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Abstract: Electrochemical carboxylation of lactone enol triflates in
DMF containing a catalytic amount of NiBr2�bpy with a platinum
cathode and a magnesium anode under an atmospheric pressure of
CO2 gave the corresponding cyclic �-alkoxyl-�,�-unsaturated car-
boxylic acids, captodative cycloalkenes, in good yields.
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Scheme 1

Electrochemical fixation of carbon dioxide is a useful and
attractive method for efficient synthesis of various car-
boxylic acids. We previously reported that electrochemi-
cal carboxylation of allylic halides,1 propargylic
bromides,2 1,4-dibromo-2-bromomethylbut-2-ene,3 vinyl
bromides,4 and phenyl-substituted alkenes5 proceeded ef-
ficiently to give the corresponding carboxylic acids in
high yields when a magnesium metal was used as a reac-
tive-metal anode.6 We also reported chemoselective and
divergent electrochemical carboxylation of vinyl triflates
to give aliphatic �-keto carboxylic acids or phenyl-substi-
tuted �,�-unsaturated carboxylic acids.7 As an extension
of our studies on electrochemical fixation of carbon diox-
ide to organic molecules, we recently found that a nickel-
catalyzed electrochemical carboxylation of lactone enol
triflates gave cyclic �-alkoxyl-�,�-unsaturated carboxylic
acids, captodative cycloalkenes, in good yields.

Although esters of dihydropyrancarboxylic acids 3 (n = 1)
could be prepared by a hetero Diels–Alder reaction,8–10

the synthesis of seven-membered analogs of 3 (n = 2) is
not possible using this method. It has also been reported
that an intramolecular Wadsworth–Emmons reaction of
�-(�-oxoalkoxyl)phosphonoacetates gave esters of car-
boxylic acids 3 in moderate yields.11 In this method, how-
ever, troublesome preparation of starting substrates is
required. It has also been reported that 3,4-dihydro-2H-

pyran-6-carboxylic acid (3: n = 1) was obtained by hy-
drolysis of 3,4-dihydro-2H-pyran-6-carbonitrile, which
was prepared from 3,4-dihydro-2H-pyran by dibromina-
tion and cyanation followed by dehydrobromination.9 In
this case, preparation of starting cyclic vinyl ethers carry-
ing various substituents, especially seven-membered
ones, was not easy. On the other hand, lactone enol tri-
flates are readily prepared from the corresponding lac-
tones.12–15 The present synthesis of carboxylic acids 3
using electrochemical carboxylation could be achieved
from these readily available lactones in only two steps.
There have been no reports on electrochemical carboxyla-
tion of lactone enol triflates giving cyclic �-alkoxyl-�,�-
unsaturated carboxylic acids 3, although direct7 and palla-
dium-catalyzed16 electrochemical carboxylations of vinyl
triflates have been reported. In this communication, we re-
port a convenient method for synthesizing cyclic �-alkox-
yl-�,�-unsaturated carboxylic acids 3 by nickel-catalyzed
electrochemical carboxylation of lactone enol triflates 2.

Lactone enol triflates 2 were prepared from the corre-
sponding lactones by a modification of the previously re-
ported procedure.12,17 Reaction of appropriate lactones
with LDA in THF at –78 °C followed by the addition of
2-bis(trifluoromethanesulfonyl)aminopyridine17 gave the
corresponding lactone enol triflates 2 in moderate to good
yields (Scheme 1). As the first attempt, direct electro-
chemical carboxylation of lactone enol triflate 2a was car-
ried out according to our previously reported
electrochemical method.7 However, a complex mixture of
carboxylic acids was only obtained in a very low yield,
and the starting triflate 2a was recovered in about 60%
yield. Thus, we next attempted electrochemical carboxy-
lation of lactone enol triflates 2a in the presence of
NiBr2�bpy, which has been shown to be effective for elec-
trochemical carboxylation of alkyl-substituted vinyl bro-
mides.4b Electrochemical carboxylation of 2a in the
presence of 20 mol% of NiBr2�bpy gave an expected cy-
clic �-alkoxyl-�,�-unsatureted carboxylic acid 3a in 65%
yield (Scheme 2).
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The results of the present electrochemical carboxylation
of lactone enol triflates 2 are summarized in the Table.
Similar electrochemical carboxylation of seven-mem-
bered enol triflates 2c–e also gave the corresponding car-
boxylic acids 3c–e in 71–79% yields (entries 3–5). This
method was also applicable to the synthesis of bicyclic
products. Thus, triflate 2f, readily prepared from 3,4-dihy-
drocoumarine, was subjected to this electrochemical car-
boxylation to give the corresponding 4H-chromene-2-
carboxylic acid (3f) in 71% yield (entry 6). In all cases, a
small amount of diene, which was derived from the
nickel-catalyzed dimerization of triflates 2, was detected
by 1H NMR.

A typical procedure for the nickel-catalyzed electrochem-
ical carboxylation is as follows. Lactone enol triflate 2a
(700 mg, 3.0 mmol), which was readily prepared from �-
valerolactone in 79% yield, in 15 mL of DMF containing
0.1 M Bu4NBF4 was electrolyzed in the presence of 20
mol% of NiBr2�bpy at 5 °C at a constant current (current
density: 10 mA/cm2) under an atmospheric pressure of
carbon dioxide. A one-compartment cell equipped with a
platinum plate cathode (2 � 3 cm2) and a magnesium rod
anode (3 mm�) was used for electrolysis. The electricity
passed was 3 F/mol. After electrolysis, the electrolyzed
solution was acidified with 1 N HCl and extracted with di-
ethyl ether. The ethereal solution was washed successive-
ly with H2O and saturated NaHCO3. The aqueous solution
was again acidified carefully with 6 N HCl, and the result-
ing carboxylic acid was extracted with diethyl ether. The
combined ethereal solutions were washed with saturated
brine and dried over MgSO4. Evaporation of the solvent
gave an almost pure 3,4-dihydro-2H-pyran-6-carboxylic
acid (3a) (250 mg, 65%).

Cyclic voltammetry of lactone enol triflate 2a and
NiBr2�bpy was carried out. No reduction peak of 2a was
observed at > –3.1 V vs Ag/Ag+ and a reduction peak of
NiBr2�bpy appeared at –1.25 V vs Ag/Ag+.4b On the other
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Table Nickel-catalyzed Electrochemical Carboxylation of Lactone 
Enol Triflates 2a

Entry Triflate Product and Yieldb

1

2a 3a 65%

2

2b 3b 63%

3

2c 3c 74%

4

2d 3d 79%

5

2e 3e 71%

6

2f 3f 71%

a Lactone enol triflate 2 (3 mmol) in DMF containing 0.1 M Bu4NBF4 
was electrolyzed in the presence of 20 mol% of NiBr2�bpy at 5 °C with 
a constant current (10mA/cm2) under CO2. A one-compartment cell 
equipped with a platinum plate cathode (2 � 3 cm2) and a magnesium 
rod anode (3 mm�) was used. The electricity passed was 3 F/mol.
b Isolated yields.
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hand, cyclic voltammetry of 2a in the presence of
NiBr2�bpy showed the existence of a new reduction peak
at –1.75 V vs Ag/Ag+ and showed that the reduction cur-
rent of this peak increased when the amount of NiBr2�bpy
increased. From these results we propose the following re-
action pathways, as shown in Scheme 3. At a cathode, a
two-electron reduction of NiBr2�bpy occurs to give
Ni(0)�bpy. Oxidative addition of an Ni(0) catalyst to vinyl
triflates 2 gives nickel(II) complex A. A two-electron re-
duction of complex A at a cathode generates a vinyl anion
B, which reacts with CO2 to give the corresponding car-
boxylate ions C. On the other hand, at an anode, dissolu-
tion of magnesium metal occurs to give magnesium ions.
The magnesium ions readily capture carboxylate ions C to
form stable magnesium carboxylates D or E, which upon
acid treatment gives carboxylic acid 3.
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