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Tuberculosis caused by Mycobacterium tubercu-
losis remains a leading cause of mortality world-
wide into 21st century. In continuation with our
anti-tuberculosis research programme, in this
work, we have prepared molecularly diverse cou-
marins clubbed with benzothiazepines as well as
its aza-analogues-benzodiazepines by molecular
hybridization. The resulting compounds were
screened for their M. tuberculosis activity against
H37Rv strains using microplate alamar blue assay.
Among the designed diversity, the compounds
5k, 5n and 5o were found significantly active in
primary anti-tuberculosis assay at minimum
inhibitory concentration <6.25 lM. Moreover, the
IC50 values of 5k and 5o in level-2 screening
were observed as >10 lg/mL and 3.63 lg/mL,
respectively. Design and synthesis of more
focused library and its three-dimensional quanti-
tative structure activity relationship analysis are
underway.
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Tuberculosis (TB) is one of the most devastating and second
infectious diseases causes of mortality followed by acquired
immune deficiency syndrome (AIDS). According to world health
organization (WHO) statistics, 33% world's population has been
exposed to TB bacteriuma. In the last year, it was anticipated
that there may be around 9.8 million new casesa. A number of
anti-TB drugs are ineffective against TB because of the devel-
opment of resistant strains (1). The limited effectiveness of cur-
rent chemotherapy stems largely from the lengthy and
complicated nature of first-line anti-TB drugs (2,3). The most
problematic issue with the current TB regimen is insufficient
adherence to the treatment course, attributable to its length,
complexity and adverse effects, led to difficult- and expensive-
to-treat multidrug-resistant tuberculosis (MDR-TB) (4). The
world's two most populous countries, India and China, account
for more than 50% of the world's MDR-TB cases (5). Treatment
for MDR-TB typically requires 18–24 months of combination
therapy with second-line drugs those are less efficacious, more
toxic and expensive than the first-line drugs (6). In few regions,
almost 20% of MDR-TB cases were classified as extensively
drug-resistant tuberculosis (XDR-TB) (7). The treatment options
for XDR-TB are very limited as XDR-TB bacilli are resistant not
only to isoniazid and rifampicin, but also to fluoroquinolones
and aminoglycosides (8). More recently, another definition of
XDR-TB as MDR-TB resistant to any fluoroquinolone and at
least one of the second-line drugs (capreomycin, kanamycin and
amikacin) used in TB treatment (9). There are serious adverse
effects with most MDR-TB and XDR-TB drugs, such as nephro-
toxicity and ototoxicity with aminoglycosides, hepatotoxicity with
ethionamide and dysglycaemia with gatifloxacin (10). In few
cases, XDR-TB has been shown aggressive form of TB, causing
very high mortality (10).

The improvement in TB chemotherapy can be achieved by four pri-
mary goals: (i) Shorten and simplify TB treatment; (ii) improve effi-
cacy, safety and reduce long-lasting therapy; (iii) develop drugs for
HIV-TB co-infection, which can be readily co-administered with anti-
retrovirals; and (iv) shorten therapy of latent TB infection (11).
Moreover, to effectively treat and control MDR- and XDR-TB
patients, physicians and national TB treatment programs require
regimens based on safer, tolerable and efficacious drugs having
new mechanisms of action (12,13). At present, the global TB devel-
opment pipeline has nine candidates, but a key issue is how to
develop them simultaneously in combination trials to identify the
best candidate (14).
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In this context, recently, we have explored ubiquitous heterocycles,
such as coumarins (15–17), 1,4-dihydropyridines (18,19) and quino-
lines (20) based scaffolds as promising antituberculars. To under-
stand the structure–activity relationship among the designed
conjugates, three-dimensional quantitative structure–activity rela-
tionship (3D-QSAR) was also conceived. More recently, we have
patented tetrahydropyrimidines as potent anti-TB agents (21–23).
The molecules were rationally designed and latter synthesized
based on its predicted activities by comparative molecular field
analysis and comparative molecular similarity index analysis. Among
the naturally occurring pyranocoumarins (calanolide A, calanolide B
and its stereoisomer), calanolide A is significantly interesting. The
biological activity of calanolide A is not only restricted to anti-TB
but also found active for HIV infections (24). Moreover, calanolide B
is also claimed to have similar range of activity to calanolide A
against mycobacteria. Consequently, we focused on coumarin deriv-
atives such as, 4-styryl coumarins (15), 4-arylamino coumarins (16),
coumarin-4-acetic acid benzylidenehydrazides (17) and more recently
phenylhydrazono-chroman dione (25) as a potent antituberculars.
Furthermore, the coumarin nucleuses have also been found as
potent antimycobacterials (26–28) (Figure 1). Interestingly, novel
acrylic esters (a,b-unsaturated carbonyls) of versatile (hetero)arenes

were also proved as potent antituberculars (29). The 1,5-
benzo(thi)diazepine motifs are of particular interest for drug discov-
ery because they have been found active against different families
of targets (30). Successful introduction of diltiazem and clentiazem
for angina pectoris, hypertension, arrhythmias and other related car-
diac disorders have proved the potentials of benzothiazepines skele-
ton (31,32). At present, in an extensive review, we have highlighted
the therapeutic significance of 1,5-benzothiazipine pharmacophore
(33). Although the biological evaluation of (benzo)azepines, particu-
larly in the anti-TB research area, is still in its infancy (34–36). Con-
sequently, in a present work, we have envisioned to probe
molecular hybrids of coumarins with benzoazepines for their activity
against Mycobacterium tuberculosis H37Rv strains (Figure 2).

At the outset, the syntheses of a versatile library of coumarin
clubbed with benzoazepines, compounds 5a–o and 7a–k are
depicted in Scheme 1. The chalcone derivatives were prepared by
Claisen–Schmidt condensations (37). The 3-acetyl-4-hydroxycoumarin
3 was treated with (hetero)aromatic aldehydes using mild base,
afforded chalcone derivatives 4. The resulting chalcones were trea-
ted with 2-aminothiophenol by employing piperidine as a catalyst at
elevated temperature, afforded compounds 5a–o in good to excellent

Figure 1: Examples of couma-
rines and benzoazepines as a
potent Mycobacterium tuberculosis
agents (1).

Figure 2: Molecular hybridiza-
tion concept for design of the tar-
get molecules (2).
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Scheme 1: Synthesis of com-
pounds 5a–o and 7a–k.

Table 1: Antimycobacterial activity of the compounds 5a–o and 7a–k

Compounds Ring A Ring B GI (%)a MIC (lg ⁄ mL)b ClogPc

5a 2-NO2 H 4 <6.25 5.717
5b 3-NO2 H 2 <6.25 5.797
5c 2-OMe H 8 <6.25 5.973
5d 3-OMe H 3 <6.25 5.973
5e 4-OMe H 2 <6.25 5.973
5f 2-Cl H 60 <6.25 6.767
5g 3-Cl H 8 <6.25 6.767
5h 4-Cl H 13 <6.25 6.767
5i 4-F H 72 <6.25 6.197
5j 4-OH H 32 <6.25 5.387
5kd 4-NO2 H 93 <6.25 5.797
5l 3,4,5-tri OMe H 9 <6.25 5.354
5m 3-OH H 3 <6.25 5.387
5n Indolyl H 80 <6.25 6.044
5od 2-OH H 94 <6.25 5.337
7a 3-OPh 3-Me 35 >6.25 7.471
7b 4-OH 3-Me 30 >6.25 4.706
7c 3-OH 2,5-di Me 27 >6.25 5.205
7d 4-OH H 19 >6.25 4.207
7e 4-SMe 3-Me 12 >6.25 5.932
7f 4-SMe 2,5-di Me 11 >6.25 6.431
7g 3-OH 3-Me 9 >6.25 4.706
7h 4-OMe 2,5-di Me 7 >6.25 5.791
7i 4-Cl 2,5-di Me 4 >6.25 6.585
7j 3-Br H 2 >6.25 5.737
7k 4-OMe 3-Me 0 >6.25 5.292

MIC, minimum inhibitory concentration.
a(GI) Growth inhibitions of virulent strain of Mycobacterium tuberculosis.
bMIC of Rifampin: 0.015–0.125 lg ⁄ mL against M. tuberculosis H37Rv (97% inhibition).
cClogP is calculated on ChemDraw Ultra 12.0.
dThe IC50 (lg ⁄ mL) values of 5k and 5o were found as >10 and 3.63, respectively.
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yields. The imine derivatives 6 were prepared by literature
described method (38). Latter, the corresponding imines were trea-
ted with aldehydes by employing trifluoroacetic acid as a catalyst
at higher temperature, afforded easy accessible compounds 7a–k

in moderate to good yields (see Appendix S1). Both electron-rich
and electron-deficient as well as sterically hindered functional
groups were well tolerated under the established reaction condi-
tions. The antimycobacterial activities of synthesized compounds
were assessed using the microplate alamar blue assay (MABA)
against Mtb H37Rv strains (see Appendix S1). The drug rifampin
was used as a positive control. The growth inhibitions of rifampin
were observed 97% at minimum inhibitory concentration (MIC)
(0.015–0.125 lg ⁄ mL). The antimycobacterial activities of synthe-
sized compounds are summarized in Table 1. The molecules bearing
electron-rich methoxy group in the ring A, compounds 5c, 5d, 5e

and 5l have shown poor activity. The hydrogen bond donor hydro-
philic analogue, compound 5j has shown 32% growth inhibition,
while 5m has shown very poor potency. The results were quite
surprising for the compound 5o bearing hydroxy group at C2 in the
ring A, and have exhibited highest growth inhibition and found sig-
nificantly active in the designed series. Consequently, we may con-
clude that the potency of the compounds is not only dependent on
the presence of particular functional group but regioselectivity may
also play a significant role to determine anti-TB activity in this class
of compounds. Among three regio-isomers, compounds 5a, 5b and
5k having nitro group in the ring A, the only analogue 5k has
shown excellent activity, while the activities of other two isomers
were decreased by manyfolds. Next, we replaced the aromatic ring
A by heteroarene indole, compound 5n was observed noteworthy.
Comparison of the regio-isomers (compounds 5f, 5g and 5h) hav-
ing moderate electron-poor chloro group in the ring A, the com-
pound 5f was found notable. The incorporation of fluorine group
into organic molecules can serve to dramatically alter many of the
physical properties of the molecules, for instances, lipophilicity,
metabolic stability, conformational behaviour, etc. For these reasons,
we have rationally incorporated electro-negative fluoro surrogate,
as a result compound 5i has shown promising activity. Having eluci-
dated a few potent inhibitors of Mtb, we next examined the aza-
analogues of benzothiazepines. Few benzodiazepines in the
designed series have shown moderate activity. The compound 7a

having sterically hindered phenoxy group in the ring A have exhib-
ited 35% inhibitions. Despite the lower potency, the ClogP values
of the compounds 7b, 7d and 7g having hydrophilic hydroxyl
group in the ring A were found <5. The compound 7k was
observed least active in the designed series. The compounds dem-
onstrating at least 90% inhibitions in the primary screening were
retested at lower concentration against M. tuberculosis H37Rv to
determine the actual MIC in the MABA. The MIC is defined as the
lowest concentration effecting a reduction in fluorescence of 90%
relative to controls such as isoniazid (ATCC 35822) or rifampin
(ATCC 35838). Concurrent with the determination of MICs, the com-
pounds were tested for their cytotoxicity (IC50) in Vero cells at con-
centrations £62.5 mg ⁄ mL or ten times the MIC for M. tuberculosis
H37Rv. After 72 h exposure, viability was assessed on the basis of
cellular conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-
lium bromide (MTT) into a formazan product using the promega cell
titre 96 non-radioactive cell proliferation assays. The IC50 values of
the compounds 5k and 5o in level-2 screening were observed as

>10 and 3.63 lg ⁄ mL respectively. Finally, the effect on compound
polarity was estimated by calculating the ClogP for each compounds
synthesized on ChemDraw Ultra 12. The thumb rule for ClogP val-
ues to a drug-like molecule must be <'5¢ to by-pass the cell barrier.
The ClogP seems to correlate with some extent in three analogues.
Our findings confirmed that electron density, lipophilicity and regi-
oselectivity of the functional groups are enabling to determine the
antimycobacterial activity in such compounds.

In summary, a hybrid of coumarins with benzoazepines were synthe-
sized and evaluated for their anti-TB activity against M. tuberculosis
H37Rv strain. In a primary screening, compounds 5k, 5n and 5o

have shown 93, 80 and 94 percentage growth inhibitions, respec-
tively, at MIC <6.25 lM. The IC50 values of compounds 5k and 5o

were found to be >10 lg ⁄ mL and 3.63 lg ⁄ mL, respectively. The
coumarin clubbed with benzodiazepines were not found significant
scaffold for anti-TB activity. However, the benzothiazepine is consid-
ered as one of the scaffolds for further development of potent anti-
TB drugs. The syntheses of more focused library especially having
small heterocycles instead of ring A in the core structure and its
energy minimization prediction by 3D-QSAR is in progress in our
laboratory. The findings will be disseminated in due course.
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