View Article Online

Dalton Transactions

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: R. Zhang, K. Huang, H. Wei, D. Wang, G. Ou, N. Hussain, Z. Huang, C. Zhang and H. Wu, *Dalton Trans.*, 2018, DOI: 10.1039/C7DT04355D.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/dalton

Published on 05 January 2018. Downloaded by University of Cambridge on 06/01/2018 12:31:03

nanosheets and their photocatalytic performance

COPAL SOCIETY OF CHEMISTRY

Journal Name

COMMUNICATION

Received 00th January 20xx, Accepted 00th January 20xx

Ruoyu Zhang,^a Kai Huang,^a Hehe Wei,^a Dong Wang,^b Gang Ou,^a Naveed Hussain,^a Ziyun Huang,^a Cheng Zhang^c and Hui Wu^a

Ultra-low-temperature growth of CdS quantum dots on g-C₃N₄

DOI: 10.1039/x0xx00000x

www.rsc.org/

CdS quantum dots deposited on carbon nitride $(g\text{-}C_3N_4)$ nanosheets have been synthesized by ultra-low temperature(-60 $^\circ\text{C}$) liquid phase precipitation reactions. The obtained CdS quantum dots were uniformly distributed on the surface of the g-C_3N_4 nanosheets with average diameter of 5 nm. Correspondingly, the CdS/g-C_3N_4 exhibits highly enhanced photocatalytic performance.

The preparation of high-quality semiconductor nanocrystals, particularly in quantum size (quantum dots, QDs), has become a dominating research field, due to the unique size-dependent properties and well-defined electronic and optical properties.¹⁻³ This has attracted great attention in controlling the crystal structure of semiconductor materials in both growth and nucleation.⁴ Hot injection method and non-injection organic synthesis method are the most common synthesis methods for semiconductor nanocrystal production.⁵ These methods usually require a heating process at specific reaction temperatures for semiconductor nanocrystal growth. The heating process could stimulate reactive precursors to nucleate nanoparticles and result in a coinstantaneous nucleation and growth.⁶

Usually, the QD formations contain the nucleation and growth process. According to the classical nucleation, the necessary Gibbs free energy of activation for nuclei formation (ΔG^*) in a typical solution synthesis can be described as follow: ⁷⁻⁹

$$\Delta G^* = \frac{16\pi \gamma^3 v^2}{3k_B^2 T^2 \left(\ln \frac{C \cdot C_0}{C_0} \right)^2}$$
(1)

Where γ is the increase in the free energy per unit surface area of the nucleus, ν is the molar volume of the nucleus, T is the

temperature, k_B is the Boltzmann constant, C_0 is the saturation concentration of the solution, and C is the actual concentration of the reactants. In addition to the time dependence of the rate of conversion, the rate constant k is temperature dependent, usually assumed to follow an Arrhenius relation of the form:

$$k = Ae^{-Ea/RT}$$
(2)

Where T is the thermodynamic temperature, A is the preexponential function and Ea is supposed to represent the activation energy for the reaction. According to the equations (1) and (2), at the certain concentration of the reactants, the nucleation of the reaction products can be effectively suppressed by reducing the temperature of the reactants.¹⁰⁻¹²

In this work, we focus our attentions toward producing cadmium sulfide (CdS) QD nanocrystals through controlling the reaction temperature. CdS QDs have unique properties and adjustable band gaps, making it widely applied to water pollution treatment and H₂ production.¹³⁻¹⁶ However, shape control of high quality homogeneous and stable semiconductor QDs from traditional solution chemistry is extremely difficult, mainly because of the difficulty in controlling the diffusion, aggregation and nucleation of the product molecule in the liquid phase. ¹⁷⁻²⁰ One of the most efficient routes to solve these problems is to load cadmium sulfide QDs onto graphitic carbon nitride (g-C₃N₄) nanosheets to form stable 0D/2D nanocomposites. $^{21, 22}$ g-C₃N₄ is a metal-free semiconductor, the photocatalyst activity of $g-C_3N_4$ can be greatly enhanced via different methods, such as supporting various materials as co-catalysts, such as carbon or metals, and forming composites with other semiconductors.²³⁻²⁵ Interactions between two moieties can make QDs more dispersive and stable, meanwhile the accelerated charge facilitated can efficiently quench the photoluminescence of QDs, thereby suppressing the recombination of photoexcited charge.^{26, 27}.

Herein, a CdS/g-C₃N₄ nanocomposite photocatalyst was fabricated by an ultra-low temperature liquid phase precipitation reaction. CdS/g-C₃N₄ nanocomposites were employed for visible-light-driven photocatalytic hydrogen evolution and degradation for the organic dye, Rhodamine B. The photostability of obtained photocatalysis was significantly enhanced. A series of characterizations reveals that CdS QDs with average diameter of 5 nm are uniformly scattered on

^a State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.

^b State Key Laboratory of Marine Resource Utilization in South China

Sea, Hainan University, 570 228, PR China

 $^{^{\}rm c}$ School of Materials Science and Engineering ,Shanghai Institute of Technology ,Shanghai 201418,China

E-mail: huiwu@tsinghua.edu.cn

[†] Footnotes relating to the title and/or authors should appear here.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI:

Page 2 of 4 View Article Online DOI: 10.1039/C7DT04355D

Journal Name

COMMUNICATION

Published on 05 January 2018. Downloaded by University of Cambridge on 06/01/2018 12:31:03

 $g-C_3N_4$ nanosheets. The obtained CdS content of 4.5wt% the $g-C_3N_4$ nanocomposites could greatly improve the photocatalytic activity of $g-C_3N_4$ nanosheets for hydrogen generation and degradation for organic dye Rhodamine B.

The synthesis mechanism of CdS/g-C₃N₄ is illustrated in Fig. 1. g-C₃N₄ nanosheets were dispersed into CdCl₂ precursor solutions. In conventional precipitation synthesys methods, Na₂S solution is slowly dropped into the CdCl₂ precursor solutions. CdS nanoparticles loading on g-C₃N₄ is then prepared by the spontaneous nucleation and agglomeration of CdS nanocrystals, the obtained material is room temperature (RT) CdS/g-C₃N₄. In contrast, we slowly dropped the Na₂S solution into CdCl₂ precursors at -60 °C, CdS quantum dots supported on g-C₃N₄ were obtained, and the grown progress of CdS nanocrystals were suppressed at ultra-low-temperature reaction progress.

The morphology of heterojunctions was investigated by transmission electron microscopy analysis. As shown in TEM image (Fig. 2a), it was clearly seen that the CdS QDs with an average size of 5 nm (Fig. S1) were homogeneously dispersed on the lamellar surface of g-C₃N₄. The HRTEM image further revealed that the characteristic interplanar spacing of 0.336 nm matches the (111) lattice planes of hawleyite CdS (Fig. 2b and Fig. 2d). As for the control sample, CdS nanoparticles synthesized at 25° C were randomly accumulated on the surface of the g-C₃N₄ nanosheets (Fig. 2c). Furthermore, CdS nanoparticles showed larger size and a wider size distribution compared with CdS QDs (Fig. 2d). Most of the CdS nanoparticles had diameters from 20 to 50 nm (Fig. S2). The amount of CdS QDs loading on g-C₃N₄ nanosheets was 4.5% as measured by inductively coupled plasma ion emission spectroscopy (ICP/IES). Clearly, the mentioned results strongly attested that the CdS QDs had been homogeneously modified on the $g-C_3N_4$ surface to compose CdS/g-C₃N₄ via the ultra-low temperature precipitation approach.

The phase structure and composition of the samples were further revealed by XRD, UV-vis spectra, and XPS, respectively. The XRD patterns of the CdS/g-C₃N₄, RT CdS/g-C₃N₄ and pure g-C₃N₄ were shown in Fig. 3a. Two obvious diffraction peaks were displayed at 27.4° and 13.1° corresponding to pure g-C₃N₄, belonging to the typical graphitic interlayer (002) peak and the in-plane structural packing motif (110). ^{;/} The pure CdS displays three distinct diffraction peaks at 26.7°, 44.1°and 52.2°respectively corresponding to (111), (220), and (311) crystal planes of CdS (JCPDS No. 75-0581). The XRD pattern of CdS/g-C₃N₄ and RT CdS/g-C₃N₄ nanocomposites

Fig. 1. The schematic outline for the CdS nanoparticles deposited on

g-C₃N₄ nanosheets.

Fig. 2. (a) TEM and (b) HRTEM images of CdS/g-C₃N₄. (c) TEM and (d) HRTEM images of RT CdS/g-C₃N₄.

show diffraction peaks of both CdS and g-C₃N₄, while the characteristic peaks of CdS (26.7°) and g-C₃N₄ (27.4°) were very close and overlap with each other. The peak width of the CdS/g-C₃N₄ at 44.1° and 52.2°, were smaller than that of RT CdS/g-C₃N₄, which indicated the crystalline size of CdS prepared at ultralow temperature is smaller than that prepared at 25°C.

The optical properties of CdS/g-C₃N₄, RT CdS/g-C₃N₄, pure g-C₃N₄, and CdS were further characterized by ultraviolet visible absorption spectroscopy (UV-vis). The adhering of CdS to the g-C₃N₄ lead to an improvement in the whole investigated wavelength range (Fig. S3 and Fig. 3b). As shown in Figure S3 and Figure 3b, the pure CdS exhibited an absorption edge at 521 nm with band gap of 2.38 eV, the pure g-C₃N₄ exhibits an absorption edge at 444 nm with band gap of 2.79eV. The samples of CdS/g-C₃N₄ and RT CdS/g-C₃N₄ have absorption edges at 455 nm and 471 nm, which corresponded to the band gaps of 2.72 eV and 2.63 eV. Thus, the CdS/g-C₃N₄ and CdS, which contribute to efficiently produce photogenerated electrons-holes.

The CdS/g-C₃N₄ samples were further investigated by XPS. The XPS peaks of Cd 3d and S 2p (Fig. S4) indicated the formation of CdS. The energies of the main peaks of Cd 3d_{5/2} and 3d_{3/2} are found at 404.8 eV and 411.5 eV, respectively, which are consistent with those of Cd 3d in CdS. ²⁸ The minor peak of S 2p at 161.6 eV and 162.8 eV is closed to that of CdS, which is most possible from the elemental sulfur, which was adsorbed on surface of g-C₃N₄. ²⁹

Page 3 of 4

Published on 05 January 2018. Downloaded by University of Cambridge on 06/01/2018 12:31:03

Fig. 3. (a) XRD pattern of g-C₃N₄, CdS/g-C₃N₄ and RT CdS/g-C₃N₄. The dark cyan line is the standard pattern of the CdS (JCPDS No. 75-0581). (b) $(ahu)^2$ versus hu curve of CdS, g-C₃N₄, CdS/g-C₃N₄ and RT CdS/g-C₃N₄. The dashed lines are tangents of the curves. The intersection value is the band gap.

The recombination of the photo-generated electrons and holes were investigated by photoluminescence (PL) spectra with an excitation of 325 nm. The spectra of different samples had similar shape emission peaks (Fig. S5). The pure $g-C_3N_4$ sample exhibited an intense emission peak at 455 nm, at the same time, the intensity of this emission band dropped significantly for the composite samples with CdS, which indicates a valid transfer of electron-hole pairs from $g-C_3N_4$ to CdS.³⁰

Photocatalytic H₂ evolution activity of the synthesized CdS/g-C₃N₄ nanocomposites was measured under visible light irradiation, and 0.5wt% Pt was added as co-catalyst to cut dowm the overpotential of H₂ evolution. As shown in Fig. 4a and Fig. S6, the CdS QDs grown at ultralow temperature on g-C₃N₄ nanosheets noticeably improved the photocatalytic H_2 evolution activity compared to pure g-C₃N₄. More specifically, the $CdS/g-C_3N_4$ nanocomposites exhibited a H_2 evolution rate of 4.967 mmol $h^{-1}g^{-1}$, which was more than 59 times higher than pure $g-C_3N_4$ (0.083 mmol $h^{-1}g^{-1}$). Compared with the CdS (0.997 mmol $h^{-1}g^{-1}$) and RT CdS/g-C₃N₄ (1.72 mmol $h^{-1}g^{-1}$), CdS/g-C₃N₄ nanocomposites displayed excellent photocatalytic for hydrogen evolution. The stability test results of CdS/g-C₃N₄ were shown in Fig. 4b, no distinct decrease of H₂ evolution was observed after a five-run test of photocatalytic H₂ evolution. The XPS (Fig.S8) and XRD (Fig.S9) of CdS/g-C₂N₄ after the H₂ evolution stability test were measured. No obvious changes in materials properties were exhibited.

The photocatalytic activities of samples were also measured by RhB photodegradation under visible light ($\lambda > 420$ nm). From Fig. 4c and Fig. S7, the CdS/g-C₃N₄ nanocomposites showed much higher photodegradation efficiency (Dp =89.5%) than pure g-C₃N₄ (Dp =12.7%), CdS (Dp =40.6%) and RT CdS/g-C₃N₄ (Dp =50.2%). This demonstrates that the recombination of CdS QDs and g-C₃N₄ can tremendously improve the photodegradation efficiency. The cycling test of photocatalytic degradation of RhB with CdS/g-C₃N₄ nanocomposite was repeated five times (Figure 4d), displaying that it possesses great stability and repeatability. The XPS (Fig.S10) and XRD (Fig.S11) of CdS/g-C₃N₄ after the RhB degradation stability test were measured. No obvious changes in materials properties were exhibited.

According to the mentioned experimental results, we confirm that the improvement of photocatalytic activity for CdS/g-C₃N₄ nanocomposites are attributed to efficient interfacial transfer and separation of photogenerated carriers between the g-C₃N₄

Fig. 4. (a) Comparison of the visible light-driven photocatalytic evolution H_2 activity of CdS/g-C₃N₄, RT CdS/g-C₃N₄, g-C₃N₄ and CdS. (b) Cycling tests of visible-light-driven photocatalytic evolution H_2 activity of CdS/g-C₃N₄. (c) Comparison of the visible-light-driven photocatalytic degradation RhB activity of CdS/g-C₃N₄, RT CdS/g-C₃N₄, g-C₃N₄ and CdS. (d) Cycling tests of visible-light-driven photocatalytic degradation RhB activity of CdS/g-C₃N₄. (e) The transient photocurrent responses of CdS/g-C₃N₄, RT CdS/g-C₃N₄, g-C₃N₄ and CdS under visible-light irradiation. (f) Electrochemical impedance spectroscopy (EIS) of CdS/g-C₃N₄, RT CdS/g-C₃N₄, g-C₃N₄ and CdS under visible-light irradiation.

usually applied to research the excitation and transfer of photogenerated charge carriers. Fig. 4e showed the transient photocurrent response of CdS/g-C₃N₄, RT CdS/g-C₃N₄, g-C₃N₄ and CdS. From the Fig. 4e, we can expressly figure out that the photocurrent response of g-C₃N₄ is lower than other samples. The photocurrent response of CdS/g-C₃N₄ was significantly higher than of the RT CdS/g-C₃N₄ and CdS. The generation of the photocurrent is mainly the result of photoinduced electrons diffusing to the ITO. ³¹ The transient photocurrent responses showed that the separation efficiency of the photogenerated electrons and holes in the CdS/g-C₃N₄ was markedly improved as a result of the synergistic effect between CdS and g-C₃N₄. The increasing of the photocurrent has linear relationship with photocatalytic activity. Electrochemical impedance spectroscopy (EIS) was also performed to characterize charge carrier transportation. Fig.4f displayed that the impedance

DOI: 10.1039/C7DT04355D

Journal Name

radius of the CdS/g-C₃N₄ was smaller than that of RT CdS/g-C₃N₄, g-C₃N₄ and CdS. which indicates the higher efficiency of photoinduced electron-hole pairs through an interfacial interaction between g-C₃N₄ and the CdS quantum dots³²⁻³⁴.

Fig. S12 showed the schematic illustration of the $CdS/g-C_3N_4$ photocatalytic mechanism. Because of suitable match overlapping band structures and similarly contacted interfaces, photoexcited electrons in the CB of g-C₃N₄ can immediately move to the CB of CdS. In the same time, photoexcited holes in the VB of CdS spontaneously move to the VB of g-C₃N₄. The mechanism of hydrogen evolution over the composite material was presented in Fig. S12a. As a consequence, L-ascrobic acid (H₂A) adhering on the $g-C_3N_4$ surface can be oxidized by photoinduced holes. On the surface of Pt nanoparticles, the separated electrons will have enough time to induce H^+ to H_2 . Fig S12b showed the process of degradation of RhB. The adsorbed dissolved oxygen could generate •O²⁻ free radicals, due to the photogenerated electrons transferred to the surface of composite. Meanwhile, active •OH radicals were produced by H₂O splitting. When h^{\dagger} moved from the VB of the g- C_3N_4 and CdS, both h^+ and •OH free radicals can transform from RhB into products.

Conclusions

Published on 05 January 2018. Downloaded by University of Cambridge on 06/01/2018 12:31:03

In summary, a facile ultra-low-temperature reaction approach was developed to synthesize CdS quantum dots supported on g-C₃N₄ nanosheets. The resulting CdS/g-C₃N₄ nanocomposites exhibited high photocatalytic performance for H₂ production and degradation of RhB. The synthesized nanocomposites with 4.5wt% CdS quantum dots displayed a H₂ evolution rate of 4.967 mmol h⁻¹g⁻¹, which was 59 times higher than pure g-C₃N₄ and could retain over 90% activity after 4 cycles. Meanwhile, CdS/g-C₃N₄ nanocomposites displayed a degradation rate of 89.5% for RhB solution in 75 min and could retain over 95% activity after 5 cycles. This study may inspire the development an approach for the synthesis of CdS quantum dots and their potential for photocatalystic applications.

Conflicts of interest

There are no conflicts to declare

Notes and references

- 1 S. J. Lim, M. U. Zahid, P. Le, L. Ma, D. Entenberg, A. S. Harney, J. Condeelis and A. M. Smith, Nat. Commun. 2015, 6.
- 2 N. S. Lewis, Science, 2016, 351.
- 3 I. L. Medintz, M. H. Stewart, S. A. Trammell, K. Susumu, J. B. Delehanty, B. C. Mei, J. S. Melinger, J. B. Blanco-Canosa, P. E. Dawson and H. Mattoussi, Nat. Mater. 2010, 9, 676-684.
- 4 Y. Gao and X. Peng, J. Am. Chem. Soc, 2014, 136, 6724-6732.
- 5 M. Yuan, M. Liu and E. H. Sargent, Nat. Energy 2016, 1.
- 6 Z. A. Peng and X. G. Peng, J. Am. Chem. Soc. 2002, 124, 3343-3353.
- 7 K. D. Gilroy, J. Puibasset, M. Vara and Y. Xia, Angew. Chem., Int. Ed, 2017, 56, 8647-8651.
- 8 T. Zhu, B. Zhang, J. Zhang, J. Lu, H. Fan, N. Rowell, J. A. Ripmeester, S. Han and K. Yu, Chem. Rev, 2017, 29, 5727-5735.
- 9 N. T. K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev, 2014, 114, 7610-7630.
- 10 Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Chem., Int. Ed, 2009, 48, 60-103.

- 11 Y. Xia, K. D. Gilroy, H. Peng and X. Xia, Chem., Int. Ed, 2017, 56, 60-95.
- 12 J. Lee, J. Yang, S. G. Kwon, T. Hyeon, Nat. Rev. Mater. 2016, 1.
- 13 J. Chu, X. Li and J. Qi, CrystEngComm, 2012, 14, 1881-1884.
- 14 F. Xiao, J. Miao and B. Liu, J. Am. Chem. Soc, 2014, 136, 1559-1569.
- 15 H. Lin, Y. Li, H. Li and X. Wang, Nano Res. , 2017, 10, 1377-1392.
- 16 G. Yu, L. Geng, S. Wu, W. Yan and G. Liu, Nat. Commun. 2015, 51, 10676-10679.
- 17 H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. Abild-Pedersen, F. B. Prinz, J. K. Norskov and Y. Cui, Science, 2016, 354, 1031-1036.
- 18 J. M. Woods, Y. Jung, Y. Xie, W. Liu, Y. Liu, H. Wang and J. J. Cha, ACS Nano, 2016, 10, 2004-2009.
- 19 S. F. Tan, G. Lin, M. Bosman, U. Mirsaidov and C. A. Nijhuis, ACS Nano, 2016, 10, 7689-7695.
- 20 R. Viswanatha, D. M. Battaglia, M. E. Curtis, T. D. Mishima, M. B. Johnson and X. Peng, Nano Res. 2008, 1, 138-144.
- 21 Y. Xu, Z. Fu, S. Cao, Y. Chen and W. Fu, Catal.L Sci. Technol., 2017, 7, 587-595.
- 22 X. Wang, J. Cheng, H. Yu and J. Yu, Dalton Trans., 2017, 46, 6417-6424.
- 23 J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. Lee, J. Zhong and Z. Kang, Science, 2015, 347, 970-974.
- 24 W. Ong, L. Tan, Y. H. Ng, S. Yong and S. Chai, Chem. Rev., 2016, 116, 7159-7329.
- 25 S. Cao, Y. Yuan, J. Fang, M. M. Shahjamali, F. Y. C. Boey, J. Barber, S. C. J. Loo and C. Xue, Int. J. Hydrogen Energy, 2013, 38, 1258-1266.
- 26 Y. Pan, T. Zhou, J. Han, J. Hong, Y. Wang, W. Zhang and R. Xu, Catal. Sci. Technol., 2016, 6, 2206-2213.
- 27 I. Nikitskiy, S. Goossens, D. Kufer, T. Lasanta, G. Navickaite, F. H. L. Koppens and G. Konstantatos, Nat. Commun., 2016, 7.
- 28 X. Chen, X. Huang, L. Kong, Z. Guo, X. Fu, M. Li and J. Liu, J. Mater. Chem., 2010, 20, 352-359.
- 29 G. Liu, P. Niu, C. Sun, S. C. Smith, Z. Chen, G. Q. M. Lu and H. Cheng, J. Am. Chem. Soc, 2010, 132, 11642-11648.
- 30 Q. Fan, Y. Huang, C. Zhang, J. Liu, L. Piao, Y. Yu, S. Zuo and B. Li, Catal. Today 2016, 264, 250-256.
- 31 S. Weng, B. Chen, L. Xie, Z. Zheng and P. Liu, J. Mater. Chem. A, 2013, 1, 3068-3075.
- 32 Y. Cui , G. Zhang, Z. Lin, X. Wang, Appl. Catal., B, 2016, 181, 413-419.
- 33 Y. Wang, H. Wang, F. Chen, F. Cao, X. Zhao, S. Meng, Y. Cui, Appl. Catal., B, 2017 206, 417-425.

4 | J. Name., 2012, **00**, 1-3