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Abstract—Porphyrinic pyridinium ylides react with 1,4-benzoquinone and 1,4-naphthoquinone to afford novel meso-substituted
indolizine porphyrins.
� 2005 Elsevier Ltd. All rights reserved.
Nature has built up complicated photosystems over
billions of years for photochemical conversion and stor-
age of energy. During the last decades, a great number
of biomimetic model systems have been used to study
the photosynthetic electron-transfer mechanism.1 There-
fore, numerous covalently linked porphyrin-quinone
compounds, with different bridging features, have been
designed and studied for that purpose.2

Over the past years, we3,4 and others5 have been investi-
gating the reactivity of porphyrins as dienophiles and
dipolarophiles in Diels–Alder and 1,3-dipolar cycloaddi-
tion reactions.6 As part of such studies, we have used
new porphyrin pyridinium salts as precursors of the cor-
responding ylides and investigated their reactivities with
quinones. It is known from the literature that in 1,3-
dipolar cycloadditions involving pyridinium salts, the
dipolarophiles are usually dialkyl acetylenedicarboxyl-
ates or a-bromo-a,b-unsaturated esters or nitriles;7

when electron-deficient alkenes are used as dipolaro-
philes the indolizine products are only isolated if the
reactions are carried out in the presence of an oxidant
(e.g., tetrakispyridinecobalt(II) dichromate or MnO2).

8

In our present studies, the quinones were used in excess,
acting as reagents and as oxidants.

We started these studies with the reaction of porphyrin-
pyridinium salt 19 with 1,4-benzoquinone in the pres-
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ence of a base (K2CO3 or DBU).10 As indicated in
Scheme 1, the 1,3-dipolar cycloaddition product formed
in this reaction depends on the base used. When potas-
sium carbonate was used, only the mono-addition com-
pound 2 (16% yield) was obtained; however, with DBU,
bis-addition occurred and the novel porphyrinic dimer 3
(23% yield) was the only isolated addition product. In
both cases, porphyrin 4 was also formed.

The structures of compounds 2 and 3 were deduced
from their 1H and 13C NMR spectra, UV–vis and mass
spectra.11,12 The 1H NMR spectrum of 2 shows a singlet
at d 4.18 ppm, corresponding to the methyl ester group,
and an AB spin system at d 6.81 and 6.83 ppm
(J = 10.3 Hz), corresponding to the two proton reso-
nances of the quinone moiety. The three protons at
the indolizine ring appear as three double doublets at
d 8.05 (J = 1.9 and 7.3 Hz), 9.29 (J = 0.9 and 1.9 Hz)
and 9.71 ppm (J = 0.9 and 7.3 Hz), while the protons
of the meso-phenyl groups appear as two multiplets at
d 7.74–7.80 and d 8.21–8.24 ppm. The eight b-pyrrolic
protons appear as two AB spin systems at d 8.86 (4H,
J = 4.8 Hz) and 8.90 ppm (4H, J = 4.8 Hz). The 13C
NMR spectrum of compound 2 shows the signals corre-
sponding to the three carbonyl groups at d 161.8 ppm
(ester group) and at d 181.3 and 182.1 ppm (quinone).
The FAB mass spectrum shows peaks at m/z 794 and
793, which are two units higher than the expected.
Presumably, this might be due to the reduction of the
quinone moiety, under the FAB conditions, and the
observed peaks correspond to [M+3H]+ (794) and to
[M+2H]+� (793).13

mailto:jcavaleiro@dq.ua.pt


NH N

N HN

Ph

Ph

Ph NCH2CO2CH3 Br +

O

O

NH N

N HN

Ph

Ph N

O

O

CO2CH3toluene,
reflux

Ph

NN

O

O CO2CH3H3CO2C

HN

N

N

NH

Ph

Ph

Ph

NH N

N HN

Ph

Ph N

Ph

1

34

K2CO3

DBU

toluene,
reflux

NH

N

N

HN

Ph

Ph

Ph

2

Scheme 1.

5488 S. Zhao et al. / Tetrahedron Letters 46 (2005) 5487–5490
When we compare the 1H NMR spectrum of 3 with the
one of compound 2, the main difference is the absence of
the signals corresponding to the protons of the quinone
moiety. This is clear evidence that a bis-addition
occurred. The mass spectrum of this compound shows
intense peaks at m/z 1475 ([M+H]+) and 1474 ([M]+�),
confirming that it is in fact a bis-addition product. The
addition of a second porphyrinic pyridinium ylide to
compound 2, followed by aromatisation, could lead to
compound 3 or to its isomer 5. However, only one of
them was formed. The 13C NMR spectrum of the com-
pound shows three signals corresponding to carbonyl
groups: one at d 162.2 ppm corresponding to the ester
group, and the other two at d 177.5 and 177.9 ppm cor-
responding to the carbonyl groups of the quinone moi-
ety. This spectrum only fits with structure 3, since in
structure 5 there are only two non-equivalent carbonyl
groups. The formation of a mono-addition product
when potassium carbonate is used while a bis-addition
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compound is formed in the presence of DBU is probably
related to the fact that in the first case there is a two-
phase reaction system, while with DBU it is a homoge-
nous reaction.

Porphyrin 4, a by-product of these reactions, results
from the dealkylation of 1. To confirm it, a toluene
solution of compound 1 in the presence of DBU or
K2CO3 (in the absence of any dipolarophile) was
refluxed for 8 h and in fact it was converted into 4
(60% yield). It has been shown in the literature that
the carbon–nitrogen bond cleavage in pyridinium com-
pounds corresponds to the oxidation of the carbanion
by oxygen.14

The cycloaddition reaction of pyridinium salt 1 with 1,4-
naphthoquinone and with dimethyl acetylenedicarboxyl-
ate afforded, respectively, compounds 6 (16% yield)15

and 7 (39% yield).16
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The reaction of the pyridinium salt 8 with 1,4-naphtho-
quinone afforded the non-alkylated pyridyl porphyrin 9
(28% yield) and the two regioisomeric compounds 10
(10% yield)17 and 11 (5% yield) (Scheme 2).18 We are
extending our studies to other dipolarophiles and to
di- and tetrapyridyl substituted porphyrins. Collabora-
tive theoretical studies related with the formation of
type 3 compounds have also been initiated.
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