LETTERS

Regioselective Synthesis of Benzo[b]phosphole Derivatives via Direct ortho-Alkenylation and Cyclization of Arylthiophosphinamides

Yuto Unoh,[†] Yuki Yokoyama,[†] Tetsuya Satoh,^{*,†,‡} Koji Hirano,[†] and Masahiro Miura^{*,†}

[†]Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan [‡]Department of Chemistry, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan

(5) Supporting Information

ABSTRACT: A new regioselective synthetic methodology for benzo[b]phosphole derivatives has been developed. Thus, a range of functionalized benzo[b]phosphole oxides could be synthesized via Rh(III)-catalyzed C–H alkenylation of arylthiophosphinamides with alkynes followed by formal phospha-Friedel–Crafts cyclization.

B enzo[b]phospholes are unique and attractive building blocks among a series of benzoheterole scaffolds, which show intriguing electronic and optical properties caused by distinctive orbital interaction between butadiene π^* and σ^* (P-R).¹ While they have attracted considerable interest in the area of materials chemistry, their synthetic methods have been less explored than those of the isosteric indoles.² Conventionally, benzo[b]phosphole scaffolds have been constructed through the cyclization of *ortho*-alkynylarylphosphines,^{3a-c} *H*-phosphine oxides,^{3d} and aminophosphines.^{3e,f} These methods often require tedious multistep preparations of the corresponding cyclization precursors, involving air- and moisture-sensitive intermediates. In 2013, we^{4a} and the Duan group^{4b} independently reported the Ag(I)- or Mn(III)-mediated synthesis of benzo[b]phosphole derivatives via the direct annulation reaction of secondary phosphine oxides with internal alkynes (Scheme 1).⁴ While this

Scheme 1. Synthesis of Benzo[b]phosphole Derivatives by Radical Cyclization

protocol provides a short access to benzo[b]phosphole derivatives, a regioselectivity problem arises when substituted phenylphosphine oxides are employed due to the radical intermediate involving the rearrangement of a phosphorus moiety. After these reports, several improved methods based on a similar radical mechanism under metal-catalyzed,^{5a} photocatalyzed,^{5b} and metal-free conditions^{5c,d} have also been disclosed. However, the regioselectivity issue has not been overcome. Recently, Yoshikai and co-workers reported an elegant multicomponent coupling for the synthesis of benzo[b]-phosphole derivatives via carbometalation of alkynes with arylzinc and magnesium reagents.⁶ Yet, development of more efficient synthetic routes to benzo[b]-phospholes is desired.

Rh(III)

Meanwhile, transition-metal-catalyzed directed C–H bond functionalization reactions have been regarded as powerful synthetic tools from atom- and step-economical points of view.^{7,8} In the context of our studies on the C–H bond functionalization of aromatic phosphorus compounds,^{9,10} we recently developed the Cp*Rh(III)-catalyzed *ortho*-naphthylation reaction of arylthiophosphinamides with oxabicyclic alkenes (Scheme 2).^{9d}

Scheme 2. Rh(III)-Catalyzed C–H Bond Functionalization Approaches to Benzo[b]phosphole Scaffolds

The naphthylated products were readily converted to fused dibenzo[*b*]phosphole derivatives by intramolecular phospha-Friedel–Crafts reaction¹¹ in a one-pot procedure. Subsequently, we envisioned that a regioselective synthesis of benzo[*b*]phospholes could be achieved through the *ortho*-alkenylation of arylthiophosphinamides and subsequent intramolecular phospha-Friedel–Crafts reaction. Herein, we report a new method for constructing benzo[*b*]phosphole oxides by the C–H alkenylation/cyclization protocol.

First, we carried out optimization studies on the C–H alkenylation using *N*,*N*-diethyl-*P*,*P*-diphenylthiophosphinamide (1a) and diphenylacetylene (2a) as model substrates (Table S1). Pleasingly, we found that the desired coupling reaction proceeded smoothly in the presence of $[Cp*Rh-(MeCN)_3(SbF_6)_2]$ (4 mol %) and AcOH (4 equiv) in PhCl at

Received: September 23, 2016

Organic Letters

120 °C to give alkenylated product **3aa** in 90% isolated yield (Scheme 3). The geometry of the alkenyl moiety was determined to be *E* by X-ray crystal structure analysis (see the Supporting Information for details).

We next examined the second step, that is, cyclization. In our previous report for the intramolecular phospha-Friedel–Crafts reaction of arylthiophosphinamides, an excess amount of TfOH was used.^{9d} Thus, the crude product formed by the Rh-catalyzed alkenylation in Scheme 3 was treated with TfOH under similar conditions (Scheme 4). Unfortunately, the desired benzo[*b*]-

Scheme 4. Attempt at Phospha-Friedel–Crafts Reaction via Intermediate 3aa

phosphole **4aa-S** was observed only in a trace amount, and instead, phosphonium salt **5** was formed in 73% yield as a diastereomeric mixture. Obviously, **5** seems to be formed via protonation of the alkenyl moiety of **3aa** with TfOH and electrophilic attack of a resulting carbocation to the P=S bond. We also examined other activating reagents including HCl, AlCl₃, BF₃·OEt₂, AgOTf, and Me₃OBF₄, but the attempts were unsuccessful (Table S2).

Next, we examined another cyclization route via a P(III) intermediate. Thus, **3aa** was reduced to aminophosphine by treatment with MeOTf and P(NMe₂)₃.¹² The resulting P(III) compound **6** was treated with TfOH. After workup with H₂O₂, benzo[*b*]phosphole oxide **4aa** was successfully obtained in 72% yield (Scheme 5).

The results for the synthesis of a series of benzo[b] phosphole oxides by the semi-one-pot protocol are summarized in Scheme 5. A variety of diarylacetylenes **2a**-**2h** smoothly coupled with **1a** to afford the corresponding benzo[b] phosphole oxides **4aa**-**4ah** in moderate to good yields. The reaction of a more electrondeficient alkyne, bis(4-ethoxycarbonylphenyl)acetylene, did not give any expected product at all. In the cases with asymmetrical alkylarylacetylenes, the Rh-catalyzed hydroarylation reaction proceeded regioselectively to lead to 2-aryl-3-alkylbenzo[b]phosphole derivatives **4ai**-**4aj** exclusively. It is worth noting that this regioselectivity is complementary to that of Ag(I)- or Mn(III)-mediated annulation reaction reported previously.^{4,5} A dialkylacetylene, 4-octyne, did not couple with **1a** at all. Next, the reactions of substituted diarylthiophosphinamides were carried

"Reaction conditions: (1) 1 (0.5 mmol), 2 (0.25 mmol), $[Cp*Rh-(MeCN)_3][SbF_6]_2$ (0.01 mmol), AcOH (1.0 mmol) in PhCl (2 mL) at 120 °C under N₂ for 12 h; (2) MeOTf (1.0 mmol) in CH₂Cl₂ (3 mL), rt, 6 h; (3) P(NMe₂)₃ (1.0 mmol), rt, 1 h; (4) TfOH (0.5 mL), rt, 12 h; (5) H₂O₂ workup. See the Supporting Information for details. Isolated yields are shown based on the amount of 2. ^bWorkup was carried out using S₈ powder instead of H₂O₂.

out. The *para*-substituted **1b**-1**f** reacted with **2c** or **2d** regioselectively to give **4bc**-4**fc** and **4dd** in good yields. 3-Methylphenyl and 2-naphtylthiophosphinamides, **1g** and **1h**, coupled with **2c** at the less hindered positions to form **4gc** and **4hc**. By post-treatment using sulfur powder in place of H_2O_2 in the reaction of **1a** with **2a**, benzo[*b*]phosphole sulfide **4aa-S** was selectively obtained in 53% yield.

Under our new conditions, silyl acetylenes did not undergo the Rh-catalyzed hydroarylation with 1. Utilizing the different reactivity of alkynes, we attempted the chemoselective coupling reaction of 1a with diyne 2m (Scheme 6). Under standard

Scheme 6. Chemoselective Coupling Reaction of 1a with Diyne 2m

conditions, the alkyl acetylene unit of **2m** over the silyl acetylene moiety selectively coupled with **1a** to form **4am** in 45% yield. The TIPS group was removed upon treatment with TfOH.

To gain some mechanistic information about the C–P bondforming ring-closure step, we investigated the difference of reactivities between P(III) and P(V) intermediates using an aryl model substrate 1j. Under our previous conditions (TfOH, 100 °C),^{9d} 1j was smoothly converted to dibenzophosphole 7 in 75% yield (eq 1). In sharp contrast, the present ring-closing procedure

involving P(III) species did not give 7 at all (eq 2). These results indicate that phospha-Friedel–Crafts-type aromatic electrophilic substitution in P(III) intermediate 1j' does not occur on its benzene ring under the present conditions. The lack of such a reactivity was also observed in related Lewis-acid-promoted phospha-Friedel–Crafts reactions.^{11a,c,e}

Based on the experimental results, plausible reaction pathways are depicted in Scheme 7. In route (a), TfOH protonates the alkenyl moiety of amino phosphine I (= 6) to generate carbocations II and III, which may exist in equilibrium with the major contribution of tertiary carbocation II. The phosphonium salt 5 in Scheme 4 may be generated from 3aa via a similar tertiary carbocation. In the case of aminophosphine I, five-membered phosphonium salt IV selectively formed from the secondary carbocation III with "nucleophilic P center", after which diethylamine is eliminated to generate benzo[b]phosphole V.^{3e} Although the other general phospha-Friedel– Crafts route from "electrophilic P center" in route (b)⁶ cannot be completely excluded at this stage, route (a) seems to be the major route based on the control experiment shown in eq 2.

As expected, most of benzo[b] phosphole oxides obtained in this study showed remarkable fluorescence in their solid state.¹³ Optical properties including absolute fluorescent quantum yields determined by using an integrating sphere system are summarized in Table S4. 2,3-Diaryl products 4aa-4ie exhibit Scheme 7. Plausible Reaction Mechanism of C-P Bond-Forming Step

relatively strong fluorescence in a range of 446 to 519 nm. Remarkably, 3-methyl 4ai showed a blue-shifted emission in a high quantum yield (420 nm, $\Phi_{\rm F}$ = 0.9).

In summary, we have developed a new regioselective synthetic sequence leading to benzo[b] phosphole derivatives via rhodium-(III)-catalyzed C-H alkenylation followed by intramolecular cyclization in a semi-one-pot manner. Thus, a range of functionalized benzo[b] phosphole oxides can be synthesized from readily available arylthiophosphinamides. This new methodology may contribute to expand the utility of benzophospholes in materials chemistry.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b02868.

Experimental procedures, additional results, and characterization data of products (PDF) Crystallographic data for **3aa** (CIF) Crystallographic data for **5** (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: satoh@sci.osaka-cu.ac.jp.

*E-mail: miura@chem.eng.osaka-u.ac.jp.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partly supported by a Grant-in-Aid for JSPS Research Fellow 14J00760 to Y.U., Grants-in-Aid from MEXT, JSPS KAKENHI JP16H01037 (in Precisely Designed Catalysts with Customized Scaffolding) and JST (ACT-C), Japan, to T.S., JSPS KAKENHI 15H05485 (Grant-in-Aid for Young Scientists (A)) to K.H., and JSPS KAKENHI JP 24225002 (Grant-in-Aid for Scientific Research (S)) to M.M.

REFERENCES

(1) (a) Mathey, F. Angew. Chem., Int. Ed. 2003, 42, 1578. (b) Baumgartner, T.; Reau, R. Chem. Rev. 2006, 106, 4681. (c) Matano,

Organic Letters

Y.; Imahori, H. Org. Biomol. Chem. 2009, 7, 1258. (d) Stolar, M.; Baumgartner, T. Chem. - Asian J. 2014, 9, 1212. (e) Fourmy, K.; Nguyen, D. H.; Dechy-Cabaret, O.; Gouygou, M. Catal. Sci. Technol. 2015, 5, 4289. (f) Duffy, M. P.; Delaunay, W.; Bouit, P.-A.; Hissler, M. Chem. Soc. Rev. 2016, 45, 5296. (g) Shameem, M. A.; Orthaber, A. Chem. - Eur. J. 2016, 22, 10718.

(2) (a) Rausch, M. D.; Klemann, L. P. J. Am. Chem. Soc. 1967, 89, 5732. (b) Kurita, J.; Ishii, M.; Yasuike, S.; Tsuchiya, T. J. Chem. Soc., Chem. Commun. 1993, 1309. (c) Cordaro, J. G.; Stein, D.; Grützmacher, H. J. Am. Chem. Soc. 2006, 128, 14962. (d) Ogasawara, M.; Arae, S.; Watanabe, S.; Subbarayan, V.; Sato, H.; Takahashi, T. Organometallics 2013, 32, 4997. (e) Matano, Y.; Motegi, Y.; Kawatsu, S.; Kimura, Y. J. Org. Chem. 2015, 80, 5944. (f) Yamaguchi, E.; Wang, C. G.; Fukazawa, A.; Taki, M.; Sato, Y.; Sasaki, T.; Ueda, M.; Sasaki, N.; Higashiyama, T.; Yamaguchi, S. Angew. Chem., Int. Ed. 2015, 54, 4539. (g) Wei, X.; Lu, Z.; Zhao, X.; Duan, Z.; Mathey, F. Angew. Chem., Int. Ed. 2015, 54, 1583. (h) Hong, E. Y.-H.; Poon, C.-T.; Yam, V. W.-W. J. Am. Chem. Soc. 2016, 138, 6368. (i) Wu, B.; Yoshikai, N. Org. Biomol. Chem. 2016, 14, 5402. (3) (a) Tsuji, H.; Sato, K.; Ilies, L.; Itoh, Y.; Sato, Y.; Nakamura, E. Org. Lett. 2008, 10, 2263. (b) Xu, Y.-Z.; Wang, Z.-H.; Gan, Z.-J.; Xi, Q.-Z.; Duan, Z.; Mathey, F. Org. Lett. 2015, 17, 1732. (c) Zhou, Y.; Gan, Z.; Su, B.; Li, J.; Duan, Z.; Mathey, F. Org. Lett. 2015, 17, 5722. (d) Sanji, T.; Shiraishi, K.; Kashiwabara, T.; Tanaka, M. Org. Lett. 2008, 10, 2689. (e) Fukazawa, A.; Hara, M.; Okamoto, T.; Son, E.-C.; Xu, C.; Tamao, K.; Yamaguchi, S. Org. Lett. 2008, 10, 913. (f) Fukazawa, A.; Ichihashi, Y.; Kosaka, Y.; Yamaguchi, S. Chem. - Asian J. 2009, 4, 1729.

(4) (a) Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem., Int. Ed. 2013, 52, 12975. (b) Chen, Y.-R.; Duan, W.-L. J. Am. Chem. Soc. 2013, 135, 16754. See also (c) Ma, W.; Ackermann, L. Synthesis 2014, 46, 2297.

(5) (a) Zhang, P.; Gao, Y.; Zhang, L.; Li, Z.; Liu, Y.; Tang, G.; Zhao, Y. Adv. Synth. Catal. 2016, 358, 138. (b) Quint, V.; Morlet-Savary, F.; Lohier, J.-F.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S. J. Am. Chem. Soc. 2016, 138, 7436. (c) Ma, D.; Chen, W.; Hu, G.; Zhang, Y.; Gao, Y.; Yin, Y.; Zhao, Y. Green Chem. 2016, 18, 3522. (d) Zhang, Y.; Hu, G.; Ma, D.; Xu, P.; Gao, Y.; Zhao, Y. Chem. Commun. 2016, 52, 2815. (e) Hu, G.; Zhang, Y.; Su, J.; Li, Z.; Gao, Y.; Zhao, Y. Org. Biomol. Chem. 2015, 13, 8221.

(6) (a) Wu, B.; Santra, M.; Yoshikai, N. Angew. Chem., Int. Ed. 2014, 53, 7543. (b) Wu, B.; Chopra, R.; Yoshikai, N. Org. Lett. 2015, 17, 5666.

(7) Selected recent reviews for C-H functionalization: (a) Kakiuchi, F.; Kochi, T. Synthesis 2008, 2008, 3013. (b) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (c) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38, 2447. (d) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074. (e) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (f) Satoh, T.; Miura, M. Synthesis 2010, 2010, 3395. (g) Satoh, T.; Miura, M. Chem. - Eur. J. 2010, 16, 11212. (h) Sun, C.-L.; Li, B.-J.; Shi, Z.- J. Chem. Commun. 2010, 46, 677. (i) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624. (j) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (k) Lapointe, D.; Fagnou, K. Chem. Lett. 2010, 39, 1118. (l) Ackermann, L. Chem. Rev. 2011, 111, 1315. (m) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780. (n) Kuninobu, Y.; Takai, K. Chem. Rev. 2011, 111, 1938. (o) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F. Chem. Soc. Rev. 2011, 40, 4740. (p) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. Chem. Soc. Rev. 2011, 40, 5068. (q) Mitchell, E. A.; Peschiulli, A.; Lefevre, N.; Meerpoel, L.; Maes, B. U. W. Chem. - Eur. J. 2012, 18, 10092. (r) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (s) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814. (t) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Aldrichimica Acta 2012, 45, 31. (u) Chiba, S. Chem. Lett. 2013, 41, 1554. (v) Miura, M.; Satoh, T.; Hirano, K. Bull. Chem. Soc. Jpn. 2014, 87, 751. (w) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107. (x) Boyarskiy, V. P.; Ryabukhin, D. S.; Bokach, N. A.; Vasilyev, A. V. Chem. Rev. 2016, 116, 5894. (y) Gulías, M.; Mascareñas, J. L. Angew. Chem., Int. Ed. 2016, 55, 11000.

(8) For pioneering work, see: Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. *Nature* **1993**, 366, 529. (9) (a) Unoh, Y.; Hashimoto, Y.; Takeda, D.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. **2013**, *15*, 3258. (b) Itoh, M.; Hashimoto, Y.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. **2013**, *78*, 8098. (c) Yokoyama, Y.; Unoh, Y.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. **2014**, *79*, 7649. (d) Unoh, Y.; Satoh, T.; Hirano, K.; Miura, M. ACS Catal. **2015**, *5*, 6634.

(10) For relevant Rh-catalyzed C-H functionalization directed by phosphorus-containing directing groups, see: (a) Seo, J.; Park, Y.; Jeon, I.; Ryu, T.; Park, S.; Lee, P. H. Org. Lett. 2013, 15, 3358. (b) Ryu, T.; Kim, J.; Park, Y.; Kim, S.; Lee, P. H. Org. Lett. 2013, 15, 3986. (c) Zhao, D.; Nimphius, C.; Lindale, M.; Glorius, F. Org. Lett. 2013, 15, 4504. (d) Park, Y.; Seo, J.; Park, S.; Yoo, E. J.; Lee, P. H. Chem. - Eur. J. 2013, 19, 16461. (e) Park, S.; Seo, B.; Shin, S.; Son, J.-Y.; Lee, P. H. Chem. Commun. 2013, 49, 8671. (f) Mo, J.; Lim, S.; Ryu, T.; Kim, S.; Lee, P. H. RSC Adv. 2013, 3, 18296. (g) Chary, B. C.; Kim, S. Org. Biomol. Chem. 2013, 11, 6879. (h) Liu, L.; Wu, Y.; Wang, T.; Gao, X.; Zhu, J.; Zhao, S. J. Org. Chem. 2014, 6, 1225. (j) Hu, X.-H.; Yang, X. F.; Loh, T.-P. Angew. Chem, Int. Ed. 2015, 54, 15535. (k) Sun, Y.; Cramer, N. Angew. Chem., Int. Ed. 2016, DOI: 10.1002/anie.201606637.

(11) (a) Olah, G. A.; Hehemann, D. J. Org. Chem. 1977, 42, 2190.
(b) Wang, Z.-W.; Wang, L.-S. Green Chem. 2003, 5, 737. (c) Diaz, A. A.; Young, J. D.; Khan, M. A.; Wehmschulte, R. J. Inorg. Chem. 2006, 45, 5568. (d) Diaz, A. A.; Buster, B.; Schomisch, D.; Khan, M. A.; Baum, J. C.; Wehmschulte, R. J. Inorg. Chem. 2008, 47, 2858. (e) Hatakeyama, T.; Hashimoto, S.; Nakamura, M. Org. Lett. 2011, 13, 2130. (f) Hashimoto, S.; Nakatsuka, S.; Nakamura, M.; Hatakeyama, T. Angew. Chem., Int. Ed. 2014, 53, 14074. (g) Romero-Nieto, C.; López-Andarias, A.; Egler-Lucas, C.; Gebert, F.; Neus, J.-P.; Pilgram, O. Angew. Chem., Int. Ed. 2015, 54, 15872. (h) Jayaraman, A.; Sterenberg, B. T. Organometallics 2016, 35, 2367.

(12) (a) Omelańczuk, J.; Mikołgajczyk, M. *Tetrahedron Lett.* **1984**, *25*, 2493. (b) el Hajjouji, H.; Belmonte, E.; García-López, J.; Fernández, I.; Iglesias, M. J.; Roces, L.; García-Granda, S.; El Laghdach, A.; Lopez Ortiz, F. Org. Biomol. Chem. **2012**, *10*, 5647.

(13) For a discussion about aggregation-induced emission, see: Bu, F.; Wang, E.; Peng, Q.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z. *Chem. - Eur. J.* **2015**, *21*, 4440.