View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: G. Kovuru, A. Saini, S. N. Chandrudu, C. R. Devarapalli, H. Yadav and B. Kumar, *Org. Biomol. Chem.*, 2017, DOI: 10.1039/C7OB00122C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/obc

Copper-Catalyzed Aerobic Oxidative Coupling of *o*-Phenylenediamines with 2-Aryl/Heteroarylethylamines: Direct Access to Construct Quinoxalines

Kovuru Gopalaiah,^{*,†} Anupama Saini,[†] Sankala Naga Chandrudu,[†] Devarapalli Chenna Rao,[†] Harsh Yadav,[‡] Binay Kumar[‡]

[†] Organic Synthesis and Catalysis Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India

[‡] Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 110007, India

ABSTRACT

A copper-catalyzed oxidative coupling reaction of *o*-phenylenediamines with 2aryl/heteroarylethylamines using molecular oxygen as an oxidant has been developed. This novel approach provides a practical and direct access to construct quinoxalines in excellent yields at room temperature. The reaction has broad substrate scope and exhibits excellent functional-group tolerance. This method could be easily scaled up and applied to the synthesis of biologically active molecules bearing quinoxaline structural scaffold.

Dedicated to Professor Sosale Chandrasekhar on the occasion of his 65th birthday

Corresponding Author: Dr. Kovuru Gopalaiah

Email: gopal@chemistry.du.ac.in

Drganic & Biomolecular Chemistry Accepted Manuscript

Introduction

In recent years, oxidative cross-coupling reactions received great attention for their exemplary potential in carbon-carbon and carbon-heteroatom bond formation.¹ Conventionally, organometallic compounds can be used as one of the reaction partners in these transformations, but recent findings revealed that amines, alcohols, and hydrocarbons can directly be used as well.² Comparing with organometallic compounds, amines are ideal reactants to construct nitrogen-heterocycles in view of atom economy and green chemical synthesis. Until now, selection of amines and exploiting them in different oxidative C-H/N-H coupling remains a challenge.

Quinoxaline, which is one of the well-known and important classes of nitrogen heterocyclic compounds, exhibits extensive biological and pharmaceutical properties (Figure 1).³ This scaffold is also an active core unit of several antibiotics,⁴ pesticides,⁵ herbicides,⁶ fungicides,⁷ and advanced functional materials.⁸ In consequent to these important applications, a large number of synthetic methods have been developed to construct quinoxalines.⁹⁻¹⁴Among these methods, condensation of α -diketones with 1,2-diamines,⁹ oxidative trapping of α -hydroxy ketones or vicinal diols with 1,2-diamines,^{10,11} oxidative cyclisation of phenacyl bromides with 1,2-diamines,¹² and reaction of alkynes or ketones with 1,2-diamines *via* an oxidation process,¹³ have widely been used. In addition, oxidative cyclization of *o*-phenylenediamines was studied to obtain quinoxalines through the metal/enzyme-catalyzed or photochemical dimerization process.¹⁵ Despite these significant approaches toward the synthesis of quinoxalines, the development of mild, efficient and environmentally friendly methods are still desired because: 1) Precursors should be readily available or easily prepared and handled; 2)

Instead of stoichiometric oxidants such as peroxides and toxic metal compounds, environmentally friendly molecular oxygen or air is desirable as an ideal oxidant; 3) More attention should be given to minimize the environmentally hazardous by-products.

Recently, a few elegant examples of copper-catalyzed oxidative C-N bond formations to construct quinoxalines have been disclosed. Yu and co-workers reported a copper-catalyzed tandem oxidative azidation/cyclization of enamine esters with TMSN₃ (Scheme 1A, a).¹⁶ Lin, Zeng and co-workers described a copper-catalyzed cycloamination of α -Csp³-H bond of *N*-phenyl ketimines with sodium azide (Scheme 1A, b).¹⁷ However, these methods suffer from certain drawbacks, such as the need of large amount of nitrogen sources, usage of non-renewable oxidants/additives, narrow substrate scope, and lower yields. The groups of Chen¹⁸ and Hwang¹⁹ independently reported the synthesis of quinoxalines by copper-catalyzed C-N coupling between 0phenylenediamines and terminal alkynes using large quantity of organic and/or inorganic bases under thermal (Scheme 1B, a) and blue-LED light irradiation (Scheme 1B, b) conditions, respectively.

AG-1296 Protein tyrosine kinase inhibitor

Br

NSC-339004 Antitumor agent

CH₃ ĊO₂H

UK-14304-18 Antihypertensive and Antiglaucoma agent

XK469 Anticancer agent

Figure 1. Representative Examples of Bioactive Quinoxaline Compounds.

In the perspective of sustainable chemistry, oxidative $C(sp^3)$ -H bond functionalization is one of the most appealing and powerful strategies in organic synthesis.²⁰ For these transformations, air or molecular oxygen could be ideal oxidants. Remarkably, activation of dioxygen by copper enzymes has been explored in some biological oxygenase systems, namely dopamine β -monooxygenase and monooxygenase tyrosinase that effect hydroxylation of unactivated C-H bonds.²¹ Recently, copper catalyzed reactions that implicate dioxygen activation and use rather simple models to twig biomimetic syntheses have been given much attention.^{22,23} Herein, we report an efficient synthesis of 2-aryl/heteroarylquinoxalines using readily available *o*phenylenediamines and 2-aryl/heteroarylethylamines (Scheme 1C). This transformation proceeds through Cu-catalyzed direct aerobic oxidative C-H/N-H coupling of C(sp³)-H bonds at room temperature. Compared to the conventional methods, this procedure is distinguished by using clean O_2 as an oxidant, avoiding the use of harmful peroxides and hypervalent iodine reagents.^{16,17,24} This method provides a totally convenient and environmentally friendly direct access to construct a variety of functionalized quinoxalines under mild conditions.

Previous work:

A) Copper-catalyzed azidation/cyclization of enamine esters, and N-phenyl ketimines

B) Copper-catalyzed cyclization of o-phenylenediamines and terminal alkynes

This work:

C) Cu(I)-Catalyzed aerobic oxidative coupling of o-phenylenediamines and 2-aryl/heteroarylethylamines

Scheme 1. Copper-catalyzed C-N bond formation for synthesis of quinoxalines

Organic & Biomolecular Chemistry Accepted Manuscript

Results and discussion

Our study commenced with the reaction of o-phenylenediamine (1a) and 2phenylethylamine (2a) catalyzed by copper salts (Table 1). Under the atmosphere of air, the 2-phenylquinoxaline (3a) was obtained in 73% isolated yield upon treatment of 1:1.2 mixture of **1a** and **2a** with 20 mol % CuBr in chlorobenzene at room temperature for 12 h (Table 1, entry 1). Other Cu salts, regardless of their oxidation state (either I or II), also showed catalytic activity, but they were found to be less effective (see, Table 1, entries 2-6 and Supporting Information). The reaction failed to give any desired product in the absence of copper catalyst (Table 1, entry 7). We then examined the effect of different solvents, and it was observed that the reactions proceeded with low yields in toluene, DMSO, and other solvents (Table 1, entries 8 and 9; also see the Supporting Information). Furthermore, various ligands were tested, but the results were unsatisfactory (see the Supporting Information). On increasing the reaction temperature from 25 °C to 50 °C or higher, the yields of desired product were not improved considerably (Table 1, entries 10 and 11). However, when we performed the reaction under the atmosphere of molecular oxygen at room temperature, to our delight, the yield of **3a** was remarkably improved to 92% (Table 1, entry 12). The yield remains the same when catalyst loading was decreased from 20 mol % to 10 mol % (Table 1, entry 13). However, a further decrease of catalyst loading resulted in relatively low yield of **3a** (Table 1, entry 14). When the reaction was conducted under argon, no desired product was observed (Table 1, entry 15). Finally, the reaction conditions described in entry 13 were chosen as the standard conditions for further exploration.

	NH ₂ +	Ph NH ₂	Cu Catalyst		N Ph
1a		2a		3a	
Entry	Catalyst	Solvent		Time (h)	Yield (%) ^b
1	CuBr	chlorobenzene		12	73
2	CuCl	chlorobenzene		12	62
3	Cu ₂ O	chlorobenzene		12	40
4	CuBr ₂	chloro	benzene	12	51
5	CuCl ₂	chloro	benzene	12	43
6	Cu(OAc) ₂	chlorobenzene		12	35
7	none	chlorobenzene		12	0
8	CuBr	toluene		12	60
9	CuBr	DMSO		12	trace
10 ^c	CuBr	chlorobenzene		12	73
11 ^d	CuBr	chlorobenzene		12	75
12 ^e	CuBr	chlorobenzene		6	92
13 ^{e,f}	CuBr	chlorobenzene		6	92
14 ^{e,g}	CuBr	chlorobenzene		12	79
15 ^h	CuBr	chlorobenzene		24	0

Table 1. Optimization of Reaction Conditions^a

^a Reaction conditions: **1a** (1.0 mmol), **2a** (1.2 mmol), catalyst (20 mol %), solvent (2 mL), air atmosphere, room temperature, 12 h. ^b Yields of the isolated product. ^c The reaction was carried out at 50 °C. ^d The reaction was carried out at 90 °C. ^e The reaction was performed under molecular oxygen (O₂ balloon). ^f Using 10 mol % of CuBr. ^g Using 5 mol % of CuBr. ^h The reaction was performed under argon atmosphere.

With the optimized experimental conditions in hand, we then investigated the generality of the synthetic approach. First, 2-arylethylamines with various substituents on the phenyl ring were subjected to the reaction with **1a** (Table 2, entries 1-11). Both electron-donating and electron-withdrawing substituents on the phenyl ring of 2arylethylamines were well tolerated, affording the desired quinoxaline products in excellent yields. Most of the electron-withdrawing substituents have led to higher yields than electron-donating groups (**2b-2d** vs. **2f-2j**). However, a lower yield was observed for the reaction of 2-(4-nitrophenyl)ethylamine (2e) (Table 2, entry 5). Apparently, substitution at the *ortho* and *meta* positions were not detrimental to the reaction yield (Table 2, entries, 2, 7, and 8). Furthermore, the bulky substituent viz., 2-(1naphthyl)ethylamine ($2\mathbf{k}$) afforded the desired product in 85 % yield (Table 2, entry 11). In addition to the arylethylamines, a variety of 2-heteroarylethylamines could react well with **1a** to give the corresponding quinoxaline compounds in high yields (Table 2, entries 12 to 14). It is worth mentioning that the products of this transformation, namely 2-(4bromophenyl)quinoxaline (3c) and 2-(4-hydroxyphenyl)quinoxaline (3j) (Table 2, entries 3 and 10) are used as key precursors for the synthesis of biologically active compounds as well as organic electroluminescent devices.²⁵

Table 2: Copper-catalyzed aerobic oxidative cross-coupling of 1a with a range of 2-aryl/heteroarylethylamines 2.^a

NH ₂ +		Ar(Het)	CuBr (10 mol %)	N Ar(Het)	
		NH ₂	hlorobenzene		
1a		2	_,		3
Entry	2	Ar(Het)	Time (h)	3	Yield (%) ^b
1	2a	C ₆ H ₅	6	3a	92
2	2b	2-CIC ₆ H ₄	7	3b	93
3	2c	4-BrC ₆ H ₄	5	3c	97
4	2d	$4-CF_3C_6H_4$	7	3d	95
5	2e	$4-NO_2C_6H_4$	10	3e	83
6	2f	4-OMeC ₆ H ₄	8	3f	88
7	2g	3-OMeC ₆ H ₄	8	3g	89
8	2h	2-OMeC ₆ H ₄	10	3h	85
9	2 i	3,4-(OMe) ₂ C ₆ H ₃	8	3i	86
10	2j	4-OHC ₆ H ₄	9	3ј	81
11	2k	1-naphthyl	10	3k	85
12	21	2-pyridyl	16	31	83
13	2m	3-indolyl	13	3m	85
14	2n	2-thienyl	14	3n	78

^a Reaction conditions: **1a** (1.0 mmol), **2** (1.2 mmol), CuBr (10 mol %), chlorobenzene (2 mL), room temperature, O₂ balloon. ^b Isolated yield.

Organic & Biomolecular Chemistry Accepted Manuscript

To further explore the scope of this approach, several 4-substituted and 4,5disubstituted *o*-phenylenediamines **1** were employed to react with 2-phenylethylamine (**2a**) under the optimized conditions (Table 3). In fact, symmetrical diamines gave the corresponding products as sole compounds in high yields (Table 3, entries 1-4), whereas unsymmetrical diamines resulted in a mixture of two possible regioisomers (Table 3, entries 5-9). All these regioisomers were easily separated by column chromatography, and characterized by single crystal X-ray diffraction and/or spectroscopic methods. In addition to the 4-substituted and 4,5-disubstituted *o*-phenylenediamines, heteroaryl diamine was also examined for this transformation. For instance, 2,3-diaminopyridine (**1k**) could react well with **2a** to give the corresponding regioisomers (Table 3, entry 10). A series of functional groups such as methoxy, methyl, chloro, nitro, and benzoyl substituents on the aryl ring of diamine were well tolerated under the optimized reaction conditions.

Drganic & Biomolecular Chemistry Accepted Manuscript

		+ (Ph NH ₂ 2a	$\frac{\text{CuBr (10 mol \%)}}{\text{chlorobenzene}} \qquad R + \\ O_2, \text{ rt}$	N Ph N 4	
Entry	Substrate (1)	Time (h)	4 , Yield (%) ^b		Ratio ^c
1	MeO MeO 1b	5	MeO MeO 4b , 9	N Ph 0	
2	Me NH ₂ Me NH ₂ 1c	6	Me Me N Ph 4c , 87		
3	NH ₂ NH ₂ 1d	8	4d , 86		
4	CI NH ₂ CI NH ₂ 1e	10	CI N CI N 4e, 81		
5	CI NH ₂ NH ₂ 1f	8	CI N Ph 4f, 39	ClN Ph N 4f', 44	1:1.3
6	O ₂ N NH ₂ 1g	14	O ₂ N N 4g , 35	0 ₂ N N Ph N 4g', 37	1:1
7	Ph NH ₂ NH ₂ 1h	11	Ph N Ph 4h, 37	Ph N 4h', 42	1:1.1
8	Me NH ₂ NH ₂ 1i	7	Me N Ph 4i , 45	Me N Ph N 4i', 39	1.2:1
9	MeO NH ₂ NH ₂	6	MeO N 4j, 53	MeO N 4j', 34	1.6:1
10	NH ₂ NH ₂ NH ₂	16	N Ph N N 4k, 33	N N 4k', 32	1:1

 Table 3: Copper-catalyzed aerobic oxidative cross-coupling of a range of o-phenylenediamines 1

 with 2a^a

^a Reaction conditions: **1** (1 mmol), **2a** (1.2 mmol), CuBr (10 mol %), chlorobenzene (2 mL), room temperature, O₂ balloon. ^b Isolated yield.^c Determined by 1H NMR.

It is worth noting that the reaction could be effectively scaled up with excellent efficiency under the optimized conditions. Notably, the oxidative cross-coupling between 2-(4-bromophenyl)ethylamine (2c) and o-phenylenediamine (1a) is operationally simple and amenable to gram-scale synthesis with 94% yield (Scheme 2). Moreover, due to the high selectivity and efficiency, this aerobic copper-catalyzed oxidative coupling strategy offers promising synthetic routes for the construction of a library of medicinal compounds having quinoxaline scaffold. For 2-(4structural instance, hydroxyphenyl)quinoxaline (3j) acts as butyrylcholinesterase inhibitor.²⁶ Furthermore, 6,7-dimethoxy-2-phenylquinoxaline (4b) and 6,7-dimethyl-2-phenylquinoxaline (4c) are selective inhibitors of the platelet derived growth factor (PDGF) receptor kinase and the PDGF dependent DNA synthesis in Swiss 3T3 cells,²⁷ and 2-phenylbenzo[g]quinoxaline (4d) used for treatment of platelet derived growth factor-related disorders such as cancers²⁸.

Scheme 2. Gram-Scale Reaction of the Synthesis of 2-Phenylquinoxaline

To understand the possible reaction mechanism, the following control experiments were performed under standard conditions as shown in Scheme 3. We found that phenylacetaldehyde (5) was formed in 26% yield along with the quinoxaline **3a** when the reaction of 2-phenylethylamine (**2a**) and *o*-phenylenediamine (**1a**) was performed under standard conditions for 3h. Moreover, the 2-phenylethylamine (**2a**) with the present catalytic system produced the corresponding aldehyde **5** in 93% yield. Gratifyingly, the desired product **3a** was obtained smoothly in 93% yield by the reaction of phenylacetaldehyde (**5**) and *o*-phenylenediamine (**1a**) under the standard conditions. In addition, the condensation reaction between phenylglyoxal (**6**) and diamine **1a** was carried out to obtain the quinoxaline compound **3a** in 96% yield.

Organic & Biomolecular Chemistry Accepted Manuscript

On the basis of the above experiments and relevant reports in the literature,²⁹a plausible mechanism is proposed for the formation of quinoxalines (Scheme 4). The first step may involve the aerobic oxidation of 2-phenylethylamine (**2a**) leading to 2-phenylethylimine (**7**) by the use of CuBr/O₂ catalytic system. The Imine **7** may hydrolyze to generate the phenylacetaldehyde (**5**), which on further condensation with *o*-phenylenediamine (**1a**) form cross-imine **8**. Concomitantly, the 2-phenylethylimine (**7**) may undergo direct transimination with **1a** to produce cross-imine **8**. In the presence of copper catalyst and oxygen, the imine **8** may generate the keto-imine **11** via benzyl radical intermediate **9** and hydroperoxide **10**. Jiao et al., recently reported the formation of **11** from imine **8** using Et₃N/O₂ catalytic system.^{29a} Moreover, copper-catalyzed benzylic oxidation of C(sp³)-H bonds to keto-group under aerobic conditions is well documented.³⁰ Finally, intramolecular condensation of **11** may takes place to produce the quinoxaline **3a**.

Scheme 4. A Plausible mechanism for the formation of quinoxaline

Conclusions

In summary, we have demonstrated an efficient copper-catalyzed oxidative coupling reaction of *o*-phenylenediamines with 2-aryl/heteroarylethylamines at room temperature under molecular oxygen atmosphere, which provides facile access to functionalized quinoxalines in excellent yields. This method is practical and straightforward as it can be easily scaled up by using readily available starting materials. Further studies are currently under investigation to explore the reaction mechanism and the scope of its synthetic applications.

Experimental

General Information

All commercially obtained materials were used directly without further purification unless otherwise noted. Chlorobenzene was dried over P_2O_5 and distilled before use. Reactions were carried out in oven-dried round-bottom flask. Melting points were determined on a Büchi melting point apparatus and were uncorrected. NMR spectra were recorded on a 400 MHz spectrometer (¹H at 400 MHz, ¹³C at 100 MHz). Chemical shifts are reported in ppm, relative to the internal standard of tetramethylsilane (TMS). Proton coupling patterns are described as singlet (s), doublet (d), doublet of doublet (dd), triplet (t), multiplet (m). High-resolution mass spectra (HRMS) were obtained using an electrospray quadrupole time-of-flight (ESI-Q-TOF) mass spectrometer.

Typical experimental procedure for the copper-catalyzed synthesis of quinoxalines (3 and 4)

o-Phenylenediamine **1** (1.0 mmol), 2-aryl/heteroarylethylamine **2** (1.2 mmol), CuBr (10 mol %), and dry chlorobenzene (2.0 mL) were charged into an oven-dried round-bottom flask. The flask was equipped with oxygen balloon and stirred at room temperature, until complete consumption of *o*-phenylenediamine as monitored by TLC. After the completion of reaction, it was diluted with CH_2Cl_2 and adsorbed on silica gel. The products were purified by silica gel (100-200 mesh) column chromatography by using hexane/EtOAc as mobile phase.

Products Characterization

2-Phenylquinoxaline (**3a**)³¹: White solid; yield: 92%; mp: 68-69 °C (Lit. mp: 70 °C); ¹**H NMR** (400 MHz, CDCl₃): δ 9.34 (s, 1H), 8.21-8.12 (m, 4H), 7.81-7.73 (m, 2H), 7.59-7.51 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.8, 143.3, 142.2, 141.5, 136.7, 130.2, 130.1, 129.6, 129.5, 129.1, 129.0, 127.5; **HRMS**: m/z [M+ H]⁺ calcd for C₁₄H₁₀N₂: 207.0917; found: 207.0918.

2-(2-Chlorophenyl)quinoxaline $(3b)^{32}$: Light yellow solid; yield: 93%; mp: 135-136 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.22 (s, 1H), 8.19-8.17 (m, 2H), 7.84-7.81 (m, 2H), 7.75-7.73 (m, 1H), 7.58-7.55 (m, 1H), 7.48-7.46 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 152.4, 146.1, 142.2, 141.3, 136.5, 132.6, 131.9, 130.8, 130.3, 130.2, 130.1, 129.6, 129.2, 127.5; HRMS: m/z [M + H]⁺ calcd for C₁₄H₉ClN₂: 241.0527; found: 241.0522.

2-(4-Bromophenyl)quinoxaline (**3c**)³¹: Pale yellow solid; yield: 97%; mp: 135-136 °C (Lit. mp: 134-137 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.29 (s, 1H), 8.15-8.10 (m, 2H), 8.08 (d, *J* = 8.4 Hz, 2H), 7.81-7.74 (m, 2H), 7.69 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 150.6, 142.7, 142.1, 141.6, 135.5, 132.3, 130.5, 129.8, 129.5, 129.1, 128.9, 124.9; **HRMS**: m/z [M + H]⁺ calcd for C₁₄H₉BrN₂: 285.0022; found: 285.0025.

2-(4-(Trifluoromethyl)phenyl)quinoxaline (3d)³³: Light brown solid; yield: 95%; mp: 140-141°C (Lit. mp: 142 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.35 (s, 1H), 8.33 (d, *J* = 7.6 Hz, 2H), 8.19-8.14 (m, 2H), 7.84-7.78 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 142.9, 142.2, 141.9, 140.0, 130.6, 130.2, 129.7, 129.2, 127.8, 126.1, 126.0; HRMS: m/z [M + H]⁺ calcd for C₁₅H₉F₃N₂: 275.0791; found: 275.0799.

2-(4-Nitrophenyl)quinoxaline (**3e**)³⁴: Light brown crystals; yield: 83%; mp: 190-191.6 °C (Lit. mp: 190-192 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.39 (s, 1H), 8.43-8.38 (m, 4H), 8.20-8.16 (m, 2H), 7.86-7.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 149.2, 148.7, 142.6, 142.4, 142.2, 142.0, 130.9, 130.7, 129.8, 129.2, 128.3, 124.2; HRMS: m/z [M + H]⁺ calcd for C₁₄H₉N₃O₂: 252.0768; found: 252.0784.

2-(4-Methoxyphenyl)quinoxaline $(3f)^{31}$: Pale yellow solid; yield: 88%; mp: 97-99 ^oC (Lit. mp: 97-98 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.29 (s, 1H), 8.18 (d, J = 9.2 Hz, 2H), 8.11 (t, J = 9.2 Hz, 2H), 7.78-7.69 (m, 2H), 7.08 (d, J = 9.2 Hz, 2H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.4, 151.4, 143.0, 142.2, 141.1, 130.1, 129.3, 129.2, 129.0, 128.9, 114.5, 55.4; HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₂N₂O: 237.1022; found: 237.1029.

2-(3-Methoxyphenyl)quinoxaline $(3g)^{35}$: Pale yellow solid; yield: 89%; mp: 88-90 °C (Lit. mp: 87-88 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1H), 8.18-8.12 (m, 2H), 7.82-7.74 (m, 4H), 7.51-7.47 (m, 1H), 7.08 (dd, J = 7.6, 1.2 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.2, 151.6, 143.4, 142.2, 141.6, 138.1, 130.2, 130.1, 129.6, 129.5, 129.1, 119.8, 116.2, 112.6, 55.4 ; HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₂N₂O: 237.1022; found: 237.1019.

2-(2-Methoxyphenyl)quinoxaline (**3h**)³⁶: Yellow solid; yield: 85%; mp: 110-112 °C (Lit. mp: 109-110 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.34 (s, 1H), 8.18-8.11 (m, 2H), 7.91-7.88 (m, 1H), 7.79-7.74 (m, 2H), 7.51-7.47 (m, 1H), 7.18-7.14 (m, 1H), 7.07 (d, *J* = 8.4 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 157.3, 152.2, 147.2, 142.6, 140.9, 131.6, 131.4, 129.8, 129.5, 129.4, 128.9, 126.4, 121.5, 111.3, 55.6; HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₂N₂O: 237.1022; found: 237.1029.

2-(3,4-Dimethoxyphenyl)quinoxaline (3i)³⁴: Brown solid; yield: 86%; mp: 116-118 °C (Lit. mp: 113-115 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1H), 8.17-8.10 (m,

2H), 7.88-7.87 (m, 1H), 7.80-7.73 (m, 3H), 7.04 (d, J = 8.0 Hz, 1H), 4.06 (s, 3H), 3.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.3, 151.1, 149.7, 143.0, 142.2, 141.2, 130.2, 129.5, 129.3, 129.1, 129.0, 120.4, 111.1, 110.1, 56.0; HRMS: m/z [M + H]⁺ calcd for C₁₆H₁₄N₂O₂: 267.1128; found: 267.1132.

2-(4-Hydroxyphenyl)quinoxaline (**3j**)³¹: Orange solid; yield: 81%; mp: 206-207 ^oC (Lit. mp: 208-209 ^oC); ¹H NMR (400 MHz, DMSO-d6): δ 9.89 (s, 1H, OH), 9.16 (s, 1H), 7.89 (d, *J* = 8.4 Hz, 2H), 7.75 (d, *J* = 8.4Hz, 2H), 7.55-7.45 (m, 2H), 6.66 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d6): δ 159.9, 151.1, 143.4, 141.6, 140.6, 130.5, 129.2, 128.9, 128.8, 126.9, 116.1; HRMS: m/z [M + H]⁺ calcd for C₁₄H₁₀N₂O: 223.0866; found: 223.0868.

2-(Naphthalen-1-yl)quinoxaline $(3k)^{31}$: Light brown solid; yield: 85%; mp: 135-136 °C (Lit. mp: 136 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.17 (s, 1H), 8.25-8.20 (m, 2H), 8.17 (d, J = 7.6 Hz, 1H), 8.03-7.97 (m, 2H), 7.86-7.83 (m, 2H), 7.78 (d, J = 6.8 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.59-7.54 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 154.2, 146.6, 142.2, 141.3, 135.1, 133.9, 131.1, 130.4, 130.1, 129.9, 129.6, 129.2, 128.6, 128.5, 127.2, 126.3, 125.4, 125.0; HRMS: m/z [M + H]⁺ calcd for C₁₈H₁₂N₂: 257.1073; found: 257.1083.

2-(Pyridin-2-yl)quinoxaline (**3l**)³³: Pale yellow solid; yield: 83%; mp: 117-118 °C (Lit. mp: 116 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.97 (s, 1H), 8.80 (s, 1H), 8.61 (d, *J* = 8.0 Hz, 1H), 8.19-8.16 (m, 2H), 7.93-7.89 (m, 1H), 7.82-7.76 (m, 2H), 7.44-7.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 154.4, 150.0, 149.3, 144.1, 142.6, 141.8, 137.3, 130.2, 130.1, 129.7, 129.3, 124.7, 122.1; HRMS: m/z [M + H]⁺ calcd for C₁₃H₉N₃: 208.0876; found: 208.0869.

Organic & Biomolecular Chemistry Accepted Manuscript

2-(1H-Indol-3-yl)quinoxaline $(3m)^{31}$: Pale yellow solid; yield: 85%; mp: 206-207 °C (Lit. mp: 206-208 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.23 (s, 1H), 8.94 (br s, 1H, NH), 8.79 (d, *J* = 8.4 Hz, 1H), 8.15 (d, *J* = 8.4 Hz, 1H), 8.06 (d, *J* = 9.2 Hz, 1H), 7.94 (d, *J* = 2.8 Hz, 1H), 7.77-7.73 (m, 1H), 7.68-7.64 (m, 1H), 7.45-7.43 (m, 1H), 7.38-7.30 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 143.8, 142.6, 140.2, 136.8, 129.9, 129.0, 128.9, 128.2, 125.7, 125.6, 123.5, 122.3, 121.8, 115.0, 111.5; HRMS: m/z [M + H]⁺ calcd for C₁₆H₁₁N₃: 246.1011; found: 246.1030.

2-(Thiophen-2-yl)quinoxaline $(3n)^{31}$: Pale yellow solid; yield: 78%; mp: 118-119 ^oC (Lit. mp: 116-117 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.18 (s, 1H), 8.04-8.01 (m, 2H), 7.81 (d, J = 3.6 Hz, 1H), 7.72-7.63 (m, 2H), 7.50 (d, J = 6.0 Hz, 1H), 7.16-7.14 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 147.4, 142.1, 141.9, 141.0, 130.5, 129.9, 129.3, 129.1, 128.9, 128.5, 127.1; HRMS: m/z [M + H]⁺ calcd for C₁₂H₈N₂S: 213.0481; found: 213.0485.

6,7-Dimethoxy-2-phenylquinoxaline (**4b**)³⁷: White solid; yield: 90%; mp: 130-132 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.13 (s, 1H), 8.15 (d, *J* = 9.2 Hz, 1H), 7.70-7.69 (m, 1H), 7.59-7.46 (m, 1H), 7.43-7.39 (m, 1H), 7.36-7.32 (m, 1H), 7.27-7.24 (m, 2H), 4.10 (s, 3H), 4.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.9, 152.6, 149.8, 140.7, 138.9, 131.4, 128.8, 128.7, 128.5, 127.1, 126.8, 126.6, 106.9, 106.5, 56.2; HRMS: m/z [M + H]⁺ calcd for C₁₆H₁₄N₂O₂: 267.1128; found: 267.1132.

6,7-Dimethyl-2-phenylquinoxaline (**4c**)³¹: Pale yellow solid; yield: 87%; mp: 130-132 °C (Lit. mp: 130-131 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.21 (s, 1H), 8.15 (d, *J* = 8.4 Hz, 2H), 7.85 (s, 1H), 7.83 (s, 1H), 7.56-7.46 (m, 3H), 2.49 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 150.9, 142.3, 141.1, 140.7, 140.5, 140.0, 137.0, 129.8, 128.9, 128.6, 128.0, 127.3, 20.3, 20.2; **HRMS**: m/z [M + H]⁺ calcd for C₁₆H₁₄N₂: 235.1230; found: 235.1238.

2-Phenylbenzo[g]quinoxaline (**4d**)³⁸: Orange solid; yield: 86%; mp: 145-149 °C (Lit. mp: 162 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.41 (s, 1H), 8.75-8.69 (m, 2H), 8.29-8.27 (m, 2H), 8.14-8.12 (m, 1H), 8.01-7.99 (m, 1H), 7.63-7.54 (m, 4H) 7.47-7.45 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 151.7, 144.5, 138.7, 138.1, 136.7, 134.1, 133.6, 130.4, 129.2, 128.7, 128.5, 128.4, 127.9, 127.6, 127.5, 126.9, 126.7; HRMS: m/z [M + H]⁺ calcd for C₁₈H₁₂N₂: 257.1073; found: 257.1072.

6,7-Dichloro-2-phenylquinoxaline (**4e**)³¹: Pale yellow solid; yield: 81%; mp: 156-158 °C (Lit. mp: 155-157 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1H), 8.28 (s, 1H), 8.24 (s, 1H), 8.20-8.18 (m, 2H), 7.61-7.56 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.6, 144.2, 141.1, 140.2, 135.9, 134.9, 133.9, 130.7, 130.1, 129.7, 129.2, 127.5; HRMS: m/z [M + H]⁺ calcd for C₁₄H₈Cl₂N₂: 275.0137; found: 275.0138.

6-Chloro-2-phenylquinoxaline (4f)³⁹: Less polar regioisomer; Yellow solid; yield: 39%; mp: 143-145 °C ; ¹H NMR (400 MHz, CDCl₃): δ 9.34 (s, 1H), 8.19 (d, J =7.6 Hz, 2H), 8.12-8.09 (m, 2H), 7.73 (dd, J = 9.2, 2.4 Hz, 1H), 7.60-7.53 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.9, 144.1, 141.7, 140.8, 136.3, 135.2, 131.3, 130.8, 130.4, 129.2, 128.0, 127.5; HRMS: m/z [M + H]⁺ calcd for C₁₄H₉ClN₂: 241.0523; found: 241.0523.

7-Chloro-2-phenylquinoxaline $(4f')^{39}$: More polar regioisomer; Pale yellow solid; yield: 44%; mp: 118-119 °C ; ¹H NMR (400 MHz, CDCl₃): δ 9.32 (s, 1H), 8.21-8.17 (m, 3H), 8.08 (d, J = 9.2 Hz, 1H), 7.72-7.68 (m, 1H), 7.61-7.55 (m, 3H); ¹³C NMR

(100 MHz, CDCl₃): δ 152.4, 143.3, 142.6, 140.0, 136.2, 136.0, 130.5, 130.4, 130.3, 129.2, 128.4, 127.5; **HRMS**: m/z [M + H]⁺ calcd for C₁₄H₉ClN₂: 241.0507; found: 241.0507.

6-Nitro-2-phenylquinoxaline (4g)³⁹: Less polar regioisomer; Pale yellow solid; yield: 35%; mp: 207-210 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.50 (s, 1H), 9.03 (m, 1H), 8.56 (dd, J = 9.2, 2.0 Hz, 1H), 8.30-8.26 (m, 3H), 7.65-7.61 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.9, 147.1, 145.5, 144.9, 140.3, 135.6, 131.4, 131.2, 129.4, 127.9, 125.6, 123.8; HRMS: m/z [M + H]⁺ calcd for C₁₄H₉N₃O₂: 252.0768; found: 252.0782.

7-Nitro-2-phenylquinoxaline $(4g')^{39}$: More polar regioisomer; Pale yellow solid; yield: 37%; mp: 175-177.2 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.49 (s, 1H), 9.07-9.06 (m, 1H), 8.51 (dd, J = 8.8, 2.8 Hz, 1H), 8.29-8.24 (m, 3H), 7.63-7.56 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 153.7, 148.2, 146.1, 143.8, 141.3, 135.5, 131.2, 130.8, 129.4, 127.7, 125.9, 122.8; HRMS: m/z [M + H]⁺ calcd for C₁₄H₉N₃O₂: 252.0768; found: 252.0757.

Phenyl(2-phenyl-6-quinoxalinyl)methanone (4h)⁴⁰: Less polar regioisomer; Pale yellow solid; yield: 37%; mp: 142-143 °C (Lit. mp: 144-145 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.42 (s, 1H), 8.50 (s, 1H), 8.27-8.25 (m, 4H), 7.91 (d, J = 7.6 Hz, 2H), 7.68-7.53 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 195.6, 153.3, 144.4, 144.1, 140.6, 137.8, 137.0, 136.2, 132.9, 132.3, 130.8, 130.2, 130.1, 130.0, 129.3, 128.5, 127.7; HRMS: m/z [M + H]⁺ calcd for C₂₁H₁₄N₂O: 311.1179; found: 311.1177.

Phenyl(3-phenyl-6-quinoxalinyl)methanone (4h')⁴¹: More polar regioisomer; Pale yellow solid; yield: 42%; mp: 134-136 °C (Lit. mp: 132-133 °C); ¹H NMR (400 MHz, CDCl₃): δ 9.35 (s, 1H), 8.43 (s, 1H), 8.20-8.12 (m, 4H), 7.83 (d, J = 7.6 Hz, 2H), 7.60-7.43 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 195.6, 153.3, 144.4, 144.1, 140.6, 137.8, 137.0,

136.2, 132.9, 132.3, 130.8, 130.2, 130.1, 130.0, 129.3, 128.5, 127.7; **HRMS**: m/z [M + H]⁺ calcd for C₂₁H₁₄N₂O: 311.1179; found: 311.1186.

6-Methyl-2-phenylquinoxaline (4i)³⁹: More polar regioisomer; Reddish brown solid; yield: 45%; mp: 138-140 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.28 (s, 1H), 8.17 (d, J = 7.6 Hz, 2H), 8.05-7.99 (m, 1H), 7.93-7.89 (m, 1H), 7.62-7.51 (m, 4H), 2.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 151.10, 143.2, 141.6, 140.8, 140.1, 136.9, 132.6, 131.8, 130.0, 129.9, 129.1, 127.9, 127.5, 127.4, 21.8; HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₂N₂: 221.1073; found: 221.1075.

7-Methyl-2-phenylquinoxaline (**4i'**)³⁹: Less polar regioisomer; Brown solid; yield: 39%; mp: 92-95 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.24 (s, 1H), 8.18-8.16 (m, 2H), 8.04-7.98 (m, 1H), 7.92-7.87 (m, 1H), 7.61-7.49 (m, 4H), 2.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.9, 143.1, 142.3, 141.5, 140.7, 140.0, 136.8, 132.5, 131.8, 129.9, 129.0, 128.5, 127.9, 127.3, 21.8; HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₂N₂: 221.1073; found: 221.1072.

6-Methoxy-2-phenylquinoxaline (4j)³⁹: More polar regioisomer; Yellow solid; yield: 53%; mp: 115-117 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.25 (s, 1H), 8.15 (d, J =7.2 Hz, 2H), 8.04 (d, J = 9.2 Hz, 1H), 7.58-7.49 (m, 3H), 7.46-7.41 (m, 2H), 3.99 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 160.7, 149.7, 142.6, 138.6, 136.8, 130.6, 129.8, 129.1, 127.2, 123.8, 106.2, 55.8; HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₂N₂O: 237.1022; found: 237.0993.

7-Methoxy-2-phenylquinoxaline $(4j')^{39}$: Less polar regioisomer; Yellow solid; yield: 34%; mp: 82-84 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.17 (s, 1H), 8.17 (dd, J = 8.4, 1.2 Hz, 2H), 8.00 (d, J = 9.2 Hz, 1H), 7.59-7.52 (m, 3H), 7.47-7.46 (m, 1H), 7.41 (dd, J =

9.2, 2.4 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 161.1, 151.9, 143.8, 140.5, 137.6, 136.8, 130.1, 129.9, 129.1, 127.5, 123.0, 106.7, 55.8; HRMS: m/z [M + H]⁺ calcd for C₁₅H₁₂N₂O: 237.1022; found: 237.1028.

2-Phenylpyrido[2,3-b]pyrazine $(4k)^{42}$: Less polar regioisomer; Brown solid; yield: 32%; mp: 125-128 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.48 (s, 1H), 9.21 (s, 1H), 8.51 (d, J = 8.4 Hz, 1H), 8.36 (d, J = 7.6 Hz, 2H), 7.75-7.72 (m, 1H), 7.62-7.55 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 154.7, 154.4, 150.7, 144.5, 138.4, 136.8, 135.6, 131.1, 129.2, 128.1, 124.8; HRMS: m/z [M + H]⁺ calcd for C₁₃H₉N₃: 208.0869; found: 28.0874.

3-Phenylpyrido[2,3-b]pyrazine (4k')⁴²: More polar regioisomer; Brown solid; yield: 33%; mp: 90-92.3 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.47 (s, 1H), 9.07 (s, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 8.14 (d, *J* = 8.4 Hz, 2H), 7.69-7.66 (m, 1H), 7.53-7.46 (m, 2H), 7.18-7.13 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 153.4, 153.0, 150.2, 146.4, 138.8, 137.6, 135.8, 130.8, 129.3, 127.7, 125.7; HRMS: m/z [M + H]⁺ calcd for C₁₃H₉N₃: 208.0869; found: 208.0868.

2-Phenylacetaldehyde (5)⁴³: Colourless liquid; yield: 26%; ¹H NMR (400 MHz, CDCl₃): δ 9.75-9.7 (m, 1H), 7.41-7.21 (m, 5 H), 3.69 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 199.4, 131.7, 130.1, 129.5, 128.9, 127.9, 127.3, 50.4; HRMS: m/z [M + H]⁺ calcd for C₈H₈O: 121.0648; found: 121.0646.

Acknowledgments

The authors sincerely thank the University of Delhi for R&D grant support to carry out this work. A.S, S.N.C and H.Y thanks the UGC/CSIR for research fellowships. We are grateful to Prof. Pavan Mathur for his valuable suggestions on the reaction mechanism.

Organic & Biomolecular Chemistry Accepted Manuscript

References

- 1 (a) C. Liu, H. Zhang, W. Shi, A. Lei, *Chem. Rev.*, 2011, **111**, 1780; (b) W. Shi, C. Liu,
 A. Lei, *Chem. Soc. Rev.*, 2011, **40**, 2761; (c) C.-L. Sun, B.-J. Li, Z.-J. Shi, *Chem. Commun.*, 2010, **46**, 677.
- 2 (a) C. Liu, J. Yuan, M. Gao, S. Tang, W. Li, R. Shi, A. Lei, *Chem. Rev.*, 2015, 115, 12138; (b) C. S. Yeung, V. M. Dong, *Chem. Rev.*, 2011, 111, 1215; (c) S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, *Chem. Soc. Rev.*, 2011, 40, 5068; (d) T. W. Lyons, M. S. Sanford, *Chem. Rev.*, 2010, 110, 1147; (e) C.-J. Li, *Acc. Chem. Res.*, 2009, 42, 335; (f) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, *Angew. Chem., Int. Ed.*, 2009, 48, 5094; (g) R. Giri, B.-F. Shi, K. M. Engle, N. Maugel, J.-Q. Yu, *Chem. Soc. Rev.*, 2009, 38, 3242.
- 3 (a) V. A. Mamedov, Ed. Quinoxalines: Synthesis, Reactions, Mechanisms and Structure, 1st ed,; Springer: Switzerland, 2016; (b) J. A. Pereira, A. M. Pessoa, M. N. D. S. Cordeiro, R. Fernandes, C. Prudêncio, J. P. Noronha, M. Vieira, Eur. J. Med. Chem., 2015, 97, 664; (c) C. Betschart, S. Hintermann, D. Behnke, S. Cotesta, M. Fendt, C. E. Gee, L. H. Jacobson, G. Laue, S. Ofner, V. Chaudhari, S. Badiger, C. Pandit, J. Wagner, D. Hoyer, J. Med. Chem., 2013, 56, 7590; (d) A. K. Parhi, Y. Zhang, K. W. Saionz, P. Pradhan, M. Kaul, K. Trivedi, D. S. Pilch, E. J. LaVoie, Bioorg. Med. Chem. Lett., 2013, 23, 4968.
- 4 (a) A. Dell, D. H. William, H. R. Morris, G. A. Smith, J. Feeney, G. C. K. Roberts, J. Am. Chem. Soc., 1975, 97, 2497; (b) S. A. Raw, C. D. Wilfred, R. J. K. Taylor, Chem. Commun., 2003, 2286; (c) K. Watanabe, K. Hotta, A. P. Praseuth, K. Koketsu, A.

Migita, C. N. Boddy, C. C. Wang, H. Oguri, H. Oikawa, *Nat. Chem. Biol.*, 2006, **8**, 423.

- 5 (a) M. Zhang, Z.-C. Dai, S.-S. Qian, J.-Y. Liu, Y. Xiao, A.-M. Lu, H.-L. Zhu, J.-X. Wang, Y.-H. Ye, J. Agric. Food Chem., 2014, 62, 9637; (b) V. Rangaswamy, B. R. Reddy, K. Venkateswarlu, Agricuture, Ecosystem and Environment., 1994, 47, 319.
- 6 (a) H. Cerecetto, E. Dias, R. D. Maio, M. G. lez, S. Pacc, P. Saenz, G. Seoane, J. Agric. *Food Chem.*, 2000, 48, 2995; (b) P. Bergkvist, S. Ledin, *Biomass and bioenergy*, 1997, 12, 25; (c) K. Makino and H. Yoshioka, J. Fluorine Chem., 1987, 37, 119.
- 7 J. J. Krajewski, P. J. Kotz, J. T. Traxler, S. S. Ristich and C. W. Huffman, J. Agric. Food Chem., 1971, 19, 298.
- 8 (a) S. Dailey, J. W. Feast, R. J. Peace, I. C. Sage, S. Till, E. L. Wood, J. Mater. Chem., 2001, 11, 2238; (b) K. R. J. Thomas, M. Velusamy, J. T. Lin, C.-H. Chuen, Y.-T. Tao, Chem. Mater., 2005, 17, 1860; (c) S. Achelle, C. Baudequin, N. Ple, Dyes Pigm., 2013, 98, 575.
- 9 (a) C. Srinivas, C. N. S. S. P. Kumar, V. J. Rao and S. Palaniappan, *J. Mol. Catal. A: Chem.*, 2007, 265, 227; (b) S. V. More, M. N. V. Sastry and C.-F. Yao, *Green Chem.*, 2006, 8, 91; (c) R. S. Bhosale, S. R. Sarda, S. S. Ardhapure, W. N. Jadhav, S. R. Bhusare and R. P. Pawar, *Tetrahedron Lett.*, 2005, 46, 7183.
- 10 (a) A. Kamal, K. S. Babu, S. M. A. Hussaini, R. Mahesh, A. Alarifi, *Tetrahedron Lett.*, 2015, 56, 2803; (b) V. Jeena and V. Robinson, *Tetrahedron Lett.*, 2014, 55, 642; (c) F. Pan, T.-M. Chen, J.-J. Cao, J.-P. Zou, W. Zhang, *Tetrahedron Lett.*, 2012, 53, 2508.

- 11 (a) T. Hille, T. Irrgang and R. Kempe, *Chem. -Eur. J.*, 2014, 20, 5569; (b) C. S. Cho and S. G. Oh, *Tetrahedron Lett.*, 2006, 47, 5633; (c) S. G. Kim, K. H. Park, Y. K. Chung, *Chem. Commun.*, 2005, 1321.
- 12 (a) K. Kumar, S. R. Mudshinge, S. R. Goyal, M. Gangar, V. A. Nair, *Tetrahedron Lett.*, 2015, 56, 1266; (b) M. Jeganathan, M. Dhakshinamoorthy, K. Pitchumani, *Tetrahedron Lett.*, 2014, 55, 1616; (c) P. Ghosh, A. Mandal, *Green Chem. Lett. Rev.*, 2013, 6, 45.
- 13 (*a*) K. K. D. R. Viswanadham, M. P. Reddy, P. Sathyanarayana, O. Ravi, R. Kant, S. R. Bathula, *Chem. Commun.*, 2014, **50**, 13517; (*b*) S. Shi, T. Wang, W. Yang, M. Rudolph and A. S. K. Hashmi, *Chem. -Eur. J.*, 2013, **19**, 6576; (*c*) S. Okumura, Y. Takeda, K. Kiyokawa and S. Minakata, *Chem. Commun.*, 2013, **49**, 9266; (*d*) C.-Y. Chen, W.-P. Hu, M.-C. Liu, P.-C. Yan, J.-J. Wang and M.-I. Chung, *Tetrahedron*, 2013, **69**, 9735.
- 14 D. Aparicio, O. A. Attanasi, P. Filippone, R. Ignacio, S. Lillini, F. Mantellini, F. Palacios, J. M. de Santos, J. Org. Chem., 2006, 71, 5897.
- 15 (a) N. P. Loveless, K. C. Brown, R. H. Horrocks, J. Org. Chem., 1981, 46, 1182; (b)
 P. Griess, J. Prakt. Chem., 1971, 3, 143; (c) O. Fischer, E. Hepp, Chem. Ber., 1809,
 23, 2789; (d) E. Knoevnagel, J. Prakt. Chem., 1914, 89, 25; (e) H. Gallati, H.
 Brodbeck, J. Clin. Chem. Clin. Biochem., 1982, 20, 221; (f) K. Ghasemi, A. R.
 Rezvani, A. Shokrollahi, I. A. Razak, M. Refahi, A. Moghimi, M. M. Rosli, J. Mol.
 Struct., 2015, 1096, 102; (g) P. J. Tarcha, V. P. Chu, D. Whittern, Anal. Brioche., 1987, 165, 230.
- 16 H. Ma, D. Li, W. Yu, Org. Lett., 2016, 18, 868.
- 17 T. Chen, X. Chen, J. Wei, D. Lin, Y. Xie, W. Zeng, Org. Lett., 2016, 18, 2078.

- 18 W. Wang, Y. Shen, X. Meng, M. Zhao, M. Chen, B. Chen, Org. Lett., 2011, 13, 4514.
- 19 A. Sagadevan, A. Ragupathi, K. C. Hwang, *Photochem. Photobiol. Sci.*, 2013, 12, 2110.
- 20 For some reviews on C-H bond activation in the last two years, see: (a) X.-X. Guo, D.-W. Gu, Z. Wu, W. Zhang, Chem. Rev., 2015, 115, 1622; (b) L. Yang, H. Huang, Chem. Rev., 2015, 115, 3468; (c) C. Cheng, J. F. Hartwig, Chem. Rev., 2015, 115, 8946; (d) Z. Huang, H. N. Lim, F. Mo, M. C. Young, G. Dong, Chem. Soc. Rev., 2015, 44, 7764; (e) T. Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev., 2016, 45, 2900; (f) Q.-Z. Zheng, N. Jiao, Chem. Soc. Rev., 2016, 45, 4590; (g) X. Zhu, S. Chiba, Chem. Soc. Rev., 2016, 45, 4504.
- 21 For reviews, see: (a) E. I. Solomon, P. Chen, M. Metz, S.-K. Lee, A. E. Palmer, *Angew. Chem.*, 2001, **113**, 4702; *Angew. Chem., Int. Ed.*, 2001, **40**, 4570; (b) E. I. Solomon, U. M. Sundaram, T. E. Machonkin, *Chem. Rev.*, 1996, **96**, 2563.
- 22 For reviews on copper-dioxygen catalytic systems: (a) E. A. Lewis, W. B. Tolman, Chem. Rev., 2004, 104, 1047; (b) L. M. Mirica, X. Ottenwaelder, T. D. P. Stack, Chem. Rev., 2004, 104, 1013; (c) S. T. Prigge, B. A. Eipper, R. E. Mains, L. M. Amzel, Science, 2004, 304, 864; (d) W. Nam, Acc. Chem. Res., 2007, 40, 465.
- 23 For some copper-catalyzed reactions involving dioxygen activation in recent years, see: (a) J. Kim, S. S. Stahl, J. Org. Chem., 2015, 80, 2448; (b) Q. Li, Y. Huang, T. Chen, Y. Zhou, Q. Xu, S.-F. Yin, L.-B. Han, Org. Lett., 2014, 16, 3672; (c) C. Zhang, X. Zong, L. Zhang, N. Jiao, Org. Lett., 2012, 14, 3280; (d) A. E. Wendlandt, A. M. Suess, S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50, 11062; (e) T. Hamada, X. Ye, S. S. Stahl, J. Am. Chem. Soc., 2008, 130, 833.

- 24 (a) K. S. Vadagaonkar, H. P. Kalmode, K. Murugan, A. C. Chaskar, *RSC Adv.*, 2015,
 5, 5580; (b) B. Schmidt, S. Krehl, S. Hauke, *J. Org. Chem.*, 2013, 78, 5427.
- 25 (a) J. D. Palem, G. R. Alugubelli, R. Bantu, L. Nagarapu, S. Polepalli, S. N. Jain, R. Bathini, V. Manga, *Bioorg. Med. Chem. Lett.*, 2016, 26, 3014; (b) K. Shizu, H. Tanaka, C. Adachi, *PCT Int. Appl.* WO 2014196585 A1, 2014; (c) X. Chen, S. R. Karra, B. R. Huck, R. Lan, A. E. Sutton, A. Goutopoulos, B. L. Hodous, R. C. Jones, *PCT Int. Appl.* WO 2011017142 A1, 2011.
- 26 A. Zeb, A. Hameed, L. Khan, I. Khan, K. Dalvandi, M. I. Choudhary, F. Z. Basha, *Med. Chem.*, 2014, **10**, 724.
- 27 (a) M. Kovalenko, A. Gazit, A. Böhmer, C. Rorsman, L. Rönnstrand, C.-H. Heldin, J. Waltenberger, F.-D. Böhmer, A. Levitzki, *Cancer Res.*, 1994, **54**, 6106; (b) K. E. Lipson, L. Pang, L. J. Huber, H. Chen, J.-M. Tsai, P. Hirth, A. Gazit, A. Levitzki, G. Mcmahon, *J. Pharmacol. Exp. Ther.*, 1998, **285**, 844.
- 28 K. P. Hirth, E. Mann, L. K. Shawyer, A. Ullrich, I. Szekely, T. Bajor, J. Haimichael,L. Orfi, A. Levitzki, A. Gazit, P. C. Tang, R. Lammers, US 6331555 B1, 2001.
- 29 (a) C. Zhang, Z. Xu, L. Zhang, N. Jiao, *Tetrahedron*, 2012, 68, 5258; (b) J. Song, X.
 Li, Y. Chen, M. Zhao, Y. Dou, B. Chen, *Synlett*, 2012, 23, 2416.
- 30 (a) L. Zhang, G. Y. Ang, S. Chiba, Org. Lett., 2011, 13, 1622; (b) H. Sterckx, J. D. Houwer, C. Mensch, W. Herrebout, K. A. Tehrani, B. U. W. Maes, Beilstein J. Org. Chem., 2016, 12, 144; (c) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas, M. C. Kozlowski, Chem. Rev., 2013, 113, 6234, and references cited therein.
- 31 M. Lian, Q. Li, Y. Zhu, G. Yin, A. Wu, Tetrahedron, 2012, 68, 9598.
- 32 T. Chen, X. Chen, J. Wei, D. Lin, Y. Xie, W. Zeng, Org. Lett., 2016, 18, 2078.

- 33 W. Lv, B. Xiong, Z. Tan, H. Jiang, M. Zhang, Asian J. Org. Chem., 2015, 4, 1127.
- 34 S. Paul, B. Basu, Tetrahedron Lett., 2011, 52, 6597.
- 35 J.-P. Wan, S.-F. Gan, J.-M. Wu, Y. Pan, Green Chem., 2009, 11, 1633.
- 36 C. S. Cho, S. G. Oh, J. Mol. Cat. A: Chem., 2007, 276, 205.
- 37 K. P. Hirth, E. Mann, L. K. Shawyer, A. Ullrich, I. Szekely, T. Bajor, J. Haimichael,L. Orfi, A. Levitzki, A. Gazit, P. C. Tang, R. Lammers, US 6331555 B1, 2001.
- 38 V. Jeena, S. Sithebe, R. S. Robinson, Syn. Commun., 2015, 45, 1484.
- 39 K. S. Vadagaonkar, H. P. Kalmode, K. Murugan, A. C. Chaskar, *RSC Adv.*, 2015, 5, 5580.
- 40 B. Karami, S. Khodabakshi, M. Nikrooz, Polycyclic Aromat. Compd., 2011, 31, 97.
- 41 F. Pan, T.-M. Chen, J.-J. Cao, J.-P. Zou, W. Zhang, *Tetrahedron Lett.*, 2012, **53**, 2508.
- 42 S. A. Raw, C. D. Wilfred, R. J. K. Taylor, Org. Biomol. Chem., 2004, 2, 788.
- 43 A. D. Chowdhury, R. Ray, G. K. Lahiri, Chem. Commun., 2012, 48, 5497.