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Photoredox-Catalysed Redox-Neutral Trifluoromethylation of 
Vinyl Azides for the Synthesis of α–Trifluoromethylated Ketones 

Hai-Tao Qin,a,† Shu-Wei Wu,a,† Jia-Li Liua and Feng Liu*a,b 

A redox-neutral, mild, and simple protocol is developed for the 

synthesis of α-trifluoromethylated ketones from vinyl azides 

under transition-metal-free conditions. In the presence of organic 

photoredox catalyst N-methyl-9-mesityl acridinium and sodium 

trifluoromethanesulfinate, a broad range of substituted vinyl 

azides were found to react smoothly upon visible-light irradiation, 

readily furnishing the corresponding products in satisfied yields. 

The trifluoromethyl (CF3) moiety, with chemical stability and 

electron withdrawing character, is a useful substituent for 

organic compounds.1 For example, Introduction of a CF3 group 

can lead to profound changes on the metabolic stability, 

lipophilicity, and bioavailability of potential drug candidates.1 

Therefore, the development of novel methods for efficient, 

selective and mild incorporation of a CF3 group into diverse 

skeletons has emerged as a pivotal objective in organic 

synthesis.2 Radical trifluoromethylation, especially, via 

photoredox catalysis, has received great attention. A variety of 

agents, such as CF3I,3 CF3SO2Cl,4 Togni reagent,2b,5 Umemoto 

reagent,6 Langlois/Baran reagents (CF3SO2Na,7 (CF3SO2)2Zn8), 

and Ruppert-Prakash reagent9 (TMSCF3) could serve as CF3 

radical precursors. Among these reagents, the commercially 

available, low cost, and easy-handling Langlois reagent has 

been extensively utilized as the source of CF3 radical by single 

electron oxidation.7,10 However, there have been only few 

reports referring to a photoredox catalyst in combination with 

Langlois reagent towards generating a CF3 radical to date 

(Scheme 1).10 The oxidation potential of Langlois reagent is 

1.05 V (vs. SCE).10d,11 Organic dyes, such as Fukuzumi 

acridiniums,10d,12 have been widely adopted as catalytic visible-

light photoredox systems. N-Methyl-9-mesityl acridinium 

(Mes-Acr+, 3) with excited-state reduction potential (E1/2
red*) > 

1.8 V (vs. SCE),12,13 as one of the acridinium species, is actually 

sufficient for single electron oxidation of the Langlois reagent. 

We wondered if it was possible to achieve α-

trifluoromethylated ketones using Langlois reagent and mesityl 

acridinium with visible-light irradiation. 
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Scheme 1 Visible-light-induced trifluoromethylation with CF3SO2Na. 

As versatile building blocks, in general, α-trifluoromethylated 

carbonyl compounds are prepared by electrophilic or radical 

trifluoromethylation of enolates, silyl enol ethers, or enamines 

which are obtained from corresponding carbonyl compounds in 

advance or in situ,14 or via oxidative keto-trifluoromethylation of 

alkenes5b,7f,15 in a radical process. A few other unique protocols 

were also established.16 Vinyl azides17 with high intrinsic reactivity 

have been used as versatile synthons for various transformations.9a-

b,18 For example, radical trifluoromethylation of vinyl azides with 

TMSCF3 and PhI(OAc)2 allows preparation of α-trifluoromethyl 

azines, followed by hydrolysis to give α-trifluoromethylated 

ketones.9a In this reaction, the iminyl radical intermediate was 

generated, followed by immediate dimerization to yield the azines 

(Scheme 2). It should be noted that the above method requires 

super-stoichiometric amounts of strong oxidant PhI(OAc)2 which is 

often not compatible with sensitive functional groups. In 
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continuation of our research interest in transformation of vinyl 

azides19 and radical trifluoromethylation,20 it was envisioned that a 

redox-neutral radical trifluoromethylation of vinyl azides could 

serve as a useful methodology to achieve α-trifluoromethylated 

ketones directly in a mild redox process in which Langlois reagent 

acts as reductant and the iminyl radical intermediate generated 

from vinyl azides could play as oxidant, though an H-atom 

abstraction process would also happen. Consequently, we believed 

that the interception of the iminyl radical A via single electron 

reduction by 4 to circumvent dimerization would furnish α-

trifluoromethylated ketones when using N-Methyl-9-mesityl 

acridinium perchlorate (3) as the photoredox catalyst (Scheme 2).  
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Scheme 2 Radical trifluoromethylation of vinyl azides. 

The hypothesis was first examined using 4-bromopheny vinyl 

azide 1a as the model substrate. Initially, various solvents (used 

directly without dehydration) were screened upon irradiation by 

white LEDs (light emitting diodes) in the presence of catalytic 

amount of 3 (2.5 mol%), as might be expected, affording the 

desired α-trifluoromethylated ketone 2a in various yields, as well as 

identifying 1,4-dioxane as the best solvent in terms of chemical 

yield (see supporting information). An increase in the loading of 

Mes-Acr+ did not improve the chemical yield but shortening the 

reaction time (Table 1, entry 2). It should be noted that this 

protocol did also work well under the air, only leading to a slight 

decrease of the yield (Table 1, entry 3). We next examined the 

influence of light source. The results showed that blue LEDs gave 

the highest yield (Table 1, entries 1, 4 and 5). In order to quench the 

iminyl anion B (Scheme 2), various weak base or weak acids as 

proton donor were added. To our surprise, the chemical yields 

dropped (Table 1, entries 6−9). Other photocatalyst, such as Na2-

Eosin Y, Rhodamine B, or Riboflavin was also tested, affording 2a in 

much lower yields (Table 1, entry 5 vs. entries 10−12). Control 

experiments were performed in the absence of the photoredox 

catalyst or in the dark revealed that both the catalyst and 

photoirradiation are crucial for this radical trifluoromethylation 

(Table 1, entries 13 and 14). 

Table 1 Optimization of reaction conditions a

 

N3

1,4-dioxane (wet), LEDs

CF3

O

photocatalyst (2.5 mol%)
CF3SO2Na (2.0 equiv)

1a 2a
Br Br

 

entry LEDs photocatalyst additiveb yield (%)c 

1 white Mes-Acr+ − 65 

2d white Mes-Acr+ − 65 

3e white Mes-Acr+ − 52 

4 green Mes-Acr+ − 53 

5 blue Mes-Acr+ − 72 

6 blue Mes-Acr+ KHCO3 < 5 

7 blue Mes-Acr+ HOAc 55 

8 blue Mes-Acr+ NH4OAc 37 

9 blue Mes-Acr+ NH4Cl 63 

10 blue Na2-Eosin Y − 33 

11 blue Rhodamine B − 25 

12 blue Riboflavin − 29 

13f − Mes-Acr+ − 0 

14g blue − − 0 

a1a (0.20 mmol), catalyst (2.5 mol%), CF3SO2Na (0.4 mmol), 1,4-dioxane (2 mL), 

Argon balloon, 5 W LEDs, 36-60 h. b2.0 equivalent of additive cIsolated yield. 

dMes-Acr+ (5 mol%), 24 h. eOpen flask, under the air. fIn the dark. gNo photoredox 

catalyst. 
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With the optimal reaction conditions in hand, we aimed to define 

the scope of this protocol. As shown in Scheme 3, a broad range of 

substituted α-trifluoromethylated ketones were readily furnished in 

moderate to good yields. The reaction was found to tolerate a 

series of different functional groups on phenyl ring, giving the 

corresponding α-trifluoromethylated acetophenone derivatives in 

satisfactory yields (46−77% yield, 2a−p). Investigations of the 

substrate scope also demonstrated that both electron-rich and 

electron-deficient arenes bearing diverse groups at para, meta, or 

ortho position, ranging from OMe (2e, 2m and 2o) to Ac (2g) and 

CHO (2h), could be employed in good yields. In addition, the steric 

effect did not hinder the reaction (2l and 2m) and this protocol 

could be extended to non-terminal vinyl azides (2n and 2o), giving 

the desired products in good yields. It is of note that substrates 

containing alkynyl (2i) or thienyl moiety (2q) were compatible with 

the reaction conditions. Not only aryl but alkyl vinyl azides could be 

subject to this radical trifluoromethylation, achieving the 

corresponding α-trifluoromethylated ketones in useful yields 

(63−71% yield, 2r−v). Furthermore, the chemical yields were not 

compromised when functionalized groups were installed (2r−u vs. 

2v). 
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Scheme 3 Substrate scope for α-trifluoromethylated ketones. Reaction 

conditions: A mixture of 1 (0.20 mmol), CF3SO2Na (0.4 mmol) and Mes-Acr+ 

3 (0.005 mmol, 2.5 mol%) in 1,4-dioxane (2 mL) was irradiated by blue LEDs 

at rt for 36-60 h. Isolated yields. 

Control experiments were performed to gain more insights on 

the reaction mechanism (Scheme 4). In the presence of radical 

scavenger TEMPO, no desired product was found from the reaction 

mixture, along with the formation of the adduct TEMPO-CF3 5 only 

in 1% yield based on 19F NMR (Scheme 4, eq 1).10b,21 This 

observation supports the involvement of a radical process. We 

further conducted the reaction of 6 under the standard conditions, 

affording the cyclization product 7 in 74% (Scheme 4, eq 2). The 

result could confirm that this reaction involves the α-CF3 iminyl 

radical A intermediate. 
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CF3
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Scheme 4 Control experiments. 

In conclusion, we have outlined a novel and simple protocol for 

the preparation of α-trifluoromethylated ketones from vinyl azides 

via organic photoredox catalysis upon visible-light irradiation in a 

redox-neutral manner. The commercially available, low cost, and 

easy-handling Langlois reagent serves as CF3 radical source. This 

mild catalytic reaction demonstrates a broad substrate scope and 

high functional group tolerance, as well as displaying potential for 

further applications in medicinal and agrochemical research. 
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