 w	410 w	410 m-m		6
378 m	379 s	373 w -m	380 s	366 m	366 the				
313 wb	314 w			300 w	ex non **		SA 0/0		() ()
254 vw ^c	260 vw	284 w	**			989 w	980 tit		6
209 vw°	203 wb	216 w?	211 w-m	· ~ ·	200 vwh	202 w 903 w?	200 WD 903 W-M	NCOO S	
160 vw ^c	155 s		151 w-m	• ~	151 vw		112 m-w 002		E E
136 vw^c	146 s						M 071	0-21	(n r)
						-			

^aSpectral data for over- and combination tones in the 3500–3050, 2850–1800 and 1700–1500 cm⁻¹ regions are omitted.

^bAbbreviations used: s, strong: m, medium; w, weak; v, very; sh, shoulder; b, broad; ν , stretching; δ , deformation; δr , rocking; δw , wagging; δt , twisting: *x*, out-of-plane bending: *t*, torsion; *s*, symmetric; *a*, asymmetric; *d*, degenerate; (*T*) and (*G*), the trans-trans and trans-gauche conformers of CH_3CO-O-CH_2CH_3 axes, respectively. °Measured by using a polyethylene cell and a 12 μm beam splitter.

Observed w	avenumbers, i	n cm ^{- t} , for CH	°COOC D2CD	and CDaCO	OC'D2CD3 (E	-NCA-d _s and E	J-NCA -d ₈) ^{a,b}	
CH ₃ COOC	'D2CD3 (E-N(CA-d ₅)		CD ₃ COOC	D2CD3 (E-NC	(A-d ₈)		Assignment
Liquid		Crystal		Liquid		Crystal		
IR	Raman	IR	Raman	IR	Raman	IR	Raman	
2991 w	2986 wh	3028 vw 2990 w	3028 m 9994 w-m					vdCH ₃ O
	2947 vs	2948 sh	2955 s				[$\nu s CH_3 O$
2935 w		2940 w	2946 s				٦	
		2250 wsh 2243 wsh	2252 sh		2270 w	2271 vw 2254 vw 2249 vw	2271 w-m	vdCD ₃ 0 vdCD ₃ 0
2240 sh	2239 m	2235 wsh	2238 s	2245 m	2240 m	2240 vw	2248 s	$\nu d C D_{3} C$
2231 w		2223 w-m		2234 m		2236 w 2231 vw	$2232 \mathrm{s}$	$\nu a CD_2$
		2210 vw	2206 vw			2210 vw	2211 w	$\nu d C D_3 C$
2190 vw				2189 w	2188 w-m			,
2153 w	2156 s	2160 w 2155 w	2166 w 2153 s	215 4 w	$2153 \mathrm{s}$	2158 w 2149 vw	2149 s	$\nu_{\rm s}{ m CD}_2$
2121 w		2122 w-m		2121 vw	2125 s	2123 vw	2121 m J	$v_s CD_3 O$
	2115 m	2115 wsh	2116 w-m		2115 s	2115 w	- **	vsCD _s C
$2105 \mathrm{sh}$		$2106 \mathrm{sh}$		$2108{ m sh}$		$2105 \mathrm{sh}$		
2074 w	2082 m	2073 w	2079 m	2077 w	2082 s	2075 w	2077 m	$\mu s CD_3 C$
1740 vs	1740 s	1734 vs	1733 s	1738 vs	1732 vs	1736 vs	1729 s	µC=0
		1730 vs	1719 s			1728 s	1717s	
	1452 mb	1455 vw	1454 w				Γ	SCH _s O
1436 w-m		1428 w-m	1428 m					
	1378 w	1377 m-s					Γ	$\delta s CH_3 O$
1371 s		1365 s	$1370 \mathrm{m}$				Ļ	\$

~ -

TABLE 2

(L)	ତ୍ର	6	(<u>5</u>		CD2															Ð	<u>છ</u>	0	(\mathbf{f})	ity?
<i>v</i> C−0	<i>▶</i> C-0	vC'C/	$\delta w CD_2$	$\nu r CH_3 O$	δsCD ₃ C/δ		$\delta s CD_3 O$		$\delta r CH_3 O$	$\delta d C D_3 C$	$\delta d C D_3 O$	₽0-C'	$\delta t CD_2$		$\delta r CH_3 O$		VC -C	VC-C		ôrCD₃O	$\delta r CD_3 O$	$\delta r C D_3 C$	ðrCD₃C	-d _a impur
		1197 w			Γ	1097 w	1091 w 1080 w	Г	1057 m	1047 w	1019 w	985 vs		_1		923 m	903 w	863 m	٦	816 wb			713 m-s	
1290 vs		1199 s 1194 m-s	(1177 w-m)		1103 m	1096 w	1095 w-m 1078 m	1061 m	1055 m	$1049 \mathrm{ sh}$	1023 w	988 s	978 w			923 s	908 w	862 vw		816 m			716 w-m	
		1197 w-m	1179 w				10 91 m	1061 w-m	$1053 \mathrm{m}$			991 s-m		960 m			913 w-m	865 vw	839 w-m	820 vw	784 m	735 sh	718 w	599 m
	1280 vs	1196 s	1177 w		1100 m		1086 m-s	1060 m-s		1050 m		988 w-m		959 w-m		918 w-m		862 vw		816 w	781 w	725 w	717 w	599 w
1264 w		1196 m		1153 w	**	1093 m				1051 s		1030 m	976 sh	966 s	943 w-m		914 mb	865 m					724 s	
1273 s		1195 s	(1176 w-m)	1154 vw	1103 s	1095 m		1064 m	1050 meh	1040 Weh	115M 27-01	1033 a	978 vw	966 m	946 m 938 m	920 w 🗌	910 w -	867 m					728 w	
	1274 wh	1199 s	1184 m	1155 w	1104 m	1092 m			1055 s			1032 s	974 s		952 msh		913 s	870 w	813 s			743 sh	730 m	
	1267 vs	1194 s	1180 ssh		1102 s	1089 msh		1063 s		1050 msh		$1031 \mathrm{sh}$		964 w-m	945 m		ш-м 606	864 w-m	809 w-m			743 sh	727 sh	

CH ₃ COOC	D2CD3 (E-NC	A-d ₅)		CD ₃ COOC'I	D ₂ CD ₃ (E-NC	A-d ₈)		Assignmen	t
Liquid		Crystal		Liquid		Crystal			
IR	Raman	IR	Raman	IR	Raman	IR	Raman		
624 m	628 s	626 m	623 vs	583 w-m	583 vs	587 m	583 vs	δC=0	(TG)
611 m		608 w	608 m	527 w-m	530 w			#C=0	(TG)/(G)
						518 m	517 w	<i>π</i> C=0	(T)
590 w	**	588 w	589 w	583 w-m	583 vs	587 w-m	583 vs	$\delta r CD_2$	(J)
575 sh	581 s			572 w	$576 \mathrm{sh}$			$\delta r CD_2$	(9)
436 w	439 w			408 m	408 w			<i>s</i> cco	(9)
$422 \mathrm{sh}$	423 w	420 w	419 m	385 sh	384 vw	382 w	382 w	SCCO	(\mathcal{T})
349 w	353 s	346 w-m	347 vs	344 m	346 s	341 w-m	344 vs	80C'C	(TG)
279 w	284 wb			27 4 w	270 wb			<i>8</i> COC	(9)
		223 w	220 w			221 w		$\tau CD_{s}C$	
_	200 vwb		197 w	185 vw°		_	190 w	SCOC	(<i>T</i>)
_	155 w	_	150 w	148 w^{c}	152 vwb	_	148 w	±C-0	

^{a.b.c}See footnotes to Table 1.

TABLE 2 (continued)

with the liquid-state IR spectra $(800-200 \text{ cm}^{-1})$. The observed wavenumbers are listed in Tables 1 and 2. The recorded liquid IR data are in agreement with the data of Nolin and Jones $(3500-700 \text{ cm}^{-1})$ within experimental error, and the data for E-NCA-d₀ with those of Ogawa.

NORMAL COORDINATE TREATMENT

Normal coordinate calculations were carried out for ethyl acetate E-NCAd₀, -d₃, -d₅ and -d₈. The *trans-trans* and *trans-gauche* molecular conformations were assumed for the bond axes CH₃CO-O-CH₂CH₃. The geometrical parameters were transferred from related molecules [15, 16]; bond lengths: $r(C_1-C_2)$ 1.518 Å, $r(C_2=O_3)$ 1.219 Å, $r(C_2-C_4)$ 1.360 Å, $r(O_4-C_5)$ 1.460 Å, $r(C_5-C_6)$ 1.539 Å and r(C-H) 1.100 Å; valence angles: \angle (C₁C₂O₄) 117.4°, \angle (C₁C₂O₃) 121.3°, \angle (O₄C₂O₃) 121.3°. \angle (C₂O₄C₅) 113.0°, \angle (O₄C₅C₆) 108.1°, \angle (CCH) 110.4° and \angle (OCH) 109.8°; dihedral angles: $\tau(C_1-C_2-O_4-C_5)$ 180° *trans* and $\tau(C_2-O_4-C_5-C_6)$ 180° *trans* and $\tau(C_2-O_4-C_5-C_6)$ 180° *trans* and 60° *gauche*.

The force field employed is the group coordinate force field [17], in which the force constants are expressed in terms of the group symmetry coordinates of the individual atomic groups constituting the molecule. The definition of these coordinates is in agreement with the IUPAC recommendation [18], full details of which are found elsewhere [17]. Most of the force constants for the ethyl acetate molecule were taken from the well-established force field for alkanes and alkyl ethers [16], which was supplemented by making allowance for the force field determined previously for alkyl ketones and alkyl esters [14].

Calculations were carried out with an MVIB computer program [17], developed for treating normal vibrations of chain molecules. Calculated frequencies and potential-energy distributions (PED) are given in Tables 3–6. In these calculations, we have adjusted ten significant force constants so that the agreement between observed and calculated frequencies has been much improved. We do not show the 86 force constants used for the sake of brevity; a tabulation of these is available from one of the authors (H.M.).

RESULTS AND DISCUSSION

Vibrational spectra of E-NCAs

The four E-NCAs in the crystalline state give two strong ν C=O bands near 1740 cm⁻¹. They are much further apart in the Raman than in the IR spec-

~	,			
Vubs	T conformer		G conforn	ner
	Vcalc	PED (%) ^{a.b}	$\nu_{\rm calc}$	PED (%) ^{a.b}
1739°	1741 α'	pC=0 (119)	1741	<i>p</i> C=0 (119)
1480	1483 a'	ðCH ₂ (88)	1480	$\delta CH_2(88)$
1466	1458 a'	ðdCH ₃ C(77) <i>ð</i> rCH ₃ C(11)	1458	$\delta dCH_{3}C(76) \delta rCH_{3}C(11) \delta CH_{2}(10)$
1455	1452 a''	<i>bd</i> CH ₃ C(79) <i>b</i> -CH ₃ C(15)	1453	$\delta dCH_{s}C(77) \delta rCH_{s}C(15)$
1448	1448 a"	<i>bd</i> CH ₃ O(94)	1448	$\delta dCH_3O(94)$
1429	1444 a'	<i>bd</i> CH ₃ O (93)	1444	$\delta dCH_3O(93)$
1393	1391 a'	$\delta w CH_{o}(67) \delta s CH_{s} C(20) \nu C' C(15)$	1390	$\delta w C H_2(67) \delta s C H_3 O(14)$
1374	1375 a'	$\delta_{s}CH_{s}O(68) \ \delta_{w}CH_{s}(14) \ \delta_{s}CH_{s}C(13)$	1375	$\delta s C H_{3} C (73) \delta s C H_{3} O (20) \nu C' C (11)$
1370	1370 a'	$\delta s C H_{a} C (61) \delta s C H_{a} O (24)$	1368	$\delta s C H_3 O(61) \delta w C H_2(20) \delta s C H_3 C(19)$
1301			1304	$\delta t CH_2(67) \delta r CH_2(10)$
1275^{d}	1278 a''	$\delta t CH_2(81)$ [$\delta s CH_3 O(13) \neg$		
1262^{d}	1265 a'	$\nu CC(48) \nu CO(46) \delta C=0(28)$		$[\delta s CH_3 C(10) \neg$
1241			1256	$\nu CC(48) \nu CO(36) \delta C=O(28) - $
1160	1163 a″	$\delta r C H_{s} C (38) \delta r C H_{2} (30) \delta t C H_{2} (13)$	1167	$\delta rCH_{3}C(35) \delta rCH_{2}(27) \delta tCH_{2}(22)$
		bdCH _s C(12)		$\delta dCH_3C(11)$
1114	1125 a'	δrCH ₃ C(42) μC'C(16) δ0C'C(14)		[&OC'C(11)
1099	1		1106	$\delta r C H_3 C(50) \nu C' C(15) \delta d C H_3 C(11)$
1048	1049 a'	ν C'C(38) ν OC'(32) δ rCH ₃ O(11)	1048	$\delta r C H_3 O(55) \pi C = O(17)$
1042^{d}	1044 a″	$\delta r CH_{s} O(63) \pi C = O(20)$	1037	<i>ν</i> C'C(41) δ <i>r</i> CH ₃ O(19) <i>ν</i> OC'(16)
1004	1008 a'	õrCH ₃ O(49) õCCO(11) õrCH ₃ C(10)	998	$\delta r C H_{3} O(36) \nu C' C(25) \nu C C(12)$
938	$939 \ a'$	νOC' (30) νCC (32) νC'C(16)		

Observed (ν_{obs}) and calculated wavenumbers (ν_{cole}), in cm⁻¹, and potential energy distribution (PED) for the *trans-trans* (T) and *trans-gauche* (G) conformers of CH₃CO-O-C'H₂CH₃ (E-NCA-d₀)

TABLE 3

	δC=0 (42) νCC (19) νOC' (12) πC=0 (71) δrCH ₃ O (30) δCCO (54) δOC' C(31) δC=O(23) ¬	[&COC(18)	δOC'C(51) δCCO(46) δCOC(34) τCH ₃ O(24) δCCO(22)	ъСН ₃ С(92) ъСН ₃ О(92)	
911 849 790	616 616 463		385 31 4	211 20 4	941 2881 2864.
$\nu OC'$ (55) $\delta r CH_3 C(22) \delta \omega CH_2(17)$ $\delta r CH_2(60) \delta r CH_3 C(48) [\delta C O C(15)$	δC=0(51) νCC(21) νOC'(10) πC=0(78) δrCH ₃ O(32)	&CCO(107) pC=O(19) &OC'C(18)	ørCH₃U(17) ØOC'C(42) ØCOC(17) ØC=O(15)	τCH ₃ C(91) δCOC(47) δOC [*] C(35) δCCO(20) τCH ₃ O(96)	L: L. L. 9060 1. 9088 9085 9068 9969 9958 2
839 a' 815 a"	627 a' 609 a"	441 a'	385 a'	249 a″ 209 a′ 206 a″	
918 846 814	786 633 608	463 441	378 314	254 209	

Calculated wavenumbers higher than 2000 cm⁻⁺; 2988 2985 2995 2995 2992 2995 2994 2001 2004. *See footnote ^b to Table 1 for abbreviations. ^bMain contributions; for bands below 200 cm⁻¹ the PEDs are not exhibited because of unknown τC^{-} *See footnote ^b to Table 1 for abbreviations. ^bMain contributions; for bands below 200 cm⁻¹ the PEDs are not exhibited because of unknown τC^{-} of and $\tau O - C'$ force field. 'Average value of IR and Raman wavenumbers. Liquid data are adopted, as a general rule. ^dObserved wavenumber in the crystal.

l

					I
V _{obs}	T conformer		G conform	ler.	
	$ u_{\rm calc} $	PED (%) ^{a.b}	Vcale	PED (%) ^{a.b}	
1740	1736 a'	<i>v</i> C=0(121)	1736	<i>w</i> C=O(121)	I I
1479	1482 a'	SCH, (88)	1479	$\delta \mathrm{CH}_2(\mathrm{88})$	
1467	1458 a'	$\delta dCH_sC(77) \delta rCH_sC(11)$	1458	$\delta dCH_{3}C(75) \delta rCH_{3}C(11) \delta CH_{2}(10)$	
1455	1452 a"	$\delta dCH_{3}C(79) \delta rCH_{3}C(15)$	1453	<i>bd</i> CH ₃ C(77) <i>b</i> -CH ₃ C(15)	
1389	1390 a'	$\delta w CH_2(71) \delta s CH_3 C(19) v C' C(15)$	1387	$\delta w CH_2(83)$	
1367	1371 a'	$\delta s C H_{s} C (75) \delta w C H_{s} (19)$	1373	$\delta s CH_3 C(89)$	
1302			1305	<i>dt</i> CH ₂ (66)	
1276ª	1278 a"	$\delta t CH_2(81)$			
1268^{d}	1265 a'	$\nu CO(56) \nu CC(40) \delta C=O(31)$		$[\delta w CH_2(10) -]$	
1259			1253	νCO(42) νCC(41) δC=0(30) –	
1162^{d}	1163 a"	$\delta r C H_{s} C (38) \delta r C H_{2} (30) \delta t C H_{2} (13)$	1167	δ rCH ₃ C(35) δ rCH ₂ (27) δ rCH ₂ (22)	
		$\delta dCH_{s}C(12)$		$\delta dCH_{s}C(11)$	
1116	1126 a'	δrCH ₃ C(40) μCC'(16) δOC'C(14)			
1098			1104	$\delta rCH_{3}C(52) \nu CC' (13) \delta dCH_{3}C(11) \neg$	
1077	1067 a'	$\delta s CD_3 O(81) \nu CC(25)$	1066	δsCD _s O(84) νCC(20) [δ0C'C(11) →	

Observed (v_{ohs}) and calculated wavenumbers (v_{ealc}), in cm⁻¹, and potential energy distribution (PED) for the *trans-trans* (T) and *trans-gauche* (G) conformers of CD₃CO-O-C'H₂CH₃ (E-NCA-d₃)

TABLE 4

1048 ^d	1048 a'	$\delta d C D_3 O(61) \nu C' C(14) \nu O C' (12)$	1044	<i>bd</i> CD ₃ O(90)
1048^{d}	1042 a''	$\delta d CD_3 O(97)$	1042	$\delta d C D_{a} O (97)$
1027	1037 a'	νC'C(34) δdCD ₃ O(33) νOC'(17)	1024	vC'C(66) vOC' (24)
915	914 a''	$\delta rCD_{s}O(40) \pi C=O(41)$	913	$\delta CD_{3}O(40) \pi C = O(41)$
915	910 a'	νOC' (20) νCO(16) νC'C(12) νCC(12)		vCO(12)
897		•	887	νΟC' (35) δrCH _s C(16) δωCH _s (12)
880	886 a'	δCCO(30) νOC'(18) νCO(17)	889	δCCO(25) μCO(23) δCOC(12)
		$\delta - CD_{3}O(15)$		[dsCD ₃ 0(11)
811	812 a″	δ rCH ₂ (60) δ rCH ₃ C (47)	813	&CH _o (31) &CH _v C(25) &CD _v O(17)
790	791 a'	δrCD ₃ O(34) νOC' (27)		
760			769	δrCD ₂ O(20) δrCH ₂ (22) νCO(16)
593	573 a'	δC=0(38) μCC(20) μOC'(12)	592	δC=O(29) νCC(21) νOC'(14)
531		[årCD ₃ 0(12)	532	$\pi C=0(48) \delta r CD_{3}O(53)$
523^{d}	522 a"	$\pi C=0(55) \delta r CD_{3}0(56)$		
439		-	433	ØC'C(46) ØC=0(25) ØCOC(18)
409	400 a'	SCCO(66) SOC'C(48) SrCD ₃ O(19)		
		vCO(14) [∂OC'C(12)		
366	377 a'	SCOC(28) SC=0(23) SCCO(22)	362	JCCO(50) JOC'C(31) JrCD.O(15)
300			306	ôCCO(41) ôCOC(25) rCH ₂ C(24)
	249 a″	$\tau CH_3 C(93)$		
200	201 a'	ðCOC(43) ðOC'C(33) ðCCO(27)	209	$\pi CH_{3}C(70) \delta COC(16)$
Calculated w	/avenumbers h	iigher than 2000 cm ^{- 1} ; 2968 2962 2958 2881 2864 2235 22	226 2122.	

^aSee footnote ^b to Table 1 for abbreviations. ^{b,c,d}See footnotes to Table 3.

(G) conforn	ners of CH ₃ CO	$-0-C^{2}D_{2}CD_{3}$ (E-NCA-d ₅)		
$ u_{\rm obs} $	T conformer		G confort	ner
	Vcalc	PED (%)* ^b	$\nu_{\rm calc}$	PED (%)* ¹⁵
1740	1741 a'	<i>v</i> C=0(119)	1741	<i>p</i> C=0(119)
1452	1448 a''	$\delta dCH_{s}O(94)$	1448	$\delta d C H_{3} O (94)$
1436	1444 a'	$\delta d C H_{a} O (93)$	1444	$\delta d \mathrm{CH}_{3} \mathrm{O}(93)$
1371	1374 a'	$\delta_{s} C H_{s} O(93)$	1374	$\delta s C H_3 O(93)$
1273^{d}	1277 a'	$\nu CC(45) \nu CO(37) \delta C=O(26) \delta s CH_3O(13)$		
1267			1272	νCC(48) νCO(45) δC=O(28)
1197°	1198 a'	$\nu C'C(54) \delta \omega CD_2(30) \delta s CD_3 C(12)$		$[\delta s CH_3 O(13]$
1182°		[rc0(12)	1174	$\nu C' C (64) \delta w C D_2 (26) \delta s C H_3 C (26)$
1102	1100 a'	$\delta s CD_s C(43) \delta CD_2(33)$	1090	$\delta CD_2(54) \delta sCD_3 C(25)$
1063	1060 a'	$\delta dCD_3C(31) \delta wCD_2(22) \delta CD_2(18)$	1071	$\delta dCD_{s}C(17) \delta rCD_{2}(15) \delta tCD_{2}(13)$
		$\delta s CD_s C(13)$		$\delta r C H_3 O(13)$
1055	1050 a"	$\delta r CH_{3}O(40) \ \delta d CD_{3}C(19) \ \pi C=0(14)$	1053	$\delta d \mathrm{CD}_{\mathrm{s}} \mathrm{C}(26) \ \delta w \mathrm{CD}_{\mathrm{2}}(25) \ \delta r \mathrm{CH}_{\mathrm{s}} \mathrm{O}(15)$
1050	1041 a'	$\delta CD_2(35) \delta dCD_3C(27) \delta rCH_3O(10)$	1048	$\delta dCD_{s}C(31) \delta rCH_{s}O(15) \delta CD_{2}(13)$
	$1039 \ a''$	$\delta dCD_{s}C(53) \delta rCH_{s}O(21)$	1039	$\delta r C H_3 O(73) \delta w C D_2(16)$
1032	1025 a'	δrCH ₃ O(35) δdCD ₃ C(29) νOC'(16)	1024	$\delta d CD_{3}C(44) \delta r CH_{3}O(21) \delta CCO(10)$
		SCC0(12)		
		[&OC'C(14)	1013	$\delta dCD_{3}C(52) \nu OC'(11) \delta w CD_{2}(10)$
974	965 a'	$\delta r CD_2(22) \ \nu CO(16) \ \delta w CD_2(15)$		
964	962 a″	$\delta r CD_2(36) \ \delta dCD_3C(23) \ \delta r CD_3C(15)$		$\left[\delta rCD_{s}C(10)$
945	942 a'	vOC' (33) vCC(33) vCO(10)	953	νοC' (31) νCC(18) δrCH ₃ O(13)
913	902 a″	$\delta t CD_2(81) \ \delta r CD_3 C(18)$	914	$\delta t CD_2(46) \delta r CD_3 C(28) \delta r CD_2(11)$

Observed (v_{obs}) and calculated wavenumbers (v_{eale}) , in cm⁻¹, and potential energy distribution (PED) for the *trans-trans* (T) and *trans-gauche*

TABLE 5

$\nu C' C(20) \delta r C D_3 C(15) \delta s C D_3 C(15)$		$\nu CO(40) \ \delta t CD_2(ZI)$	$\delta rCD_{3}C(28) \delta wCD_{2}(17) \nu 0C'(13)$	[<i>µ</i> CC' (13)	$\delta C = O(30) \delta r C D_3 C(16) r C C(14)$	POC' (13)	$\pi C=0(75) \delta r CH_3 O(31)$			$\delta - CD_2(44) \delta - CD_3C(36) \delta = O(20)$	$\delta CCO(75) \delta COC(17) \delta C=0(17)$			auc'c(59) accu(32)	$\delta COC(42) \ \delta CCO(15) \ \tau CD_3 C(15)$	$\tau CH_3 O(97)$			
888		812	739		627		613			586	441			358	276	204			0 0100 0010 0
				$\delta_{r}CD_{3}C(46) \ \delta_{w}CD_{2}(23) \ vOC'(15)$	$\delta C=0(53) \nu CC(18) \delta r CH_3 O(10)$	årCD,0(12)	$\pi C=0$ (45) $\delta r CD_3 C(22) \delta r CH_3 O(20)$	$\delta r CD_2(17)$ [$\delta r CH_3 O(12)$	$\delta rCD_{a}(38) \pi C=0(33) \delta rCD_{a}C(31)$		100C'(13)		$\delta CCO(107) \delta C=O(19) \delta CH_3O(16)$	80C'C(42) 8C0C(18) 8C=0(11)		$\tau CH_{2}O(88)$	SCOC(45) SOC'C(41) SCCO(17)	$\tau CD_{3}C(79) \tau CH_{3}O(11)$	
	852 a'			722 a'	618 a'		625 a"		584 a				428 a'	351 a'		209 a''	194 a'	186 a″	
	864	813	743	730	624	1	611		590	581	100	438	423	353	970	2	200		

Calculated wavenumbers higher than 2000 cm⁻¹; 2988 2985 2941 2224 2212 2200 2103 2078. "See footnote ^b to Table 1 for abbreviations. ^{b.c.d} See footnotes to Table 3.

$\nu_{ m obs}$	T conformer		G conforn	ner
	<i>V</i> calc	PED (%) ^{n,h}	<i>V</i> calc	${ m PED}~(\%)^{a,b}$
1735°	1736 a'	<i>p</i> C=0(121)	1735	vC=0(121)
1290 ^d	1277 a'	<i>▶</i> CO(45) <i>▶</i> CC(38) ∂C=O(29)		
1280 1196	1198 a'	μC'C(53) δωCD ₃ (30) μCO(14)	77.72	PCU(35) PCU(40) AC=U(31)
1178°		$[\delta s CD_3 C(12)$	1174	$\nu C' C(66) \delta w CD_2(26) \delta s CH_3 C(26)$
1100	1101 a'	$\delta s CD_{3}C(43) \delta CD_{2}(28)$	1091	$\delta CD_2(38) \delta s CD_3 C(21)$
1086	1072 a'	$\delta ^{s} CD_{s} O(56) \ \delta CD_{2}(22) \ \nu CC(20)$	1084	$\delta s CD_{3}O(30) \ \delta CD_{2}(23) \ \nu CC(13)$
1060	1056 a'	$\delta dCD_{3}C(28) \ \delta sCD_{3}O(17) \ \delta wCD_{2}(15)$	1054	$\delta s CD_{3}O(27) \ \delta d CD_{3}C(19) \ \delta d CD_{3}O(18)$
1053	$1043 \ a'$	$\delta dCD_{3}O(77) \delta dCD_{3}C(13) [\delta dCD_{3}O(12) -]$	1051	$\delta dCD_{3}C(46) \ \delta w CD_{2}(18) \ \delta r CD_{3}C(12)$
	1043 a''	$\delta d C D_{s} C (53) \delta d C D_{s} O (22) \delta r C D_{s} C (12)$	1044	$\delta dCD_{3}O(67) \delta dCD_{3}C(10) [\delta sCD_{3}C(11) - 1$
1050	1042 a''	$\delta dCD_{3}O(75) \ \delta dCD_{3}C(16)$	1042	$\delta dCD_3O(96)$
1021^{d}	1036 a'	$\delta d C D_3 C (33) \delta C D_2 (30) \delta w C D_2 (19)$	1033	$\delta w \text{CD}_2(32) \ \delta r \text{CD}_2(25) \ \delta \text{CD}_2(24)$
			1009	$\delta d C D_{s} C (55) \delta r C D_{2} (12) \delta s C D_{s} O (12)$
166	982 α'	vOC' (49) δrCD _s C(14) δdCD _s C(12) δOC'C(10)		
978 ^d	968 a''	$\delta r CD_{3}(32) \delta d CD_{3} C(24) \delta r CD_{3} C(11)$		
096			975	μ OC' (57) δd CD _a C (12) δr CD _a C (10)
918°	929 a'	$\nu OC'$ (16) $\nu CO(11) \delta \omega CD_2(10)$		
913	912 a''	$\pi C=0(25) \delta dCD_3 O(24) \delta tCD_2(19)$	918	$\pi C=O(22) \delta t CD_2(21) \delta r CD_3 O(21)$
		$\delta rCD_3C(15)$		$\delta \text{rCD}_{3}\text{C}(14)$ [$\delta \text{rCD}_{3}\text{O}(14)$
	897 a″	$\delta t CD_2(62) \ \delta r CD_3O(15) \ \pi C=O(12)$	911	$\delta t CD_2(21) \ \delta r CD_3 C(17) \ \pi C = 0(14)$

Observed (ν_{obs}) and calculated wavenumbers (ν_{calc}), in cm⁻¹, and potential energy distribution (PED) for the *trans-trans* (T) and *trans-gauche* (G) conformers of CD₂CO-O-C⁷D₂CD₂ (E-NCA-da)

TABLE 6

				Colombatod
acut (31) accu(25) tCD3C(15)	112	tCD ₃ C(83) tCD ₃ O(10) 6COC(42) 6OC [°] C(39) 6CCO(22)	189 a″ 187 a′	185
80C'C(42) 8CCO(51) 8-CD ₃ O(12)	341	ðOC'C(37) ðCOC(21) ðC=0(12)	350 a′	3 46 274
8CC0(35) 80C'C(32) 8C=0(21)	406	δCCO(92) δrCD ₃ O(29) δC=O(18) δOC'C(14)	383 a´	384
жC=0(51) д́rCD ₃ 0(55)	528	$\pi C=0(54) \delta r C D_3 O(53)$	519 a″	518 ^d 408
[µOC' (11) ðrCD ₂ (38) ðrCD ₃ C(42)	603			572 527
δC=0(33) δrCD ₂ (15) vCC(12)	567	δC=0(39) νCC(18) δrCD ₂ (11) δrCD ₂ (52) δrCD ₃ C(51) [νOC' (13)	570 a' 603 a"	583
νCO(23) δrCD ₃ O(22) δtCD ₂ (13) δrCD ₃ C(27) νOC' (16) δwCD ₂ (15) ¬	779 732	ôrCD _a C(43) ômCD _a (99) mOC' (17)	715 a'	725 717
$\delta rCD_3O(21) \delta CCO(17) \delta rCD_2(15)$	842	δrCD ₃ O(34) νC'C(12) δsCD ₃ C(11)	816 a'	616 784
νC'C(18) δ ₁ CD ₃ C(16) δ ₈ CD ₃ C(13)	889	νCO(17) δCCO(13) νC'C(13)	859 a'	862 010

Calculated wavenumbers higher than 2000 cm⁻¹: 2235 2226 2224 2212 2200 2122 2103 2078. *See footnote ^b to Table 1 for abbreviations. ^{b.c.d}See footnotes to Table 3.

trum, suggesting the presence of two molecules, or an even number of molecules, in the crystal unit. This would also explain some commonly observed band splits. Additionally, on crystallization, some bands disappear because of the elimination of unstable conformers and new bands appear owing to the higher resolution at lower temperatures. Therefore, it is of importance to examine crystalline-state spectra, as well as liquid-state spectra.

In the Raman spectra of crystalline E-NCA- d_0 and $-d_3$ (top in Figs. 1 and 2), besides the ν C=O bands, six characteristically strong bands appear near 1460, 1450, 1120, 850(885), 635(595), 380(370) cm⁻¹, the number in parentheses being the observed wavenumber of the corresponding band in E-NCA- d_3 . In the spectra of crystalline E-NCA- d_5 and $-d_8$ (top in Figs. 3 and 4), three bands near 865(885), 625(585), 345 cm⁻¹ (corresponding to the last three bands of E-NCA- d_0 and $-d_3$), and new bands near 1195, 965(985) and 725(715) cm⁻¹ are prominent. The appearance of such strong bands at positions common to E-NCA- d_0 and $-d_3$, and E-NCA- d_5 and $-d_8$, indicates that the deuteration of the ethyl group has a greater influence on Raman intensity than deuteration of the acetoxy methyl group.

Thus, a clue as to how to assign these bands of E-NCAs is found in the results of a previous study on the Raman spectra of ethyl trichloroacetate and its deuterate (E-TCA- d_0 and $-d_5$), whose molecules in the crystalline state exist only in the *trans-trans-trans* conformer about CCl-CO-O-CH₂CH₃ axes [11].

A band assignment analogous to that for E-TCA-d₀ and -d₅, may be made for the six strong bands of E-NCA-d₀ aand -d₃, allocating them to the two δdCH_3C^* , $\delta \nu CH_3C$, $\nu C-C$, $\delta C=O$ and $\delta OC'C$ modes, in descending wavenumber order, and similarly the three new bands of E-NCA-d₅ and -d₈ are assigned to $\delta w CD_2/\nu OC'$, $\delta r CD_3 C/\delta t CD_2$ and $\delta r CD_3 C$ modes. The weak Raman bands near 1483 and 1472, 1400, 1275, 1265, 1160, 940 (910), 600 (525) and 435 (410) cm⁻¹, which are observed commonly in both E-NCA-d₀ and -d₃ spectra, correspond to the bands at 1475 [δCH_2], 1398 [$\delta s CH_3C$], 1303 [$\delta t CH_2$], 1266 [$\nu C-$ O], 1146 [$\delta r CH_3C$], 970 [$\nu C'-C$], 684 [$\pi C=O$] and 449 cm⁻¹ [δCCO] for E-TCA-d₀ in the *trans* conformer. On the other hand, the Raman bands near 1095, 1055, 915, 605 (515), 585 and 420 (380) cm⁻¹ observed in both the E-NCA-d₅ and -d₈ spectra are associated with the bands at 1090 [$\delta s CD_3C$], 1052 [$\delta d CD_3C$], 908 [$\nu C'-C$], 683 [$\pi C=O$], 589 [$\delta r CD_2$] and 410 cm⁻¹ [δCCO] of E-TCA-d₅, respectively.

More careful analysis to identify CH_3O^* vibrations shows that the bands near 1425, 1376 and 1361(1370), 1004(966), and 942 cm⁻¹, present in the E-NCA-d₀ and -d₅ spectra but absent in the E-NCA-d₃ and -d₈ spectra, should be assigned to the δdCH_3O , δsCH_3O and two δrCH_3O modes, respectively. The deuteration of the acetoxy methyl group shifts them to lower frequencies; the

^{*}A distinction between the two methyl groups of E-NCA is made by designating the methyl group of ethyl radical by CH_3C and the acetoxy methyl group by CH_3O .

 δCD_3O bands are observed near 1080 and 1020 cm⁻¹ and δrCD_3O bands at 790(816) cm⁻¹. The CH₃O vibrations correspond to the bands at 1446 and 1439, 1379, 1020, and 976(944) cm⁻¹ of methyl- and trideuteromethyl-acetate (M-NCA-d₀ and -d₃) and the CD₃O vibrations to the bands at 1035 and 993, and 778(832) cm⁻¹ of methyl trideuteroacetate and full deutero analogue (M-NCA-d₃' and -d₆) [19].

The IR spectra of E-NCAs exhibit some characteristic bands at positions corresponding to the Raman bands. Two strong and broad bands appear at 1241 and 1048 cm⁻¹ in the liquid-state spectrum of E-NCA-d₀ and have been assigned to the ν C-O and ν O-C' modes, respectively [13]. Almost certainly the former band shifts progressively to higher wavenumber with increasing deuteration. Moreover, on crystallization the ν C-O band positions shift to higher wavenumber. The ν O-C' band is increasingly surrounded by CD₃ and CD₂ deformation bands with increasing deuteration and seems to lose its prominent nature. Also, the high intensity of the 1033 cm⁻¹ band of E-NCA-d₅ suggests a vibrational nature similar to the 1048 cm⁻¹ band of E-NCA-d₀. The band of E-NCA-d₈ at 916 cm⁻¹ corresponds to the 923 cm⁻¹ band of E-NCA-d₃. An extensive explanation of C-H(C-D) stretching vibrations is given by Nolin and Jones [13].

Vibrational coupling of skeletal stretching vibrations

The conventional description used above for band assignment is only approximate and if a more detailed assignment is necessary, the PED in Tables 3–6 should be consulted. The detailed expression indicates that vibrational coupling exists among a few vibrations. In particular, skeletal stretching vibrational coupling is quite strong. As mentioned above, the bands near 1260, 1050, 940 and 845 cm⁻¹ of E-NCA-d₀ are assigned to the ν CO, ν O'C, ν C'C and ν CC modes, respectively. In addition to ν CO contribution, the 1260 cm⁻¹ band has ν CC (large) and δ C=O contributions, and the 1050 cm⁻¹ band has ν OC' and ν C'C contributions, while the 845 cm⁻¹ band does not have the essential ν CC but has a large ν OC' contribution. A similar picture of vibrational coupling was seen in E-TCA-d₀, though the band at 882 cm⁻¹ had an essential ν CC contribution.

The PED of the ν CO band of E-NCA-d₀ is similar to those of the other three E-NCAs. In the other skeletal bands, the stretching vibration contribution is reduced with increasing deuteration, because of additional couplings with deformation vibrations of methyl and ethyl groups. It is difficult to make a clear-cut assignment.

Rotational isomerism and band pairs of trans/(gauche) conformers

An important clue in the problem of rotational isomerism would be the discovery of band pairs coming from a single mode, in the liquid-state spectra, one component of which disappears on crystallization. Such band pairs seem to exist in the liquid-state spectra of E-NCAs, as they do in the liquid-state spectra of E-TCAs, where they are associated with the trans/(gauche) conformers of the CO-CH₂CH₃ axis [11]. In Table 7 the band pairs of E-NCAs are summarized together with the observed and calculated wavenumbers, and band assignment.

We have discussed the problem of the band pairs of $XC(C=O)OCH_2CH_3$ type esters (X = H, Cl, N=C-, CH₃-, N=C-CH₂- and CCl₃-) previously [11]. In the present study we have also found many band pairs of the deuterates. The results of the normal coordinate calculation suggest that bands observed near 1300 cm⁻¹ [δtCH_2] of the d₀ and d₃ compounds, the bands near 800 cm⁻¹ [δrCD_3O] of the d₃ and d₈, and bands near 1200 [$\delta wCD_2/\nu OC'$] and 730 [δrCD_3C] cm⁻¹ of the d₅ and d₈ esters, are band pair members, also.

All the esters previously discussed, and esters with $X = CH_2Cl$ - and $CHCl_2$ -[6, 7], show, in their liquid-state spectra, a band pair corresponding to the pair 1116/(1095) cm⁻¹ of E-TCA-d₀ [δrCH_3C]. Since the E-TCA molecule (having a complete Cs symmetry [20]) exists as a conformer of all trans skeletal axes in the crystalline state [11], the presence of such a band pair in the liquid-

TABLE 7

E-NCA-d ₀		E-NCA-d ₃		E-NCA-d ₅		E-NCA-d ₈		Assignment	
$\nu_{\rm obs}$	$\nu_{\rm cal}$	$\nu_{\rm obs}$	V _{cal}	$\nu_{\rm obs}$	$\nu_{\rm cal}$	$\nu_{\rm obs}$	$\nu_{\rm cal}$		
1301	1304	1302	1305					$\delta t CH_2$	(G)
1262	1265	1276	1278					_	(T)
1262	1265	1268	1265	1273	1277	1290	1277	νC-0	(T)
1241	1256	1259	1253	1267	1272	1280	1272	$+\nu CC$	(G)
				1197	1198	1196	1198	$\nu C'C$	(T)
				1182	1174	1178	1174	$+\delta w CD_2$	(G)
1114	1125	1116	1126	730	722	717	715	δrCH ₃ C	(T)
1099	1106	1098	1104	743	739	725	732	U U	(G)
938	939	915	910					$\nu C'C$	(T)
918	911	897	887					$+\nu OC'$	(G)
814	815	811	812	590	584	583	603	$\delta r CH_2$	(T)
786	790		813	581	586	572	603	$+\delta r CH_3 C$	(G)
		790	791			816	816	$\delta r CD_3 O$	(T)
		760	769			784	779	_	(G)
608	616	531	532	611	613	527	528	$\pi C=0$	(G)
	609	523	522		625	518	519	$+\delta r CH_3 O$	(T)
463	463	439	433	438	441	408	406	SCCO	(G)
441	441	409	400	423	428	384	383	$+\delta OC'C$	(T)
314	314	300	306	279	276	274	271	SCOC	(G)
209	209	200	201	200	194	185	187	$+\delta CCO$	(T)

Band pairs of trans-trans (T) and trans-gauche (G) conformers

state spectra of ethyl esters is an important indication of a *trans-gauche* isomerism coming from ethyl groups.

Strangely, in contrast to other ethyl chloroacetates [11, 21], the $\delta OC'C$ vibration of E-NCAs does not appear as a band pair probably because of the absence of heavy α -substituents.

There are some bands whose positions change considerably on the change of state. E-NCA- d_0 gives a strong IR band at 1241 cm⁻¹ in the liquid and at 1261 cm⁻¹ in the crystalline state. It is probable that the 1241 cm⁻¹ band is also a band pair with two components which are apparently unresolvable owing to their very broad and strong absorptions.

Bands in the region below 700 cm^{-1}

Besides the $\delta r \text{CD}_2$ band (ca. 590 cm⁻¹) of E-NCA-d₅ and -d₈, each E-NCA is expected to give nine fundamental bands in the region below 700 cm⁻¹; the five deformations: $\delta C=0$, $\pi C=0$, δCCO , δCOC , $\delta OC'C$ and the four torsions: τCH_3O , $\tau C-O$, $\tau O-C'$, τCH_3C . In crystalline-state spectra, seven fundamental bands are clearly detected, as summarized in Table 8. Surprisingly, the 284 cm⁻¹ band of E-NCA-d₀ seems to be absent in the liquid-state spectra. In contrast, the 314 cm⁻¹ band of liquid E-NCA-d₀, distinguished from crystalline bands by parentheses in Table 8, disappears on crystallization. At first sight, both the bands for E-NCA-d₀ (-d₃) look like the two components of a band pair, but the large separation in wavenumber between the corresponding bands for E-NCA-d₅ (-d₈) casts doubt on this hypothesis. The 284 cm⁻¹ band seems to be due to a shift to higher wavenumber, on crystallization, of a very weak band observed at 254 cm⁻¹ in the liquid-state IR spectrum.

Let us now consider the observed wavenumbers for the vibrations displayed

TABLE 8

E-NCA-d _o	-d ₃	$-\mathbf{d}_5$	-d ₈	d_0 - d_3	d_5 - d_8	d_0 - d_5	d3-d8	Assignment
635	595	623	583	40	40	12	12	δC=O
603	523	608	518	80	80	-5	5	$\pi C=O$
438	410	419	382	28	37	19	28	δCCO
380	370	347	344	10	3	33	26	δOC′C
(314)	(298)	(279)	(271)	(16)	(8)	(35)	(27)	$\delta \text{COC}(G)$
284	282	222	221	2	1	62	61	$\tau CH_3(CD_3)C$
211	203	197	19 0	8	7	14	13	$\delta \text{COC}(T)$
151	148	150	148	3	2	1	0	τ C-O

Observed wavenumbers for crystalline E-NCAs in the region below 700 $\rm cm^{-1}$ and wavenumber differences between E-NCAs

The wavenumber is the stronger of IR or Raman bands, or the average value if their intensities are similar.

in Table 8. The value of $d_0 - d_3$ or $d_5 - d_8$ for a vibration is the variation in wavenumber on deuteration of the acetoxy methyl group, and $d_0 - d_5$ or $d_3 - d_8$ is that of the ethyl group. From these variations it can be deduced which of the two groups or their related modes contributes more to each vibration. From this standpoint, the bands at 635, 603, and probably 438 cm⁻¹, of E-NCA- d_0 are associated with the $\delta C=0$, $\pi C=0$ and δCCO modes due to the acetoxy methyl rather than the ethyl group, while the bands at 380, (314) and 284 cm⁻¹ are associated with the $\delta OC'C$, $\delta COC(G)$ and τCH_3C modes due to the ethyl group, respectively.

The assignment of the 635, 603, 438 and 380 cm⁻¹ bands is highly satisfactory, and consistent with that made by analogy with the spectra of E-TCAs. It is also supported by the results of the normal coordinate calculation and Ogawa's study of E-NCA-d₀ [14]. The wavenumber ratio $\nu(d_0)/\nu(d_5)$ or $\nu(d_3)/\nu(d_8)$ of the τ CH₃C band to the τ CD₃C band is in both cases 1:28, confirming the validity of the assignment. This assignment is also supported by the fact that the three τ CH₃C(τ CD₃C) contributions of *tert*-butyl formate concentrate the bands near 263(209) cm⁻¹ [22], and that the bands of other ethyl compounds appear near 270(205) cm⁻¹ [23].

It should be noted that the $\delta OC'C$ band is characteristically strong in Raman spectra, since this band corresponds to one member of the k_1 array (the so-called LAM-1 accordion-like motion) in the $\nu_5(\delta CCC)$ mode [24] for CH₃COO(CH₂)_nCH₃.

The band corresponding to the (314 cm^{-1}) band of E-NCA-d₀ appears at almost the same position in the liquid-state spectra of ethyl chloroacetates and also disappears on crystallization [11, 21], or becomes weak at low temperature (dichloro-derivative) [21]. On the other hand, methyl analogues, M-NCA and their α -chloro-derivatives, give the δ COC band at much the same position in both the liquid- and crystalline-state spectra [8–10, 14, 19, 25, 26].

All the torsions, except that of τ CO, are expected to change their positions on deuteration of acetoxy methyl or ethyl groups, as does the τ CH₃C band at 284 cm⁻¹ of E-NCA-d₀. When the ethyl group is deuterated the 211 cm⁻¹ band shows very little change ($\nu d_0/\nu d_5 \doteq \nu d_3/\nu d_8 = 1.07$), as does the 151 cm⁻¹ band. The τ C-O modes of ethyl chloro- and cyano-formates were associated with bands at 148 and 143 cm⁻¹, respectively [27]. Accordingly, the 151 cm⁻¹ band is assigned to the τ C-O mode of E-NCAs. On the other hand, since the 211 cm⁻¹ band cannot be considered to arise from the τ CH₃-O and τ O-CH₂ modes, we assign this band to the δ COC mode in the *trans* conformer with the aid of the normal coordinate calculation.

ACKNOWLEDGEMENTS

One of us (Y. M.) wishes to express his sincere thanks to Comisión Asesora de Investigación Científica y Técnica (Ministerio de Educación y Ciencia, Spain), which provided financial support for scientific research at the Universidad Complutense de Madrid. The authors also wish to thank Mr. Naoki Kakizawa of Kobe University for his experimental assistance, and the Information Processing Center of Hiroshima and Kobe University for the use of a HITAC M-680H and a NEAC ACOS 1000 system, respectively.

REFERENCES

- 1 L. J. Bellamy, The Infrared Spectra of Complex Molecules, Vol. 1, 3rd edn., Chapman and Hall, London, 1975, Chap. 11.
- 2 G. I. L. Jones and N. L. Owen, J. Mol. Struct., 18 (1973) 1.
- 3 S. W. Charles, G. I. L. Jones and N. L. Owen, J. Chem. Soc. Faraday Trans. 2, 69 (1973) 1454.
- 4 M. G. Dahlqvist, Spectrochim. Acta, Part A, 36 (1980) 37.
- 5 A. Hernanz, M. V. García and J. Morcillo, J. Mol. Struct., 80 (1982) 335.
- 6 M. A. Raso, M. V. García and J. Morcillo, J. Mol. Struct., 115 (1984) 449.
- 7 M. A. Raso, M. V. García and J. Morcillo, J. Mol. Struct., 142 (1986) 41.
- 8 Y. Mido and M. Hashimoto, J. Mol. Struct., 129 (1985) 253.
- 9 Y. Mido and M. Hashimoto, J. Mol. Struct., 131 (1985) 71.
- 10 Y. Mido, K. Suzuki, N. Komatsu and M. Hashimoto, J. Mol. Struct., 144 (1986) 329.
- 11 Y. Mido, T. Kawashita, K. Suzuki, J. Morcillo and M. V. García, J. Mol. Struct., 162 (1987) 169.
- 12 Y. Mido, N. Komatsu, J. Morcillo and M. V. García, J. Mol. Struct., 172 (1988) 49.
- 13 B. Nolin and R. N. Jones, Can. J. Chem., 34 (1956) 1392.
- 14 Y. Ogawa, Ph. D. Thesis, The University of Tokyo, Tokyo, 1978.
- 15 Structure Data of Free Polyatomic Molecules, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, Group II: Atomic and Molecular Physics, Vol. 7, Springer-Verlag, Berlin, 1976.
- 16 T. Shimanouchi, H. Matsuura, Y. Ogawa and I. Harada, J. Phys. Chem. Ref. Data, 7 (1978) 1323.
- 17 H. Matsuura and M. Tasumi, in J. R. Durig (Ed.), Force Fields for Large Molecules, Vibrational Spectra and Structure, Vol. 12, Elsevier, Amsterdam, 1983, Chap. 2, pp. 69-143.
- 18 Definition and Symbolism of Molecular Force Constants, IUPAC Commission on Molecular Structure and Spectroscopy, Pure Appl. Chem., 50 (1978) 1707.
- 19 W. O. George, T. E. Houston and W. C. Harris, Spectrochim. Acta, Part A, 30 (1974) 1035.
- 20 M. Hashimoto, M. Watanabe and H. Takada, J. Magn. Reson., 34 (1979) 553.
- 21 Y. Mido, M. A. Raso, M. V. García and J. Morcillo, unpublished data.
- 22 Y. Omura J. Corset and R. M. Moravie, J. Mol. Struct., 52 (1979) 175.
- 23 J. R. Durig and H. L. Heusel, J. F. Sullivan and S. Cradock, Spectrochim. Acta, Part A, 40 (1984) 739.
- 24 R. F. Schaufele, J. Chem. Phys., 49 (1968) 4168.
- 25 J. E. Katon and D. Sinha, Spectrochim. Acta, Part A, 33 (1977) 45.
- 26 R. Fausto and J. J. C. Teixeira-Dias, J. Mol. Struct., 144 (1986) 225; 241.
- 27 S. W. Charles, G. I. L. Jones, N. L. Owen, S. J. Cyvin and B. N. Cyvin, J. Mol. Struct., 16 (1973) 225.