Cite this: Chem. Commun., 2012, 48, 11401-11403

www.rsc.org/chemcomm

COMMUNICATION

Novel transformation of α , β -unsaturated aldehydes and ketones into γ -amino alcohols or 1,3-oxazines *via* a 4 or 5 step, one-pot sequence[†]

Adam D. J. Calow,^{*a*} Andrei S. Batsanov,^{*a*} Elena Fernández,^{*b*} Cristina Solé^{*b*} and Andrew Whiting^{*a*}

Received 23rd August 2012, Accepted 20th September 2012 DOI: 10.1039/c2cc36129a

An efficient, 4-step, one-pot, highly stereoselective route to γ -amino alcohols has been developed *via* an *in situ* α , β -unsaturated imine formation, β -boration, reduction (C=N) and oxidation (C-B) sequence and especially for certain water-soluble γ -amino alcohols, a further step can be added to directly access the corresponding 1,3-oxazine derivatives.

β-boration of activated olefins has received considerable attention,^{1,2} involving a Michael-like addition of a diboron reagent to a conjugated, electron deficient alkene (*e.g.* **1** or **2**), to give β-borylation (*e.g.* **4** from imine **2**). Asymmetric β-boration, coupled with known methods for C–B functionalisation, is an attractive concept for the control of stereochemistry. Herien, we report an efficient 4-step, one-pot route to γ-amino alcohols **5** *via* an *in situ* α,β-unsaturated imine formation, β-boration, reduction (C=N) and oxidation (C–B) sequence which can be extended to give the corresponding oxazines.

Asymmetric routes to γ -amino alcohols **5** are limited, despite their use in the pharma industry and as ligands,³ due largely to the challenge of controlling up to 3 contiguous stereocenters. Despite this, useful progress has been made, but there remains scope for improved, efficient new methods.^{4,5}

We demonstrated a highly enantio- and diastereo-selective route to γ -amino alcohols **5** *via* a three-step route involving α,β -unsaturated imines **2** (R¹ = Ar and R³ = Me).^{7,8} Asymmetric β -boration resulted in β -boryl imines **4**, which could undergo substrate-controlled asymmetric C—N reduction and C–B oxidation to give γ -amino alcohols **5** (Scheme 1). Although this was a powerful route to systems **5**, the application was severely limited by the range of α,β -unsaturated imines **2** that could be isolated. Normally, imines are prepared by 1,2-addition of an amine to the analogous carbonyl compound, however, competitive 1,4-addition and instability of the imines meant that this protocol was suitable solely for stable, chalcone derived-imines.

The ease of formation and stability of α,β -unsaturated imines is surprisingly underexplored compared to non-conjugated imines,⁹ though the synthesis of dihydropyridines and pyridines from lesssubstituted α,β -unsaturated imines¹¹ has been reported. We investigated the formation of less-substituted α,β -unsaturated imines by ReactIR¹² to understand the relative rates and selectivity of α,β -unsaturated imine **2** formation *vs.* Michael addition (Table 1). Indeed, ReactIR proved to be an ideal tool for monitoring this reaction (Table 1) for both selectivity and rate. Most imine formations were complete within 3 h; the exception being methyl vinyl ketone (Entry 7, Table 1). Facile imine formation is exemplified (Fig. 1) by loss of the C=O stretch

Table 1 Monitoring imine formation by ReactIR

BnN	IH ₂ +	$R^1 \xrightarrow{O}_{\mathbb{R}^3} R^3$ $R^2 1$	3Å-MS THF, rt.	R ¹ R ² 2 1,2-product	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Entry	Sub	strate 1	Addi	tion product $2/3^a$	Time ^b (min)
1	1 a	<i></i> ∕~≠0	2 a ^c	// NBn	12
2	1b	PhO	2b	Ph	15
3	1c	√ ∕~∕0	2c	NBn	50
4	1d		2d	NBn	90
5	1e	0	2e	NBn	100
6	1f	Ph	2f	Ph	360
7	1g	~~°	3g	BnHN	30

^{*a*} 1,2-, 1,4-addition. Conditions: THF (7 mL), 3 Å MS (2.5 g), **1** (2.8 mmol) and BnNH₂ (2.8 mmol). ^{*b*} Reaction completion. ^{*c*} 2a – unstable.

^a Centre for Sustainable Chemical Processes, Dept. of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.

E-mail: andy.whiting@durham.ac.uk ^b Dept. Química Física i Inorgànica, Universitat Rovira I Virgili, 43007 Tarragona, Spain

[†] Electronic supplementary information (ESI) available: Experimental details, characterisation data, ReactIR, ¹H and ¹³C NMR and crystallographic data in CIF format. CCDC 896882. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c2cc36129a

Fig. 1 ReactIR plots over time for the formation of **2d** *via* 1,2-addition of benzylamine to methacrolein **1d**, rt, THF, 3 Å MS.

(1698 cm⁻¹) and concomitant gain of the C=N (*asym* + *sym*) stretches (1640 & 1621 cm⁻¹).

The *in situ*-generated α,β -unsaturated imines 2 formation was exploited by trapping with a borylnucleophile, *i.e.* developing a process not dissimilar to reductive amination where imine trapping is achieved using a hydride nucleophile.13 In theory, it should be possible for in situ-formed imines to be utilised in a one-pot route to γ -amino alcohols 5 without isolation. Hence, initially chalcone 1h (Table 2) was investigated using various Cu-ligand-base combinations and imine formation strategies (i.e. comparing the preformed imine with that formed in situ). Normal⁶ catalyst loadings needed to be increased from 1 to 5% to improve conversion of 1h to **5h** (Table 2, entries 1-3), and PnBu₃ rather than PPh₃ also facilitated the formation of 5h while minimising side products (Table 2, entries 4-6). Intriguingly, the formation of **5h** appeared to plateau to only 62-63% (see entries 3-6, Table 2), however, on further investigation, it was found that oxazine 6h was also formed (e.g. entry 1, Table 2). This was unexpected since there was no obvious source of a formaldehyde equivalent in the reaction to explain the transformation of 4h into 5h.¹² MeOH solvent used for the C-B oxidation step was most likely to act as a precursor of formaldehyde (or equivalents thereof). This was circumvented by removing the MeOH (by evaporation) after the reduction step, which resulted in the formation of 5h in 90% yield

(entry 6, Table 2) and without oxazine **6h**. Deliberate formation of oxazine **6h** could also be achieved by increasing the MeOH and oxidant concentrations in the final step leading to the formation of **6h** in 51% yield (entry 9, Table 2).

Following the optimisation (Table 2), the conversion of further unsaturated aldehydes and ketones to the corresponding amino alcohols 5 was investigated (Table 3). This proved to be successful, resulting in yields varying from 20-90% of the amino alcohols 5 (Table 3). The structure of 5f was confirmed by single crystal X-ray structure determination (Fig. 2). For most substrates, the more nucleophilic phosphine, $PnBu_3$ (*i.e.* see entries 1-2, 5-10, Table 3), was required to facilitate efficient β -boration. However, purification of some γ -amino alcohols (*i.e.* 5c, d and j) proved difficult due to high affinity to silica gel. In these cases, and as investigated on 1h (entry 9, Table 2 and entry 7, Table 3), rather than isolation of the γ -amino alcohol, conversion to the oxazine 5 was achieved by addition of CH₂O to the crude amino alcohols, *i.e.* 5c, d and j, resulting in 42–75% yields over 5 steps of the corresponding oxazines 6c, d and j (Table 3, entries 2, 3 and 9).

ReactIR studies on the formation of the α , β -unsaturated imines derived from **1i** and **j** revealed that these substrates reacted significantly slower than **1a–g** with BnNH₂ and in fact were difficult to follow by ReactIR. Therefore, **1i** and **j** and BnNH₂ were added simultaneously to the borylation reaction in the presence of 3 Å molecular sieves (see ESI†) with the expectation that it might be possible to trap the more reactive unsaturated imine by borylation. Indeed, this strategy worked (see entries 8 and 9, Table 3) resulting in the formation of **5i** and **6j** in reasonable overall yields.

The asymmetric potential of this 4-step (or 5), one-pot method was also investigated using **1h** reacting with BnNH₂ with a Josiphos-type chiral diphosphine **7** (Scheme 2). Scheme 2b shows the formation of the β -boryl imine **4h** in up to 92% ee (+)-(*R*). Importantly, the asymmetric induction was almost identical to that obtained when the enantioselective β -boration took place from the isolated the α , β -unsaturated imine (Scheme 2),

Table 2 Optimisation of the four-step, one-pot methodology on chalcone 1 h

		2. Br 3	O BnNH ₂ + Ph 3Å-M.S., THF 1h	1. CuCl, L, MeOH (2 3. NaBH ₄ , 4. NaOH, F	Base, B ₂ pin 2 equiv.), THI MeOH ^b I ₂ O ₂	2, → OF Ph (rac)	I HN ^{_Bn} -(<i>anti</i>)- 5h	o N ^{Br} i (rac)-(anti)-6l	1	
					Conversion ^d (%)		Isolated yield (%)		de^{j} of the isolated product ^d (%)	
Entry	CuCl (%)	L (%)	Base (%)	Time ^c (h)	5h	6h ^{<i>a</i>}	5h	6h	5h ^{<i>i</i>}	6h
1	1	PPh ₃ (2)	KOt-Bu (20)	24	37	30	17	32	anti >99%	anti > 99%
2	3	PPh_3 (6)	NaOt-Bu (9)	24	42	29	40	_	anti >99%	anti >99%
3	5	$PPh_{3}(10)$	KOt-Bu (18)	24	63	27	62	_	anti >99%	anti >99%
4	5	PPh ₃ (10)	KOt-Bu (18)	48	62	36	56	_	anti >99%	anti >99%
5	5	$PnBu_3$ (10)	KOt-Bu (18)	18^e	63	34	63	_	anti >99%	anti >99%
6	5	$PnBu_3$ (10)	NaOt-Bu (18)	18 ^f	>95	0	90	_	anti >99%	anti >99%
7	10^{i}	$PPh_3(20)$	KOt-Bu (36)	24	40	27	25	_	anti >99%	anti >99%
8^g	5	$PPh_{3}(10)$	NaOt-Bu (15)	18^e	52	34		30	anti >99%	anti >99%
9^h	5	PPh_3 (10)	NaOt-Bu (15)	18 ^e	44	54	—	51	anti >99%	anti > 99%

^{*a*} **6h** was confirmed by the reaction of **5h** with CH₂O (1.1 equiv.) in THF, rt, 4.5 h (74% yield). ^{*b*} NaBH₄ (4.2 mmol), MeOH (3 mL). ^{*c*} Time for reaction of **1h**, benzylamine and Cu–B cat. in one-pot. ^{*d*} Determined by ¹H NMR. ^{*e*} Imines were formed *in situ* (1 : 1 amine: α,β -unsaturated carbonyl, 3 Å MS, THF, 6 h) and transferred to Cu–B cat (18 h). ^{*f*} The same as entry 5 except MeOH removed prior to oxidation. ^{*g*} [O] NaOH, H₂O₂ (1 : 1, 20 equiv.), MeOH (10 ml), 4 h reflux. ^{*h*} [O] NaOH, H₂O₂ (1 : 1, 40 equiv.), MeOH (15 ml), 4 h reflux. ^{*i*} High catalyst loadings favour boration of the α,β -unsaturated carbonyl without formation of imine. ^{*j*} See previous work.^{6a}

^{*a*} Standard borylation conditions: CuCl (5%), P*n*Bu₃ (10%), NaO*t*Bu (15%), B₂pin₂ (1.1 equiv.), MeOH (2 equiv.), THF. ^{*b*} In situ imine formation (0–7 h), see ESI. ^{*c*} NaBH₄ (excess), MeOH (2 h), removal of MeOH under reduced pressure. ^{*d*} NaOH, H₂O₂ oxidation (THF, reflux 1 hour). ^{*e*} Determined by ¹H NMR of isolated **5**/6, see ESI. ^{*f*} **5** stirred in THF and CH₂O (1.1 equiv.) overnight, **6** obtained by column chromatography. ^{*g*} 64%-inseparable impurity (see ESI). ^{*h*} Standard conditions, except PPh₃ (10%) used as ligand. ^{*i*} Standard conditions, except NaOtBu (18%) used as base.

Fig. 2 Olex2¹³ thermal ellipsoid plot (50% probability) of 5f.

as well as the absolute stereochemistry. This is consistent with *in situ* imine formation followed by boration and not direct

Scheme 2 Asymmetric borylation by *in situ* imine formation followed by β -boration.

boration of α , β -unsaturated ketone **1h** followed by imine formation of the resulting β -boryl ketone **7h** (see ESI[†]).

In summary, a stereoselective 4-step, one-pot protocol for the synthesis of γ -amino alcohols in 20–90% yields has been developed. A 5-step version to 1,3-oxazines has also been demonstrated which exhibits impressive efficiency (42–75%) considering the number of steps. The asymmetric potential has been demonstrated and this methodology is being developed for the control of multiple stereogenic centres. In addition, although α , β -unsaturated imines are little used or studied compared to their carbonyl analogues, their formation can be followed by *in situ* IR, and subsequent trapping by borylation is an ideal way to demonstrate their formation. Further applications will be reported in due course.

We thank the EPSRC for a grant (to ADJC), MEC for funding (CTQ2010-16226) and a grant (to CS), and the EPSRC Mass Spectrometry Service, Swansea.

Notes and references

- (a) L. Mantilli and C. Mazet, *ChemCatChem*, 2010, 2, 501–504;
 (b) K. Müther, M. Oestreich and J. A. Schiffner, *Angew. Chem.*, *Int. Ed.*, 2010, 49, 1194–1196; (c) E. Hartmann, M. Oestreich and D. J. Vyas, *Chem. Commun.*, 2011, 47, 7917–7932; (d) A. D. J. Calow and A. Whiting, *Org. Biomol. Chem.*, 2012, 29, 5485–5497;
 (e) J. Cid, J. J. Carbó, E. Fernández and H. Gulyás, *Chem. Soc. Rev.*, 2012, 41, 3558–3570.
- 2 S. Mun, J.-E. Lee and J. Yun, Org. Lett., 2006, 8, 4887-4889.
- 3 H.-U. Blaser, Chem. Rev., 1992, 92, 935-952.
- 4 See: (a) H. Geng, G. Hou, W. Wu, W. Zhang, X. Zhang, L. Zhou and Y. Zou, Angew. Chem., Int. Ed., 2009, 48, 6052–6054; (b) W. Gao, D. Liu, C. Wang and X. Zhang, Angew. Chem., Int. Ed., 2005, 44, 1687–1689.
- 5 J. A. Ellman, T. Kochi and T. P. Tang, J. Am. Chem. Soc., 2002, 124, 6518–6519.
- 6 See: (a) E. Fernández, H. Gulyás, C. Solé and A. Whiting, Adv. Synth. Catal., 2011, 353, 376–384; (b) E. Fernández, H. Gulyás, C. Solé, J. A. Mata, A. Tatla and A. Whiting, Chem.-Eur. J., 2011, 17, 14248–14257.
- 7 E. Fernández and C. Solé, Chem.-Asian J., 2009, 4, 1790-1793.
- 8 S. A. Moyer, S. D. Pearce, J. W. Rigoli and J. M. Schomaker, Org. Biomol. Chem., 2012, 10, 1746–1749.
- 9 R. G. Bergman, D. A. Colby and J. A. Ellman, J. Am. Chem. Soc., 2008, 130, 3645–3651.
- 10 C. F. Carter, H. Lange, S. V. Ley, I. R. Baxendale, B. Wittkamp, J. G. Goode and N. L. Gaunt, Org. Process Res. Dev., 2010, 14, 393–404.
- 11 S. Gomez, T. Maschmeyer and J. A. Peters, Adv. Synth. Catal., 2002, 344, 1037–1057.
- 12 G. Bertoli, C. Cimarelli, E. Marcantoni, G. Palmieri and M. Petrini, J. Org. Chem., 1994, 59, 5328–5335.
- 13 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339–341.