ChemComm

Cite this: DOI: 10.1039/c5cc06270e

Received 27th July 2015, Accepted 17th August 2015

DOI: 10.1039/c5cc06270e

www.rsc.org/chemcomm

TMSBr/InBr₃-promoted Prins cyclization/ homobromination of dienyl alcohol with aldehyde to construct *cis*-THP containing an exocyclic *E*-alkene[†]

Linjie Li,‡^{ab} Xianwei Sun,‡^{ab} Yanyang He,^{ab} Lu Gao^{ab} and Zhenlei Song*^{ab}

A TMSBr/InBr₃-promoted Prins cyclization/homobromination reaction of dienyl alcohol with aldehyde has been developed to construct a unique *cis-E* THP shown as the A ring in (–)-exiguolide and the B ring in bryostatins.

The Prins cyclization reaction and its variants^{1,2} are extremely powerful methods for constructing tetrahydropyran (THP), and these reactions therefore find wide application in natural product synthesis. The cyclization generally proceeds via an oxocarbenium intermediate and a six-membered chair-like transition state³ to create 2,6-cis and other stereogenic centers on the ring. Such a single-step Prins cyclization, however, raises the big challenge of generating a unique type of THP that contains not only cis stereocenters on the ring but also an unusual geometrically defined exocyclic enoate; examples include the A ring in (-)-exiguolide⁴ (Scheme 1) and the B ring in bryostatins.⁵ Good stereochemical control is essential to ensure the desired biological activity: Z-(-)-exiguolide inhibits the growth of cancer cells, but the *E* isomer shows only minimal biological activity.^{4e,f} Previous progress towards the use of Prins cyclization to generate demanding THPs in a stereocontrolled way has been achieved from our studies with geminal bis(silyl) homoallylic alcohol⁶ and Wender's studies with syn-\beta-hydroxy allylsilane.⁷ Both of those methods feature allylsilane-mediated Prins cyclization that relies on steric and electronic effects of the silvl group to direct the reaction pathway through the desired transition state, allowing good Z-configurational control⁸ of the exocyclic alkene formed by silvl elimination.

An even more straightforward way to generate the unique THP in (-)-exiguolide may be possible through an unprecedented

Scheme 1 Prins cyclization/homobromination of dienyl alcohol with aldehyde generates cis-E THP shown as the A ring in (–)-exiguolide⁴ (Scheme 1) and the B ring in bryostatins.

Prins cyclization/homobromination of dienyl alcohol **1** with aldehyde featuring a double-bond shift (Scheme 1). On the other hand, this approach may prove challenging because of the unpredictable *chemoselectivity* (THP formation involving 1,2-alkene *vs.* oxacycloheptane formation involving 3,4-alkene), *regioselectivity* (2- *vs.* 4-attack of bromide in the THP pathway), and *stereoselectivity* (*E vs. Z* exocyclic alkene formation in the THP pathway). Controlling regio- and stereoselectivity may be the most difficult since electrophilic substitution of the acyclic diene frequently leads to poor or moderate regio- and stereoselectivity.⁹ Here we report a TMSBr/InBr₃-promoted Prins cyclization/homobromination of **1** with aldehyde to give THP **2** and its ester derivative **3** with good to excellent *cis-E* selectivity.¹⁰

Our studies involved the model scaffold dienyl alcohol **1a**, which was prepared using Sn-promoted Barbier reaction¹¹ of 2-bromo allylbromide with *n*-PrCHO and subsequent Kumada cross-coupling¹² with vinylmagnesium bromide (72% yield over two steps). Cyclization with 2,4-di-Cl-C₆H₃CHO was performed using Rychnovsky's protocol^{13a} with 2.2 equiv. of SnBr₄ as the bromine source and a Lewis acid in CH₂Cl₂ at -20 °C for 1 h.

COYAL SOCIETY OF CHEMISTRY

View Article Online

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China. E-mail: zhenleisong@scu.edu.cn

^b State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China

 [†] Electronic supplementary information (ESI) available: Experimental procedures, characterisation data for new compounds. See DOI: 10.1039/c5cc06270e
 ‡ These two authors contribute equally.

Table 1 Screening of Prins cyclization/homobromination xonditions^a

	n-Pr Ar ¹ CHO, Halo	-source/L.A. T °C, t	n-P	r n	-Pr
~	$\begin{array}{c} & & \\$	CO_3 , DMF, rt, 3 h di-Cl- C_6H_3 $I-NO_2-C_6H_3$ 3a	$(cis/trans \ge 95)$	Ar ¹ E 2a	Ar ¹
Entry	Halo-source/L.A. (e	equiv.) $T(^{\circ}C)$	t	3a (Yield%) ^c	E/Z^d
1	$SnBr_{4}$ (2.2)	-20	1.0 h	65	50:50
2	$\text{SnBr}_4(2.2)$	-78	4.0 h	10	86:14
3	$InBr_3(2.2)$	-78	4.0 h	N.R.	N.D.
4	TMSBr (2.2)	-78	40 min	66	88:12
5	TMSBr/SnBr ₄ (1.2/	0.2) -78	40 min	62	92:8
6	TMSBr/InBr ₃ (1.2/0	(0.2) -78	40 min	65	96:4
7	TMSBr/InCl ₃ (1.2/0	0.2) -78	40 min	54	90:10
8	TMSBr/InI ₃ (1.2/0.2	2) -78	40 min	54	50:50
9	TMSBr/In(OTf) ₃ (1	(2/0.2) -78	40 min	58	69:31
10	TMSCl/InBr ₃ (1.2/0).2) -78	40 min	33	91:9
11	TMSI/InBr ₃ (1.2/0.2	2) –78	40 min	58	74:26

^{*a*} Reaction conditions: 0.71 mmol of **1a**, 0.6 mmol of 2,4-di-Cl-C₆H₃CHO in 3.5 mL of CH₂Cl₂, then 3.6 mmol of 3,5-di-NO₂-C₆H₃CO₂H and 3.7 mmol of KHCO₃ in 5 mL of DMF, rt, 3.0 h. ^{*b*} The *cis-E* stereochemistry was assigned based on NOE experiments on **3a**. ^{*c*} Isolated yields after purification by silica gel column chromatography. ^{*d*} *E/Z* ratios were determined by crude ¹H NMR analysis of the initial cyclization/homo-halogenation product.

The reaction cleanly generated the desired Prins cyclization/ homobromination product 2a. ¹H NMR analysis of the crude product revealed 2a to be present as a single cis-isomer, but with a poor E/Z ratio of 50:50 (Table 1, entry 1). No by-products were observed from either 2-bromination or oxacycloheptane formation involving 3,4-alkene. Purification of crude 2a by silica gel column chromatography led to partial decomposition. Treatment of crude 2a with 3,5-di-NO₂-C₆H₃CO₂H and KHCO₃ in DMF resulted in a mild allylic substitution that provided 3a as a stable solid in an overall yield of 65%. The reaction performed at -78 °C increased the E/Z ratio to 86:14, but led to much lower conversion to give 3a in only 10% yield (entry 2). The results from entries 1 and 2 indicated that temperature significantly influenced the configurational control of the exocyclic alkene product. Lower temperature may slow down the rotation of the C2-C3 single bond, strengthening the preference for the formation of the E-isomer over the Z-isomer. Similar to SnBr₄, InBr₃ also proved to be a poor bromine source and was ineffective in promoting this process at -78 °C (entry 3). In a sharp contrast, using 2.2 equiv. of TMSBr at -78 °C for 40 min increased the yield to 66% with a good E/Z ratio of 88:12 (entry 4). The E/Z ratio was further improved to 92:8 with TMSBr/SnBr₄, and 96:4 using Loh's protocol with TMSBr/ InBr₃^{14a} as a combined bromine source and a Lewis acid (entries 5 and 6). Screening of In-centered Lewis acids¹⁵ highlighted the superiority of InBr₃, as InCl₃, InI₃ or In(OTf)₃-catalyzed reaction proceeded with both lower yield and E/Z ratio (entries 7–9). The halogen source also significantly influenced the cyclization efficiency and configurational control. As shown in entry 10, Prins cyclization/chlorination using TMSCl/InBr₃ led to a good E/Z ratio of 90:10, but the yield of 3a decreased to 33% (47%) based on 70% conversion). This is probably due to the weaker nucleophilicity of the chloro anion than that of the bromo anion. On the other hand, reaction using TMSI/InBr₃ displayed a good cyclization/iodination efficiency, but with a much lower E/Z ratio of 74:26 (entry 11).

The scope of this approach was further tested using 1a. The reaction proved to be applicable to a broad range of aldehydes (Table 2). Generally, benzaldehyde and its analogues carrying an electron-withdrawing group led to high E-selectivity (91:9 to 92:8, entries 1–4). However, the E/Z ratio was much lower when using aldehydes in which the phenyl ring was substituted with an electron-donating group such as a methyl group (75:25, entry 5) or a methoxy group (67:33, entry 6). These results suggest that the stability of the initially formed oxocarbenium may strongly influence configurational control over the exocyclic alkene. The reaction also tolerated a heterocyclic aldehyde (entry 7), α , β -unsaturated E or Z aldehydes (entries 8 and 9), and a propargyl aldehyde (entry 10). Reactions using alkyl aldehydes showed an interesting steric bias: as the alkyl group became bulkier, the E/Z ratio progressively decreased from 87:13 to 67:33 (entries 11-13). Aldehydes containing a range of terminally-substituted functionalities on the unbranched chain were suitable substrates to give high E/Z ratios (93:7 to \geq 95:5, entries 14-16). Finally, the Prins cyclization/homobromination proved to be suitable for various dienyl alcohols 1b-1f with different R¹ groups, giving 3r-3v in good yields with reasonable E-selectivity (entries 17–21).

 Table 2
 Scope of aldehydes and dienyl alcohols^a

		D, TMSBr/InBr ₃ , CH ₂ CI ₂ -78 °C, 40 min	~ 1-20	R^1					
	then Ar ²	CO ₂ H,KHCO ₃ , DMF, rt, 3 h ⁻² = 3, 5-di-NO ₂ -C ₆ H ₃]	- AI-C		₹ ²				
	1	. 2003	3	3 (cis/trans \ge 95:5)					
Entry	1 (R ¹)	R^2	THP	$\operatorname{Yield}^{d}(\%)$	E/Z^e				
1	1a (<i>n</i> -Pr)	Ph	3b	60	91:9				
2	1a (<i>n</i> -Pr)	4-NO ₂ -C ₆ H ₄	3c	67	92:8				
3	1a (<i>n</i> -Pr)	$4 - F - C_6 H_4$	3d	65	91:9				
4	1a (<i>n</i> -Pr)	2-CF ₃ -C ₆ H ₄	3e	72	92:8				
5	1a (<i>n</i> -Pr)	4-Me-C ₆ H ₄	3f	71	75:25				
6	1a (<i>n</i> -Pr)	4-MeO-C ₆ H ₄	3g	70	67:33				
7	1a (<i>n</i> -Pr)	2-Thienyl	3ĥ	72	91:9				
8	1a (<i>n</i> -Pr)	(E) -CH $\stackrel{\circ}{=}$ CHTBS	3i	73	91:9				
9	1a (n-Pr)	(Z)-CH≕CHI	3j ^b	63	86:14				
10	1a (n-Pr)	CH≡CTBS	3k	73	92:8				
11	1a (<i>n</i> -Pr)	$n-C_6H_{13}$	31	67	87:13				
12	1a (<i>n</i> -Pr)	<i>i</i> -Pr	3m	66	84:16				
13	1a (<i>n</i> -Pr)	t-Bu	3n	70	67:33				
14	1a (<i>n</i> -Pr)	C ₃ H ₆ Br	30	67	93:7				
15	1a (n-Pr)	C ₃ H ₆ OBn	3p	70	$\geq 95:5$				
16	1a (n-Pr)	C ₂ H₄COPh	3q	67	93:7				
17	1b (Ph)	2.4-Di-Cl-C ₆ H ₃	3r	67	92:8				
18	$1c(4-CF_3-C_6H_4)$	2.4-Di-Cl-C ₆ H ₃	35	70	90:10				
19	$1d (C_2 H_4 OBn)$	2.4-Di-Cl-C ₆ H ₂	3t	71	95:5				
20	1e (<i>i</i> -Pr)	2.4-Di-Cl-C ₆ H ₂	3u ^c	73	92:8				
21	1f(E) - CH = CHMe	2,4-Fi-Cl-C ₆ H ₃	3v	68	88:12				

^{*a*} Reaction conditions: 0.71 mmol of **1**, 0.6 mmol of R²CHO, 0.72 mmol of TMSBr, 0.12 mmol of InBr₃ in 3.5 mL of CH₂Cl₂, -78 °C, 40 min, then 3.6 mmol of 3,5-di-NO₂-C₆H₃CO₂H and 3.7 mmol of KHCO₃ in 5 mL of DMF, rt, 3.0 h. ^{*b*} Lewis acid-promoted isomerization of *Z*-vinyliodide occurred to give the *E*-isomer with $E/Z \ge 95:5.^{16}$ ^{*c*} To assign the *cis*-E stereochemistry of **3r**-**3v** containing different R¹ group, **3u** was selected for NOE experiments. ^{*d*} Isolated yields after purification by silica gel column chromatography. ^{*e*} E/Z ratios were determined by crude ¹H NMR analysis of the initial cyclization/bromination product.

Next, the scope of dienyl alcohols with substitution on the diene moiety was examined with 2,4-di-Cl-C₆H₃CHO. Results summarized in Table 3 show a remarkable substitution effect on the E/Z-selectivity by comparing with the ratio obtained using unsubstituted **1a** (E/Z = 96:4, entry 6 in Table 1). While the reaction of **1g** containing an *E*-substituent at the 1-position of diene provided an E/Z ratio of 91:9 (entry 1), the reaction of **1h** containing a *Z*-1-substituted diene gave **4b** as a single *E*-isomer (entry 2). The introduction of a substituent at the 3-position of dienes such as **1i–1k** lowered the E/Z ratio. Moreover, the ratio decreased constantly with an increase of the size of the R group (entries 3–5). Interestingly, the *E*-selectivity was reversed completely to *Z*-selectivity in the reaction of 2'-dimethyl-substituted **1l**, giving **4f** as a single *Z*-isomer in 75% yield (entry 6).

While there could be a number of factors affecting the configurational control of the exocyclic alkene, the results shown in Tables 2 and 3 imply that the steric nature of the diene moiety might play one of the important roles. We tentatively assumed that Prins cyclization of the initially

^{*a*} Reaction conditions: 0.71 mmol of **1**, 0.6 mmol of 2,4-di-Cl-C₆H₃CHO in 3.5 mL of CH₂Cl₂, 40 min, then 3.6 mmol of 3,5-di-NO₂-C₆H₃CO₂H and 3.7 mmol of KHCO₃ in 5 mL of DMF, rt, 3.0 h. ^{*b*} Isolated yields after purification by silica gel column chromatography. ^{*c*} *E/Z* ratios were determined by crude ¹H NMR analysis of the initial cyclization/bromination product. The stereochemistry of THPs 4 was assigned based on their NOE experiments.

formed oxocarbenium and the following homobromination might proceed in either a concerted or a very fast step-wise manner. Thus, two transition states pro-Z and pro-E were proposed to compare their allylic strains.¹⁷ For reactions of **1a-1h** (Scheme 2, top), A (H², H⁴)-strain in *pro-E* appears as being more tolerable than an essentially in-plane A (H¹, H⁴)strain (1a-1g) or A (Et, H⁴)-strain (1h) in pro-Z. Thus, the pathway via pro-E is preferred to generate E-alkene as a major isomer. This analysis can be supported by the fact that reaction of 2'-dimethyl-substituted 1l led to the complete Z-selectivity. The pro-E of 1l now has an A (Me, H⁴)-strain, which is greater than A (H^1 , H^4)-strain in **pro-Z**, disfavouring the pathway via pro-E to give E-selectivity. Substitution at the 3-position of the diene introduces an extra in-plane A (H¹, R)-strain in pro-E (Scheme 2, bottom). Due to the spatial distance between H¹ and R being longer than that between H^1 and H^4 in *pro-Z*, the A (H^1, H^4) -strain still appears to be dominant to disfavour *pro-Z*. However, with the R group getting bulkier from H to SiMe₃, an increased A (H¹, R)-strain imaginably diminishes the superiority of *pro-E* over *pro-Z*, and renders the *E*/*Z* ratio to decrease constantly.

The effect of aldehyde (Table 2, entries 1–6 and 11–13) might be explained based on the Hammond postulate.¹⁸ Aldehydes with an electro-rich aryl group or less substituted alkyl group (more C–H bonds, better stabilization by a stronger hyperconjugation effect) would lead to a less reactive oxocarbenium ion, which should have later transition states. Since the *cis-E* and *cis-Z* products are equal in energy, the transition states *pro-E* and *pro-Z* are closer in energy to give a lower *E/Z* ratio. On the other hand, the more reactive oxocarbenium ion has early transition states, which should be correlated with the lowest energy conformer of the diene, thus leading to a higher *E*-selectivity.

In summary, we have described a TMSBr/InBr₃-promoted Prins cyclization/homobromination process involving dienyl alcohol and aldehyde to construct the unique *cis*-THP containing an exocyclic *E*-alkene. This approach provides good to excellent *cis*-*E* stereochemical control in one step. This reaction should have great potential in the total synthesis of (-)-exiguolide and bryostatins containing such a *cis*-*E* THP. The corresponding applications are currently underway.

We are grateful for financial support from the NSFC (21172150, 21321061, 21290180), the NCET (12SCU-NCET-12-03), and the Sichuan University 985 project. The authors also thank Prof. Richard P. Hsung (UW, Madison) for invaluable discussions.

Notes and references

- 1 For recent reviews on Prins cyclization, see: (a) L. E. Overman and L. D. Pennington, J. Org. Chem., 2003, 68, 7143; (b) E. A. Crane and K. A. Scheidt, Angew. Chem., Int. Ed., 2010, 49, 8316; (c) X. Han, G. R. Peh and P. E. Floreancig, Eur. J. Org. Chem., 2013, 1193; (d) S. J. Greco, R. G. Fiorot, V. Lacerda and R. B. dos Santos, Aldrichimica Acta, 2013, 46, 59.
- For selected progresses besides ref. 13 and 14, see: (a) J. Yang, G. S. Viswanathan and C. J. Li, *Tetrahedron Lett.*, 1999, 40, 1627; (b) H. Huang and J. S. Panek, J. Am. Chem. Soc., 2000, 122, 9836; (c) P. A. Wender and A. J. Schrier, J. Am. Chem. Soc., 2011, 133, 9228; (d) J. M. Tenenbaum, W. J. Morris, D. W. Custar and K. A. Scheidt, Angew. Chem., Int. Ed., 2011, 50, 5892; (e) K. Zheng, X. H. Liu, S. Qin, M. S. Xie, L. L. Lin, C. W. Hu and X. M. Feng, J. Am. Chem. Soc., 2012, 134, 17564; (f) V. M. Lombardo, C. D. Thomas and K. A. Scheidt, Angew. Chem., Int. Ed., 2013, 52, 12910; (g) G. C. Tsui, L. P. Liu and B. List, Angew. Chem., Int. Ed., 2015, 54, 7703.
- 3 (a) R. W. Alder, J. N. Harvey and M. T. Oakley, J. Am. Chem. Soc., 2002, **124**, 4960; (b) R. Jasti and S. D. Rychnovsky, Org. Lett., 2006, **8**, 2175.
- 4 For the isolation of (-)-exiguolide, see: (a) S. Ohta, M. M. Uy, M. Yanai, E. Ohta, T. Hirata and S. Ikegami, *Tetrahedron Lett.*, 2006, 47, 1957. For total synthesis of exiguolide, see: (b) M. S. Kwon, S. K. Woo, S. W. Na and E. Lee, *Angew. Chem., Int. Ed.*, 2008, 47, 1733; (c) H. Fuwa and M. Sasaki, *Org. Lett.*, 2010, 12, 584; (d) C. Cook, X. Guinchard, F. Liron and E. Roulland, *Org. Lett.*, 2010, 12, 744; (e) E. A. Crane, T. P. Zabawa, R. L. Farmer and K. A. Scheidt, *Angew. Chem., Int. Ed.*, 2011, 50, 9112; (f) H. Fuwa, T. Suzuki, H. Kubo, T. Yamori and M. Sasaki, *Chem. Eur. J.*, 2011, 17, 2678; (g) C. Cook, F. Liron, X. Guinchard and E. Roulland, *J. Org. Chem.*, 2012, 77, 6728; (h) H. Fuwa, K. Mizunuma, M. Sasaki, T. Suzuki and H. Kubo, *Org. Biomol. Chem.*, 2013, 11, 3442; (i) H. Z. Li, H. M. Xie, Z. G. Zhang, Y. J. Xu, J. Lu, L. Gao and Z. L. Song, *Chem. Commun.*, 2015, 51, 8484. For other synthetic studies, see: (j) C. R. Reddy and N. N. Rao, *RSC Adv.*, 2012, 2, 7724.
- 5 For the latest review on the bryostatins, see: (*a*) K. J. Hale and S. Manaviazar, *Chem. Asian J.*, 2010, 5, 704. For the latest total synthesis of bryostatins, see: (*b*) Y. Lu, S. K. Woo and M. J. Krische, *J. Am. Chem. Soc.*, 2011, 133, 13876 and references therein.
- 6 (a) J. Lu, Z. L. Song, Y. B. Zhang, Z. B. Gan and H. Z. Li, *Angew. Chem., Int. Ed.*, 2012, **51**, 5367. For geminal bis(silyl) Prins cyclization without configurational control of the exocyclic alkene, see: (b) D. R. Williams, Á. I. Morales-Ramos and C. M. Williams, *Org. Lett.*, 2006, **8**, 4393.

- 7 Y. Ogawa, P. P. Painter, D. J. Tantillo and P. A. Wender, *J. Org. Chem.*, 2013, **78**, 104.
- 8 The product, in which the R group falls on the same side as the incorporated aldehyde, is assigned to have a Z configuration.
- 9 For selected examples, see: (a) J. H. Babler and W. J. Buttner, *Tetrahedron Lett.*, 1976, 17, 239; (b) G. E. Heasley, D. A. Smith and J. N. Smith, *J. Org. Chem.*, 1980, 45, 5206; (c) T. Nguyen Van and N. De Kimpe, *Tetrahedron*, 2000, 56, 7969.
- 10 The product, in which the CH₂Br group falls on the opposite side to the incorporated aldehyde, is assigned to have an E configuration.
 11 The Mandrid E. Mahami The Manager State S
- 11 T. Mandai, J. Nokami, T. Yano, Y. Yoshinaga and J. Otera, J. Org. Chem., 1984, 49, 172.
 12 K. Tamao, K. Sumitani and M. Kumada, J. Am. Chem. 61, 1072.
- 12 K. Tamao, K. Sumitani and M. Kumada, J. Am. Chem. Soc., 1972, 94, 4374.
- (a) S. Marumoto, J. J. Jaber, J. P. Vitale and S. D. Rychnovsky, Org. Lett., 2002, 4, 3919. For selected advances of Prins cyclization from this group, see: (b) D. J. Kopecky and S. D. Rychnovsky, J. Am. Chem. Soc., 2001, 123, 8420; (c) J. E. Dalgard and S. D. Rychnovsky, J. Am. Chem. Soc., 2004, 126, 15662; (d) R. Jasti, J. Vitale and S. D. Rychnovsky, J. Am. Chem. Soc., 2004, 126, 9904; (e) R. Jasti, C. D. Anderson and S. D. Rychnovsky, J. Am. Chem. Soc., 2005, 127, 9939; (f) K. Tadpetch and S. D. Rychnovsky, Org. Lett., 2008, 10, 4839; (g) K. B. Bahnck and S. D. Rychnovsky, J. Am. Chem. Soc., 2008, 130, 13177; (h) V. Malathong and S. D. Rychnovsky, Org. Lett., 2009, 11, 4220; (i) M. R. Gesinski, K. Tadpetch and S. D. Rychnovsky, Org. Lett., 2009, 11, 5342; (j) M. R. Gesinski and S. D. Rychnovsky, J. Am. Chem. Soc., 2011, 133, 9727; (k) G. C. Tay, M. R. Gesinski and S. D. Rychnovsky, Org. Lett., 2013, 15, 4536; (l) G. C. Tay, C. Y. Huang and S. D. Rychnovsky, J. Org. Chem., 2014, 79, 8733.
- 14 (a) K. P. Chan and T. P. Loh, Org. Lett., 2005, 7, 4491. For selected advances of Prins cyclization from this group, see: (b) K. P. Chan and T. P. Loh, Tetrahedron Lett., 2004, 45, 8387; (c) F. Liu and T. P. Loh, Org. Lett., 2007, 9, 2063; (d) K. P. Chan, A. H. Seow and T. P. Loh, Tetrahedron Lett., 2007, 48, 37; (e) K. P. Chan, Y. H. Ling and T. P. Loh, Chem. Commun., 2007, 939; (f) X. H. Hu, F. Liu and T. P. Loh, Org. Lett., 2009, 11, 1741; (g) H. Q. Luo, X. H. Hu and T. P. Loh, Tetrahedron Lett., 2010, 12, 2679; (i) B. Li, Y. C. Lai, Y. J. Zhao, Y. H. Wong, Z. L. Shen and T. P. Loh, Angew. Chem., Int. Ed., 2012, 51, 10619.
- 15 For reviews, see: (a) T. P. Loh, in Science of Synthesis, ed. H. Yamamoto, Georg Thieme Verlag Stuttgart, New York, 2004, p. 413; (b) T. P. Loh and G. L. Chua, Activation of Reactions by Lewis acid derived from Ga, In, Sb and Bi, in Advances in Organic Synthesis, ed. A. ur-Rahman, 2005, 1, pp. 173–214, For latest investigations of In-centered Lewis acids, see: (c) L. G. Zhuo, J. J. Zhang and Z. X. Yu, J. Org. Chem., 2012, 77, 8527; (d) L. G. Zhuo, Y. C. Shi and Z. X. Yu, Asian J. Org. Chem., 2014, 3, 842; (e) L. G. Zhuo, J. J. Zhang and Z. X. Yu, J. Org. Chem., 2014, 79, 3809.
- 16 I. Marek, C. Meyer and J. F. Normant, Org. Synth., 1997, 74, 194.
- 17 R. W. Hoffmann, Chem. Rev., 1989, 89, 1841.
- 18 G. S. Hammond, J. Am. Chem. Soc., 1955, 77, 334.