View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Peruncheralathan and M. Janni, *Org. Biomol. Chem.*, 2016, DOI: 10.1039/C6OB00193A.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Journal Name

ARTICLE

Accepted Manu

Catalytic Selective Deuteration of Halo(hetero)arenes

Manojkumar Janni^a and S. Peruncheralathan^{a*}

Deuterium labeled aromatic and heteroaromatic compounds are synthesized in good to excellent yields with >98% deuterium purity via palladium catalyzed deuterodehalogenation reaction using commercially available and inexpensive reagents. Selective deuteration of bromoaniline is also demonstrated without H/D exchange in amino N—H group.

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

www.rsc.org/

Introduction

Deuterated compounds are effectively utilized in studying reaction mechanis m (Kinetic Isotopic Effects), catalysts of biosynthetic pathways, for elucidation pathways, as analytical standards, and for altering selectivity in total synthesis.1 Further, these compounds are realized as potential drug candidates because of their unique ability of altering the therapeutic profile and metabolic fate of the drug thereby retaining its biochemical potency and selectivity.² For example deuterated analogues of tetrabenazine (SD-809) and lisofylline (CTP-499) are in clinical trials for treatment of chorea associated with Huntingdon's disease and diabetic nephropathy respectively (Chart 1).3 Very recently, DeWitt al found that of anti-inflammatory differentiation and antitumorigenic properties of deuterium stabilized enantiomers of thalidomide

Chart 1. Selected Deuterated Drugs in Clinical Trials

This journal is © The Royal Society of Chemistry 20xx

analogs (CC-122) in in vitro and in vivo efficacy models (Chart 1).⁴ These findings open up a new window to improve therapeutic properties of other racemic drugs.⁴ Hence, the deuterated drugs are increasingly in high demand in pharmaceutical industries.^{2e} Therefore, deuteration of organic compounds especially drugs have a great potential to generate new drugs with high therapeutic values.

Deuteration of aromatic compounds by traditional methods such as H/D exchange processes and metal-halogen exchange process suffer from selectivity, strong basic conditions and less group tolerances.⁵ Hence, several alternative functional methods were developed to overcome those drawbacks.6 For example: (i) immobilized triazene precursors were used for selective D-incorporation into arenes;7 (ii) aromatic acids were transformed into deutero aromatic compounds via copper and silver mediated decarboxylative deuteration procedures;8 (iii) α, α -dideutero alcohols were synthesized from carboxylic acids by using Sml₂ and D₂O as deuterium source⁹ and (iv) palladium *ortho*-deuteration of arenes bearing catalvzed weakly coordinated directing groups was also developed.¹⁰ Despite excellent selectivities and high D-incorporation, each of these individual protocols has its own limitations owing to multi-step synthesis of starting materials, use of large excess deuterated solvents, excess of metal salts, higher catalyst loading & less heterocyclic substrates. Therefore, developing a simple and catalytic method for synthesis of deuterated compounds is always needed.

The cross-coupling between aryl halides and aliphatic alcohols represents a direct approach to synthesize alkyl aryl ethers.¹¹ During this process, a reduced arene (Ar-H) is usually formed as by-product particularly primary and secondary alcohols are used as nucleophiles. To suppress undesired reduced product, Buchwald. Beller and other groups individually developed new protocols by changing phosphine ligands and palladium precatalysts.^{11,12} However, few groups demonstrate d usefulness of this process cleverly for dehalogenation of arenes especially polychlorinated aromatic

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhimpur-Padanpur (PO), Jatni (via), Khurda – 752050, Odisha, India. Fax: +91-674-2494004; Tel: +91-674-2494173; E-mail: peru@niser.ac.in +Electronic Supplementary Information (ESI) available: [Copies of ¹H & ¹³C NMR

Spectra]. See DOI: 10.1039/x0xx00000x

Published on 15 February 2016. Downloaded by Pennsylvania State University on 16/02/2016 09:36:44

compounds.13-15 Further, deuterated alcohols are used to establish mechanistic pathway of hydrode halogenation reaction by Helquist,¹⁴ Nolan^{15c} and recently McIndoe.¹⁶ To our surprise, high demand in deuterated organic compounds, no attempts has been made to use this process for a general synthetic protocol to access deuterated aromatic compounds from aryl halides.¹⁷ Herein we report a first catalytic method for selective deuteration of aryl and heteroaryl halides by using 1 mol% of Pd(OAc)_2 and 2 mol% of Ad_2P^nBu and CD_3OD as deuterium source affording deuterate d arenes and heteroarenes good to excellent yields with >98% deuterium incorporation.

Results and Discussion

Recently, we reported the first general and efficient method for trideuteromethoxylation of aryl/heteroaryl halides with CD₃OD using a commercially available ^tBuXPhos ligand.¹⁸ During this study, we observed that few ligands gave a mixture of deutero and trideuteromethoxy aromatic compounds. To accomplish an exclusive deuterated product, we started the optimization studies with a set of commercially available ligands L1-L7 for deuteration of aryl halides (Table 1). Thus, the reaction of 2bromonaphthalene (1a) with CD₃OD was investigated as a model system in the presence of 5 mol% Pd(OAc)₂ and 5-10 mol% ligands L1-L6 (Table 1). In most of the cases, the reaction was completed within 12 hours, however yield of the product 2a was ranging from 45 to 72%. Gratifyingly, an experiment performed in the presence of cataCXium®A (L7) ligand provided an improved yield of 94%. On the other hand, with PEPPSI, a carbene based ligand, gave a lower yield as compared to ligand L7.19 For further fine tuning of this process, other palladium

Table 1. Ligand Screening for Deuteration of 2-Bromonaphthalene^{a-e}

CD₂OD **Reaction Conditions** 2a 1a Ph Ar Ph Me Ρh L1, Ar = Ph; 2a = 69% (100) PCy₂ L2, Ar = 4-MePh; 2a = 72% (98) **L5**, **2a** = 62% (100)^d L3, Ar = 2-Furyl; 2a = 45% (100) L4, 2a = 46% (65) hA CI-Pd-CI PPh L7. 2a = 94% (100) **L6**, **2a** = 70% (100)^d PEPPSI, 2a = 67% (99)e

[a] Reaction Conditions: 2-Bromonaphthalene (0.5 mmol), Pd(OAc)₂ (5 mol%), L1 - L4, L7 (10 mol%), Cs₂CO₃ (0.75 mmol), CD₃OD/Toluene (1:4), 80 °C, 12 h; [b] Conversions are inside the parenthesis; [c] GC yield; [d] L5 - L6 (5 mol%); [e] Without Pd(OAc)₂.

were screened and found to be less beneficial when compared with Pd(OAc)₂. However, in case of bases, K₃PO₄ gave better yield as compared with KOH, Et₃N, K₂CO₃ and Cs₂CO₃. Interestingly, we obtained quantitative yield of 2a when the catalyst loading was reduced from 5 mol% to 1 mol% and reaction was completed within 16 hours.

The optimized conditions in our hand, we examined a series of polyaromatic bromides for deuteration reaction. These bromides were effectively deuterated furnishing the corresponding deutero polyaromatic compounds 2a-d in excellent yields (Table 2, 2a-d). Next, we performed the deuteration of the aryl halides having electron withdrawing group at para-position. Thus, 4-cyano and 4-nitro bromobenzenes gave the corresponding deuterated 4-nitro and 4-cyanobenzenes only in moderated yields (Table 2, 2e-f). On the other hand, benzoyl substituted phenyl chloride was converte d to 4-deuterobenzophenone smoothly (**2**g) in excellent yield. Whereas the alkoxy substituted bromide 1h gave only 66% of deuterated compound 2h. However, ortho substituted bromide 1i afforded the corresponding product 2i in excellent yield (90%). Similarly, the deuteration of sterically hindered substrate 1-bromo-2,4,6-tritbutylbenzene gave the corresponding deuterated product 2j in 85% yield. Interestingly, 6,6'-dibromo-MOM-protected R-BINOL 1k was transformed into the corresponding deuterated product 2k in 90% of yield (Table 2).

Table 2. Catalytic Deuteration of Aryl Halides^[a]

[a] Isolated yields; [b] 5 mol% Pd(OAc)₂ & 10 mol% L7 were used.

Journal Name

Published on 15 February 2016. Downloaded by Pennsylvania State University on 16/02/2016 09:36:44

[a] Isolated yields; [b] 5 mol% Pd(OAc)₂ & 10 mol% L7 were used.

We next turned our attention towards to the synthesis of deuterated heterocycles by applying our established synthetic methodology. Thus, 3- and 5-bromoquinolines were smoothly converted into the corresponding deuterated quinolines in good to very good yields (Table 3, 4a-b). This process could also be successfully applied to 4-bromoisoquinoline yielding 78% of 4c. Further, other heteroaryl bromides like 5-bromo-Nmethylindole and 4-bromo-N-methylcarbazole proved to be suitable substrates for this process to deliver deuterated products in 68% & 81% yields respectively (Table 3, 4d-e). Interestingly, bromosubstituted pyrazoles 3f-h were transformed into the corresponding deuterated products 4f-h in very good to excellent yield (Table 3).

Scheme 2. Deuteration of 4-Bromopyrazole 3g with CD₃OH & CH₃OD

As shown in Scheme 1, we propose a mechanism which involves a palladium catalytic cycle. The first-step is the $Pd(OAc)_2$ in the presence of strong σ -donating ligand L7, accelerating the oxidative addition of the catalyst A to form B. This step is most commonly believed to be the rate determining step. The displacement of the halide (C) by using base (K_3PO_4) , β -D-elimination of **D** and reductive elimination of **E** to regenerate the Pd(0) species (A). To validate the proposed cycle, we performed two separate experiments with CD₃OH and CH₃OD respectively (Scheme 2). The first experiment gave exclusively deuterated product 4g whereas the second experiment did not give a trace amount of 4g, instead formed 4g' (Scheme 2). These experiments clearly support that the D/H transfer occurs from the CD₃/CH₃. However, mechanistic investigation of deuterodehalogenation of aryl iodide in presence of CH₃OD gave mixture of products which was proposed by McIndoe *et al.* Interestingly our methodology provides a highly selective product depending upon methanol (CD₃OH vs CH₃OD).^{16, 20}

To see if this methodology is reasonable, we performed an experiment with Boc protected 4-bromoaniline. We obtained exclusively 4-deuteroaniline **2I** without exchange of acidic proton (Scheme 3). Hence, we believe that there is no H/D exchange during reaction and deuterium incorporation occurs from reductive elimination process.

Scheme 3. Selective Deuteration of 4-Bromoaniline 11 with CD₃OH

Conclusions

In conclusion, we have described the first general catalytic method for deuteration of aryl and heteroaryl halides with 1 mol% of $Pd(OAc)_2/2$ mol% of Ad_2P^nBu . The present protocol is simple and straight forward providing a variety of deuterium

ARTICLE

labeled aryl/heteroaryl compounds in good to excellent yields with 98% deuterium purities from readily available reagents. The potential application of the protocol was also demonstrated by the bromoaniline without H/D exchange in amino N—H group. Further studies directed towards understanding the mechanism of this reaction and extending the application of selective incorporation of D moiety in the existing drugs are underway.

Acknowledgements

This work was supported by the Department of Atomic Energy, Government of India.

Experimental

All reactions were performed by using standard vial technique with rubber septum. All solids were weighed in air. CD₃OD, $\mathsf{CD}_3\mathsf{OH}$ and $\mathsf{CH}_3\mathsf{OD}$ used as received (without adding any drying agent) from Acros. Toluene, Cs_2CO_3 , K_3PO_4 , KOH, K_2CO_3 and Et_3N were purchased from Aldrich, Acros, Merck or Alfa-Aesar and used as received. Pd(PPh₃)₄, Pd(CH₃CN)₂Cl₂ and Pd(OAc)₂ were purchased from Aldrich. Aryl and heteroaryl bromides and chlorides were purchased from Aldrich, Acros, Afla-Aesar and Spectrochem. Tri-(o-tolyl)-phosphine, tri-(2-furyl)-phosphine, 1,1'-bis(diphenylphosphino)ferrocene, di-(1-adamantyl)-nphosphine, [1,3-bis(2,6-diisopropylphenyl)imidazol-2butyl ylidene](3-chloropyridyl)palladium(II) dichloride (PEPPSI-iPr), 2'-(dicyclohexylphosphino)-acetophenone ethylene ketal. ethylene bis-(diphenylphosphine), triphenylphosphine were purchased from Aldrich. All other reagents were purchased from common suppliers and used without further purification. Flash chromatography was performed using Merck Silica gel (230-400 mesh). Fractions were monitored by thin-layer chromatography on precoated silica gel 60 F254 plates (Merck & co.) and were visualized by UV. NMR data were recorded on Bruker ARX 400 spectrometers. $^{13}\mbox{C}$ and $^{1}\mbox{H}$ NMR spectra were recorded in CDCl3 and were referenced accrording to signals of deutero solvent. Gas chromatography analysis was performed on ThermoFisher ITQ 900 instrument with a FID detector and HP-5 capillary column (polydimethylsiloxane with 5% phenyl groups, 30 m, 0.32 mm i.d., 0.25 µm film thickness) using helium as carrier gas. Gas chromatography-Mass analysis was carried out on Thermo Fisher ITQ 900 instrument (EI) and TG-SQC capillary column using helium carrier gas. ESI and APCI HR-MS measurements were performed on Bruker micro TOF-Q-II massspectrometer.

Procedure for the Optimization of Palladium-Catalyzed Deuteration of 2-Bromonaphthalene with CD₃OD

An oven-dried 8 mL reaction vial was charged with $Pd(OAc)_2(5 \text{ mol-\%})$, ligand (10 mol%), base (1.5 equiv), 2-Bromonaphthalene (0.5 mmol), hexadecane (50 mg) and toluene (1.0 mL). The reaction mixture was stirred at 80 °C for 12 h. The reaction was monitored by TLC or GC/MS analysis. The

yield and conversion of the reactions were calculated a free on GC using hexadecane as internal standard. DOI: 10.1039/C6OB00193A

General Procedure for the Palladium-Catalyzed Deuteration of Aryl Halides and Heteroaryl Halides with CD_3OD

An oven-dried 8 mL reaction vial was charged with $Pd(OAc)_2(1-5 \text{ mol-}\%)$, ligand L7(2-10 mol-%) and K_3PO_4 (0.75 mmol), respective aryl/heteroaryl halide (0.5 mmol) in CD₃OD (0.25 mL) and toluene (2.0 mL) was stirred at 80 °C for 7-19 h. The reaction mixture was stirred at 80 °C and was monitored by TLC or GC/MS analysis. After the starting material had been completely consumed, the reaction mixture was then cooled to room temperature and was purified by flash chromatography.

2-Deuteronaphthalene (2a)²¹: Reaction time: 16 h. Yield: 99%, as a white colour solid. Melting point: 64 – 66 °C. R_f: 0.40 in petroleum ether. ¹H NMR (400 MHz, CDCl₃) δ = 7.89 – 7.87 (m, 4H), 7.52 – 7.49 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 133.6, 128.0, 127.9, 125.95, 125.8, 125.7 (t, *J* = 24 Hz). MS (EI, 70eV): m/z (%) = 129 (100).

1-Deuteronaphthalene (2b)²¹: Reaction time: 16 h. Yield: 98%, as a colourless solid. Melting point: 71 – 73 °C. R_f: 0.50 in hexane. ¹H-NMR (400 MHz, CDCl₃): δ = 7.85 – 7.88 (m, 3H), 7.48 – 7.52 (m, 4H). ¹³C-NMR (100 MHz, CDCl₃): δ = 133.6, 133.5, 128.0, 127.9, 127.7 (t, *J* = 23 Hz), 125.9, 125.8. MS (EI, 70eV): m/z (%) = 129 (100).

9-Deuteroanthracene (2c)²²: Reaction time: 16 h. Yield: 99%, as a white colour solid. Melting point: 198 – 201 °C. R_f: 0.32 in petroleum ether. ¹H NMR (400 MHz, CDCl₃) δ = 8.44 (s, 1H), 8.03 – 8.01 (m, 4H), 7.49 – 7.47 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 131.8, 131.7, 128.3, 128.2, 126.3, 126.00 (t, *J* = 24 Hz), 125.5 (2C). HR-MS (APCI): Calcd. for C₁₄H₉D (M+H): 180.0918, found: 180.0928.

9-Deuterophenanthrene (2d)²³: Reaction time: 16 h. Yield: 94%, as a white colour solid. Melting point: 88 – 90 °C. R_f: 0.30 in petroleum ether. IR (KBr): v (cm⁻¹) = 3050, 2925, 2368, 1638, 1428, 1006, 771, 754. ¹H NMR (400 MHz, CDCl₃) δ = 8.72 (d, *J* = 8.2 Hz, 2H), 7.92 (dd, *J* = 7.8, 1.4 Hz, 2H), 7.76 (s, 1H), 7.70 – 7.60 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 132.2, 132.1, 130.4, 128.71, 128.66, 126.9, 126.74 (t, *J* = 24 Hz), 126.70, 122.8. HR-MS (APCI): Calcd. for C₁₄H₉D (M+H): 180.0918, found: 180.0926.

4-Deuterobenzonitrile (2e) ^{8a}: Reaction time: 10.5 h. Yield: 58%, as a colourless oily liquid. R_f: 0.36 in 10% diethyl ether in Petroleum ether. ¹H NMR (400 MHz, CDCl₃) δ = 7.66 – 7.64 (m, 2H), 7.49 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 132.6 (t, *J* = 25 Hz), 132.2, 129.1, 118.9, 112.5. MS (EI, 70eV): m/z (%) = 104 (100), 77 (20).

4-Deuteronitrobenzene (2f) ²⁴: Reaction time: 18 h. Yield: 64%, as a brown colour oily liquid. R_f: 0.32 in 5% ethyl acetate in petroleum ether. IR (as film in CCl₄): v (cm⁻¹) = 2921, 2360, 1657, 1310, 1276, 938. ¹H NMR (400 MHz, CDCl₃) δ = 8.24 – 8.21 (m, 2H), 7.55 (dd, *J* = 7.6, 0.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ = 148.3, 134.4 (t, *J* = 25 Hz), 129.3, 123.6.

Journal Name

4-Deuterobenzophenone (2g)²⁵: Reaction time: 10.5 h. Yield: 96%, as a pale yellow oily liquid. R_f: 0.35 in 10% diethyl ether in petroleum ether. IR (as film in CCl₄): v (cm⁻¹) = 3060, 2920, 2423, 2264, 1659, 1651, 1599, 1513, 1472, 1447, 1408, 1311, 1277, 1175, 1149, 1108, 1076, 1026. ¹H NMR (400 MHz, CDCl₃) δ = 7.82 – 7.80 (m, 4H), 7.61 – 7.57 (m, 1H), 7.50 – 7.46 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ = 196.8, 137.7, 132.5, 132.2 (t, *J* = 25 Hz), 130.2, 128.4, 128.3. HR-MS (APCl): Calcd. for C₁₃H₉DO (M+H): 184.0867, found: 184.0870.

4-Benzyloxy-1-deuterobenzene (2h): Reaction time: 8 h. Yield: 66%, as a white colour solid. Melting point: 36 – 38 °C. R_f: 0.29 in hexane. IR (KBr): v (cm⁻¹) = 3035, 2907, 2867, 2373, 1590, 1467, 1377, 1293, 1245, 1170, 1107, 1022. ¹H NMR (400 MHz, CDCl₃): δ = 7.48 – 7.46 (m, 2H), 7.44 – 7.40 (m, 2H), 7.37 – 7.33 (m, 3H), 7.03 – 7.00 (m, 2H), 5.09 (s, 2H). ¹³C NMR (100 MHz, CDCl₃): δ = 158.9, 137.2, 129.5, 128.7, 128.1, 127.6, 120.8 (t, *J* = 24 Hz), 114.9, 70.0. MS (EI, 70eV): m/z (%) = 185 (25), 91(100). HR-MS (APCI): Calcd. for C₁₃H₁₁DO (M⁺): 185.0954, found: 185.0915.

6-Benzyloxy-3,4-dimethoxy-1-deuterobenzene (2i): Reaction time: 8 h. Yield: 90%, as a pale yellow colour solid. Melting point: 67 - 70 °C. Rf: 0.33 in 20% ethyl acetate in hexane. IR (KBr): v (cm⁻¹) = 2997, 2961, 2937, 2835, 1595, 1508, 1402, 1376, 1340, 1229, 1159, 1080.¹H NMR (400 MHz, CDCl₃) δ = 7.34 – 7.28 (m, 2H), 7.02 – 6.96 (m, 4H), 6.88 (s, 1H), 5.00 (s, 2H), 3.90 (s, 3H), 3.89 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 158.8, 149.2, 148.9, 129.5, 129.47, 120.9, 120.0 (t, *J* = 25 Hz), 114.9, 111.0 (2C), 69.9, 55.96, 55.90. HR-MS (ESI): Calcd. for C₁₅H₁₅DO₃ (M⁺): 245.1157, found: 245.1166.

2,4,6-Tri-t-butyldeuterobenzene (2j)²⁶: Reaction tme: 18 h. Yield: 85%, as a colourless solid. Melting point: 55 – 58 °C. R_f: 0.71 in *n*-Pentane. ¹H NMR (400 MHz, CDCl₃) δ = 7.26 (s, 2H), 1.34 (s, 27H). ¹³C NMR (100 MHz, CDCl₃) δ = 150.1, 150.0, 119.6, 35.1, 31.7. MS (EI, 70eV): m/z (%) = 247 (25), 232 (100), 204 (20), 176 (5), 57 (15).

6,6'-Dibrom o-2,2'-bis (methoxymethoxy)-1,1'-binaphthalene (**2k**): Reaction time: 19 h. Yield: 94%, as a white colour solid. Melting point: 93 – 96 °C. R_f: 0.27 in 20% diethyl ether in petroleum ether. IR (KBr): v (cm⁻¹) = 3055, 3026, 2998, 2952, 2901, 2846, 2824, 1620, 1586, 1499, 1463, 1347, 1298, 1241, 1196, 1147, 1094, 1075, 1039, 1026. ¹H NMR (400 MHz, CDCI₃) δ = 7.96 (d, *J* = 8.8 Hz, 2H), 7.88 (s, 2H), 7.59 (d, *J* = 8.8 Hz, 2H), 7.18 (dd, *J* = 8.4, 0.4 Hz, 2H), 5.09 (d, *J* = 6.8 Hz, 2H), 4.99 (dd, *J* = 6.8, 0.4 Hz, 2H), 3.158 (s, 3H), 3.156 (s, 3H). ¹³C NMR (100 MHz, CDCI₃) δ = 152.8, 134.2, 130.0, 129.5, 127.9, 126.3, 125.7, 123.9 (t, *J* = 23 Hz) 121.4, 117.4, 95.3, 55.9. HR-MS (ESI): Calcd. for C₂₄H₂₀D₂O₄ (M⁺): 376.1638, found: 376.1640.

3-Deuteroquinoline (4a)²⁷: Reaction time: 7 h. Yield: 70%, as a brown colour oily liquid. R_f: 0.26 in 20% diethyl ether in petroleum ether. ¹H NMR (400 MHz, CDCl₃) δ = 8.91 (s, 1H), 8.15 (s, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.74 – 7.69 (m, 1H), 7.56 – 7.52 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ =

150.3, 148.2, 136.2, 129.6, 129.4, 128.4, 127.9, $126_{eV,A}$, 120.9_{nl} (te J = 25 Hz). HR-MS (ESI): Calcd. for C₉H₆DN¹: {M+H}?^{/C} 131.0716.

5-Deuteroquinoline (4b)²⁸: Reaction time: 8 h. Yield: 80%, as a colourless liquid. R_f: 0.24 in 10% ethyl acetate in hexane. ¹H NMR (400 MHz, CDCl₃) δ = 8.89 (dd, *J* = 4.2, 1.8 Hz, 1H), 8.14 - 8.09 (m, 2H), 7.70 (dd, *J* = 8.4, 7.2 Hz, 1H), 7.52 (dd, *J* = 6.8, 0.8 Hz, 1H), 7.37 (dd, *J* = 8.2, 4.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 150.4, 148.2, 136.2, 129.6, 129.4, 128.3, 127.5 (t, *J* = 25 Hz), 126.5, 121.1. HR-MS (ESI): Calcd. for C₉H₆DN (M+H): 131.0714, found: 131.0725.

4-Deuteroisoquinoline (4c)²⁹: Reaction time: 17 h. Yield: 78%, as a brown colour oily liquid. Rr: 0.28 in 20% ethyl acetate in petroleum ether. IR (as film in CCl₄): v (cm⁻¹) = 2926, 2345, 2372, 1626, 1583, 1493, 1381, 1260, 1230, 1162, 941. ¹H NMR (400 MHz, CDCl₃) δ = 9.24 (s, 1H), 8.51 (s, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.81 (dd, *J* = 8.2, 0.8 Hz, 1H), 7.70 – 7.66 (m, 1H), 7.61 – 7.57 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ = 152.5, 142.9, 135.8, 130.5, 128.7, 127.7, 127.4, 126.5, 120.3 (t, *J* = 25 Hz). HR-MS (APCI): Calcd. for C₉H₆DN (M+H): 131.0714, found: 131.0732.

5-Deutero-N-methylindole (4d): Reaction time: 7 h. Yield: 68%, as a colourless oily liquid. R_f: 0.32 in 5% ethyl acetate in petroleum ether. IR (as film in CCl₄): v (cm⁻¹) = 3100, 3046, 2943, 2816, 2264, 1870, 1610, 1513, 1471, 1442, 1422, 1382, 1333, 1288, 1243, 1194, 1148, 1107, 1079, 1018. ¹H NMR (400 MHz, CDCl₃) δ = 7.69 (s, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.28 (d, *J* = 8.0 Hz, 1H), 7.09 – 7.08 (m, 1H), 6.55 – 6.54 (m, 1H), 3.82 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 136.8, 128.9, 128.6, 121.5, 120.9, 119.1 (t, *J* = 24 Hz), 109.3, 100.9, 32.9. HR-MS (APCl): Calcd. for C₉H₈DN (M+H): 133.0871, found: 133.0887.

3-Deutero-9-methyl-9H-carbazole (4e): Reaction time: 16 h. Yield: 81%, as a white colour solid. Melting point: 80 – 83 °C. R_f: 0.41 in 3% ethyl acetate in hexane. IR (KBr): v (cm⁻¹) = 3049, 2888, 2823, 2352, 2320, 2267, 1623, 1596, 1476, 1457, 1423, 1350, 1331, 1285, 1246, 1142. ¹H NMR (400 MHz, CDCl₃) δ = 8.15 – 8.13 (m, 2H), 7.54 – 7.50 (m, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.30 – 7.28 (m, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 141.1, 125.8, 125.7, 122.9, 120.4, 120.3, 118.9, 118.7 (t, *J* = 24 Hz), 108.5, 29.1. HR-MS (ESI): Calcd. for C₁₃H₁₀DN (M)⁺: 182.0949, found: 182.0923.

4-Deutero-1,3,5-triphenyl-1*H*-**pyrazole** (4f): Reaction time: 10.5 h. Yield: 92%, as a white colour solid. Melting point: 132 – 136 °C. R: 0.38 in 10% diethyl ether in Petroleum ether. IR (KBr): v (cm⁻¹) = 3061, 2352, 2332, 1596, 1498, 1479, 1455, 1366, 1358, 1311, 1178, 1159, 1001. ¹H NMR (400 MHz, CDCl₃) δ = 7.96 – 7.93 (m, 2H), 7.47 – 7.43 (m, 2H), 7.41– 7.28 (m, 11H). ¹³C NMR (100 MHz, CDCl₃) δ = 152.0, 144.5, 140.2, 133.1, 130.7, 129.0, 128.9, 128.8, 128.6, 128.4, 128.1, 127.6, 125.9, 125.4, 105.1 (t, *J* = 25 Hz). HR-MS (ESI): Calcd. for C₂₁H₁₅DN₂ (M+H): 298.1449, found: 298.1440.

4-Deutero-3,5-dimethyl-1-phenyl-1H-pyrazole (4g): Reaction time: 8 h. Yield: 85%, as a pale yellow liquid. R_f : 0.35 in 10% ethyl acetate in hexane. IR (as film in CCl₄): v (cm⁻¹) = 3067, 2926,

2362, 1598, 1542, 1504, 1458, 1415, 1381, 1364, 1140, 1072, 1047, 1024, 911. ¹H NMR (400 MHz, CDCl₃) δ = 7.45 - 7.40 (m, 4H), 7.36 - 7.30 (m, 1H), 2.30 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 148.9, 139.9, 139.3, 129.0, 127.3, 124.8, 106.7 (t, *J* = 26 Hz), 13.5, 12.4. HR-MS (APCl): Calcd. for C₁₁H₁₁DN₂ (M+H): 174.1136, found: 174.1132.

1-(4-Deuterophenyl)-3,5-dimethyl-1*H***-pyrazole** (4h): Reaction time: 10.5 h. Yield: 91%, as a pale yellow liquid. R_f: 0.40 in 10% ethyl acetate in petroleum ether. IR (as film in CCl₄): v (cm⁻¹) = 2924, 2367, 1595, 1556, 1500, 1415, 1382, 1366, 1133, 1104, 1025, 977. ¹H NMR (400 MHz, CDCl₃) δ = 7.46 - 7.41 (m, 4H), 6.00 (s, 1H), 2.30 (s, 3H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 149.0, 139.9, 139.5, 128.9, 127.0 (t, *J* = 25 Hz), 124.9, 107.0, 13.6, 12.5. HR-MS (APCl): Calcd. for C₁₁H₁₁DN₂ (M+H): 174.1136, found: 174.1154.

Procedure for the Palladium-Catalyzed Deuteration of 4-Bromopyrazole/4-Bromoaniline derivatives with CD_3OH or CH_3OD

An oven-dried 8 mL reaction vial was charged with $Pd(OAc)_2$ (5 mol-%), **L7** (10 mol-%) and K_3PO_4/KO^tBu (1.5 equiv), bromo derivative (0.5 mmol) in CD_3OH/CH_3OD (0.5 mL) in toluene (0.5 mL). The reaction mixture was stirred at 80 °C for 3-12 h. The reaction mixture was monitored by TLC or GC/MS analysis. After the starting material had been completely consumed, the reaction mixture was then cooled to room temperature and was purified by flash chromatography.

4-Deutero-3,5-dimethyl-1-phenyl-1*H*-**pyrazole** (4g): Reaction time: 12 h. Yield: 98%, as a pale yellow liquid. R_f: 0.35 in 10% ethyl acetate in hexane. IR (as film in CCl₄): v (cm⁻¹) = 3067, 2926, 2362, 1598, 1542, 1504, 1458, 1415, 1381, 1364, 1140, 1072, 1047, 1024, 911. ¹H NMR (400 MHz, CDCl₃) δ = 7.45 – 7.40 (m, 4H), 7.36 – 7.30 (m, 1H), 2.30 (s, 3H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 148.9, 139.9, 139.3, 129.0, 127.3, 124.8, 106.7 (t, *J* = 26 Hz), 13.5, 12.4. HR-MS (APCI): Calcd. for C₁₁H₁₁DN₂ (M+H): 174.1136, found: 174.1132.

3,5-Dimethyl-1-phenyl-1H-pyrazole (4g')³⁰: Reaction time: 3-12 h. Yield: 98%, as a pale yellow liquid. R_f: 0.30 in 10% ethyl acetate in hexane. ¹H NMR (400 MHz, CDCl₃) δ = 7.45 – 7.41 (m, 4H), 7.36 – 7.31 (m, 1H), 5.99 (s, 1H), 2.30 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ = 148.99, 139.97, 139.46, 129.05, 127.30, 124.82, 106.98, 13.56, 12.42. HR-MS (ESI): Calcd. for C₁₁H₁₂N₂(M+H): 173.1073, found: 173.1085.

N-Boc-4-deuterophenylamine (2I): Reaction time: 10 h. Yield: 84%, as a white colour solid. Melting point: 124 – 126 °C. R_f: 0.40 in 10% ethyl acetate in hexane. IR (KBr): v (cm⁻¹) = 3305, 2984, 2372, 1689, 1522, 1407, 1312, 1297, 1243, 1155, 1060. ¹H NMR (400 MHz, CDCl₃) δ = 7.36 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 6.51 (s, 1H), 1.52 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ = 152.9, 138.5, 128.9, 122.9(t, *J* = 25 Hz), 118.7, 80.6, 28.5. ¹H NMR (400 MHz, CDCl₃) (D₂O shake) δ = 7.35 (d, *J* = 8.4 Hz, 2H),

Journal Name

Page 6 of 7

7.28 (d, J = 8.4 Hz, 2H), 1.52 (s, 9H). HR-MS (ESI): Calcdon for $C_{11}H_{14}DNO_2$ (M)*: 194.1160, found: 194.1039/C6OB00193A

Notes and references

- a) E. V. Anslyn and D. A. Dougherty, in Modern Physical Organic Chemistry; University Science Books: Sausalito, 2006;
 b) T. Matsuda, M. Shigeno and M. Murakami, J. Am. Chem. Soc. 2007, 129, 12086; c) E. M. Simmons and J. F. Hartwig, Angew. Chem., Int. Ed. 2012, 51, 3066; d) S. Seo, M. Slater and M. F. Greaney, Org. Lett. 2012, 14, 2650; e) J. Atzrodt and V. J. Derdau, Labelled Compd. Radiopharm. 2010, 53, 674; f) K. W. Quasdorf, A. D. Huters, M. W. Lodewyk, D. J. Tantillo, and N. K. Garg, J. Am. Chem. Soc. 2012, 134, 1396; g) M. Miyashita, M. Sasaki, I. Hattori, M. Sakai and K. Tanino, Science, 2004, 305, 495.
- 2 a) T. G. Gant, J. Med. Chem., 2014, 57, 3595; b) N. A. Meanwell, J. Med. Chem., 2011, 54, 2529; c) S. L. Harbeson, R. D. Tung, Annual Reports in Medicinal Chemistry, J. E. Macor; Ed. Elsevier, 2011, Vol. 46. p. 403; d) K. Sanderson, Nature, 2009, 458, 269; e) For example: In 2009, Auspex's deuterated Effexor[®] and CoNCERT's deuterated Paxil[®] demonstrate the potential success of deuterating known drugs.
- 3 A. Katsnelson, Nature Med., 2013, 19, 656.
- 4 V. Jacques, A. W. Czarnik, T. M. Judge, L. H. T. Van der Ploeg and S. H. DeWitt, Proc. *Natl. Acad. Sci. U.S.A.*, 2015, **112**, E1471.
- 5 a) J. Azrodt, V. Derdau, T. Fey and J. Zimmermann, Angew. Chem. Int. Ed. 2007, 46, 7744; b) T. Junk and W. J. Catallo, Chem. Soc. Rev. 1997, 26, 401; selected examples: c) C. M. Yung, M. B. Skaddan and R. G. Bergman, J. Am. Chem. Soc., 2004, 126, 13033; d) R. CorberáN, M. Sanáu and E. Peris, J. Am. Chem. Soc., 2006, 128, 3974; e) S. H. Lee, S. I. Gorelsky and G. I. Nilkonov, Organometallics, 2013, 32, 6599; f) M. H. G. Prechtl, M. Hoelscher, Y. Ben-David, N. Theyssen, R. Loschen, D. Milstein and W. Leitner, Angew. Chem. Int. Ed., 2007, 119, 2319; g) F. Alonso, I. P. Beletskaya and M. Yus, Chem, Rev. 2002, 102, 4009; h) T. Kurita, F. Aoki, T. Mizumoto, T. Maejima, H. Esaki, T. Maegawa, Y. Monguchi and H. Sajiki, Chem. Eur. J., 2008, 14, 3371; j) H. Esaki, R. Ohtaki, T. Maegawa, Y. Monguchi and H. Sajiki, J. Org. Chem., 2007, 72, 2143.
- Recent examples: a) E. Khaskin and D. Milstein, ACS Catal., 2013, 3, 448; b) F. Perez, Y. Ren, T. Boddaert, J. Rodriguez and Y. Coquerel, J. Org. Chem., 2015, 80, 1092; c) S. H. M. Mehr, K. Fukuyama, S. Bishop, F. Lelj and M. J. MacLachlan, J. Org. Chem., 2015, 80, 5144; d) B. Chatterjee and C. Gunanathan, Org. Lett., 2015, 17, 4794; e) T. Yamada, K. Park, Y. Monguchi, Y. Sawama and H. Sajiki RSC Adv. 2015, 5, 92954.
- 7 S. Vanderheiden, B. Bulat, T. Zevaco, N. Jung and S. Bräse, Chem. Commun., 2011, 47, 9063.
- 8 a) M. Rudzki, A. Alcalde-Aragonés, W. I. Dzik, N. Rodríguez and L. J. Gooßen, *Synthesis* 2012, 44, 184; b) R. Grainger, A. Nikmal, J. Cornella and I. Larrosa, *Org. Biomol. Chem.*, 2012, 10, 3172.
- 9 M. Szostak, M. Spain and D. J. Procter, Org. Lett., 2014, 16, 5052.
- 10 S. Ma, G. Villa, P. S. Thuy-Boun, A. Homs and J.-Q, Yu, Angew. Chem. Int. Ed. 2014, 53, 734.
- a) C. W. Cheung and S. L. Buchwald, Org. Lett., 2013, 15, 3966;
 b) K. E. Torraca, X. Huang, C. A. Parrish and S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 10770;
 c) M. Palucki, J. P. Wolfe and S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 3395;
 d) S. Gowrisankar, A. G. Sergeev, P. Anbarasan, A. Spannenberg, H. Neumann and M. Beller, J. Am. Chem. Soc. 2010, 132, 11592;

e) S. Gowrisankar, H. Neumann and M. Beller, *ChemCatChem*, 2011, **3**, 1439; f) J. F. Hartwig, *Angew. Chem. Int. Ed.* 1998, **37**, 2046; g) J. D. Prim, J.-M. Campagne, D. Joseph and B. Andrioletti, *Tetrahedron* 2002, **58**, 2041; h) I. P. Beletskaya and A. V. Cheprakov, *Coord. Chem. Rev.* 2004, 2337; i) R. B. Bedford, C. S. J. Cazin and D. Holder, *Coord. Chem. Rev.* 2004, 2283; j) A. R. Muci and S. L. Buchwald, "*Practical Palladium Catalysts for C—N and C—O Bond Formation*, in *Topics in Current Chemistry*; N. Miyaura, Ed.; Springer-Verlag: Berlin, Germany, 2001; Vol. 219, 131-209. K) S. Enthaler and A. Company, *Chem. Soc. Rev.* 2011, **40**, 4912; l) P. E. Maligres, J. Li, S. W. Krska, J. D. Schreier and I. T. Raheem, *Angew. Chem. Int. Ed.*, 2012, **51**, 9071.

- 12 *tert*-BippyPhos Adamantyl-BippyPhos, BrettPhos-Pd-G3 GTcapsule, ^tBuBrettPhos, RockPhos, ^tBuXPhos, CyPF-^tBu were used as ligands in palladium catalysed C—O cross coupling reactions.
- 13 Selected Examples: a) M. L. Buil, M. A. Esteruelas, S. Niembro, M. Olivan, L. Orzechowski, C. Pelayo and A. Vallribera, Organometallics, 2010, 29, 4375; b) A. A. Peterson, K. A. Thoreson and K. McNeill, Organometallics, 2009, 28, 5982; c) H. Sajiki, A. Kume, K. Hattori and K. Hirota, Tetrahedron Lett., 2002, 43, 7247; d) P. P. Cellier, J. F. Spindler, M. Taillefer and H. J. Cristau, Tetrahedron Lett., 2003, 44, 7191; e) N. Hirasawa, Y. Takahashi, E. Fukuda, O. Sugimoto and K. I. Tanji, Tetrahedron Lett., 2008, 49, 1492; f) K. A. Cannon, M. E. Geuther, C. K. Kelly, S. Lin and A. H. Roy MacArthur, Organometallics, 2011, 30, 4067; g) S. T. Handy, H. Bregman, J. Lewis, X. Zhang and Y. Zhang, Tetrahedron Lett., 2003, 44, 427; h) C. Desmarets, S. Kuhl, R. Schneider and Y. Fort, Organometallics, 2002, 21, 1554; i) M. E. Logan and M. E. Oinen, Organometallics, 2006, 25, 1052; j) J. Moon and S. Lee, J. Organomet. Chem., 2009, 694, 473; k) J. Chen, Y. Zhang, Z. Yang, J. Liu, L. Li, and H.Zhang, H. Tetrahedron 2007, 63, 4266.
- 14 A. Zask and P. Helquist, J. Org. Chem., 1978, 43, 1619.
- 15 a) M. S. Viciu, G. A. Grasa and S. P. Nolan, *Organometallics*, 2001, **20**, 3607; b) O. Navarro, H. Kaur, P. Mahjoor and S. P. Nolan, *J. Org. Chem.* 2004, **69**, 3173; c) O. Navarro, M. Marion, Y. Oonishi, R. A. Kelly III and S. P. Nolan, *J. Org. Chem.* 2006, **71**, 685.
- 16 Z. Ahmadi and J. S. McIndoe, *Chem. Commun.*, 2013, 49, 11488.
- 17 Y. Miura, H. Oka, E. Yamano and M. Morita, J. Org. Chem., 1997, 62, 1188. This method involves large excess of toxic sodium amalgam, inert atmosphere and tedious work-up.
- 18 P. Dash, M. Janni and S. Peruncheralathan, Eur. J. Org. Chem., 2012, 4914.
- 19 Nolan et al found 'PrOH is a better solvent for PEPPSI catalysed dehalogenation of aryl halides. Whereas MeOH gave poor yield of reduced product.
- 20 We performed the reaction under similar basic conditions (KOtBu as base). No trace amount of deuterated product 4g was observed.
- 21 Y. Miura, H. Oka, E. Yamano and M. Morita, *J. Org. Chem.*, 1997, **62**, 1188.
- 22 R. Radtke and A. Heesing, Chem. Ber., 1990, 123, 621.
- 23 M. Tobisu, K. Yamakawa, T. Shimasaki and N. Chatani, *Chem. Commun.*, 2011, **47**, 2946.
- 24 B. Stefane and S. Polanc, Synlett, 2008, 1279.
- 25 J. D. Revell and A. Ganesan, Chem. Comm., 2004, 17, 1916.
- 26 J. A. Murphy, J. Garnier, S. R. Park, F. Schoenebeck, S. Zhou and A. T. Turner, *Org. Lett.*, 2008, **10**, 1227.
- 27 T. Mutsumi, H. Iwata, K. Maruhashi, Y. Monguchi and H. Sajiki, *Tetrahedron*, 2011, 67, 1158.
- 28 A. Albert and G. Catterall, J. Chem. Soc. C., 1967, 1533.
- 29 W. R. Schleigh, J. Heterocyclic Chem., 1972, 9, 675.
- 30 H. J. Cristau, P. P. Cellier, J. F. Spindler and M. Taillefer, *Eur. J. Org. Chem.*, 2004, 695.

ARTICLE

View Article Online DOI: 10.1039/C6OB00193A