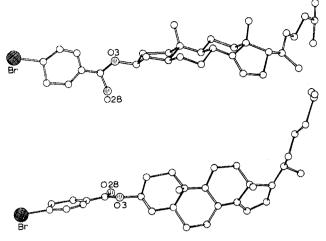

An Unusual Backbone Rearrangement. The Formation of 5α,17α-Cholest-14-en-3β-ol Acetate from 5α-Cholest-8(14)-en-3β-ol Acetate¹

Summary: The acid-catalyzed isomerization of 5α -cholest-8(14)-en-3 β -ol acetate (and 3β -benzoate) at -78° results in 5α ,17 α -cholest-14-en-3 β -ol acetate (or 3β -benzoate); hydrogenation (${}^{1}\text{H}_{2}$, ${}^{2}\text{H}_{2}$) gave a product which on the basis of ${}^{13}\text{C}$ NMR was tentatively assigned as 5α ,14 β ,17 α -cholestan-3 β -ol.

Sir: The preparation of 5α -cholest-14-en-3 β -ol acetate (1a) requires the treatment of a chloroform solution of 5α -cholest-8(14)-en-3 β -ol acetate (2a) first with a stream of dry HCl at -30° and then with aqueous NaHCO₃.² In our hands the obtained 1a is usually accompanied by variable amounts of an unknown product, now characterized as 3a.

We present proof of structure and efficient methods of synthesis of the rather inaccessible 5α , 17α -cholest-14-en- 3β -ol acetate (**3a**) and 5α , 14β , 17α -cholestan- 3β -ol acetate (**4a**). It is worthy of note that the unusual isomerization at C-17 occurred at a center remote from the reaction site.

When the reaction was carried out by treating a solution of 2a (1500 mg) in dry chloroform (2 ml) with HCl at -78°


for 7 hr, and then with aqueous NaHCO₃ for 8 hr, the main product (80-90% yield) was³ **3a**. The mass spectrum [m/e428 (M⁺), -15, -60, -173, etc.] and NMR [δ 5.07 (m, 1 H, vinylic), 0.90 (s, 3 H, C-10 methyl), 1.13 (s, 3 H, C-13 methyl), 0.89 (d, J = 7 Hz, 9 H, C-25 and C-20 methyls] were consistent with a C₂₇ structure having a trisubstituted double bond. Hydrogenation (¹H₂ or ²H₂) of **3a** gave saturated **4a** (¹H) or **4b** (²H), which differed from cholestanol acetate (**5a**). These results were consistent with the hypothesis that **3a** was obtained via a structural rearrangement of the cholestenol skeleton, which very likely involved rings C and/or D.

The natural abundance, noise-decoupled ¹³C NMR spectra of the 3β -hydroxy compounds [1b, 3b, 4c (¹H), 4d (²H), and 5b] were obtained from dioxane solutions.⁴ Each spectrum consisted of 27 peaks, clearly establishing the C₂₇ nature of the unknown. Both 1b and 3b showed two peaks in the olefinic region, one carbinol peak, five methyl peaks, and peaks for two quaternary aliphatic carbons, presumably C-10 and C-13. The remaining peaks arose from secondary or tertiary carbons.

The mass spectrum of **3a** had pronounced peaks at m/e255 [M⁺ - (C₈H₁₇ + CH₃COOH)] and 240 [M⁺ - (C₈H₁₇ + CH₃COOH + CH₃)]. These results were consistent with the view that **3a** has a tetracyclic steroidal structure with a C₈H₁₇ moiety at C-17.⁵ On this basis we assigned peaks corresponding to C-1 through C-10, C-19, and C-24 through C-27 in the ¹³C spectrum of the 3 β -hydroxy **3b**. The signals for these carbons in the spectrum of **3b** showed little displacement from the corresponding peaks in the spectrum of **1b**. This reinforced the view that **1b** and **3b** differ only in rings C and/or D.

The chemical shift of the protons of the C-10 methyl and the presence of a single vinylic hydrogen in the ${}^{1}H$ NMR spectrum of 3b established that the double bond is trisubstituted and cannot be located in rings A or B or at C-9 (11). This, together with the mass spectral data narrowed the choice of the likely structures of 3 to the following: a, Δ^{12} -14 β -methyl; **b**, 14 ξ (H)- Δ^{16} ; and **c**, Δ^{14} -17 α side chain. The influence of the Δ^{14} on the chemical shifts of ¹³C atoms of 5b was deduced from a comparison of its spectrum with that of 1b. The effects of epimerization at C-17 on the chemical shifts of ¹³C atoms of the tetracyclic nucleus of **5b** were estimated from a comparison of the spectra of estra-1,3,5(10)-triene- $3,17\alpha$ -diol and estra-1,3,5(10)-triene- $3,17\beta$ -diol.⁶ Based on these considerations it was inferred that the most likely structure of **3b** is 5α , 17α -cholest-14en-3 β -ol. This conclusion was confirmed by X-ray structure determination carried out on p-bromobenzoate (3c, mp 101.5-103.5°).

Cell dimensions of a small (0.3 mm on edge) crystal of the p-bromobenzoate derivative of the rearranged product (3c) were determined by a least-squares procedure of the 20 values of 15 well-centered reflections. Cell data: a =22.125 Å, b = 51.859 Å, c = 11.072 Å, V = 12703 Å³, orthorhombic, $P2_12_12_1$, Z = 16. Three-dimensional data were collected on an Enraf-Nonius Kappa automated diffractometer with Cu K α radiation. Of the 11278 data collected, 3591 were classed as observed. The structure was solved by Patterson techniques and subsequent Fourier synthesis to an R factor of 25%. Least-squares refinement of the bromine positions with anisotropic thermal parameters and

the carbon and oxygen positions with isotropic thermal parameters is continuing. The R factor is 11.8% at the present time. The data revealed the presence of four crystallographically independent molecules of 3c in the cell.7 ORTEP views (50% probability thermal ellipsoids) of molecule 2 are seen in Figure 1. The structure of 3c is unequivocally 5α , 17α -cholest-14-en- 3β -ol *p*-bromobénzoate. Molecules 1, 2, and 4 have the same D ring conformation, 17β envelope, and similar side chain orientation; C-21 is anti to C-13 and gauche to C-16. In molecule 3 the D-ring conformation appears to be a 17α envelope and C-21 is gauche to C-13 and C-16. The end of the cholestane side chain, C-25, C-26, C-27, is probably disordered in at least two of the molecules. Other interesting conformational details which vary in the four molecules will be discussed in a future paper.

The saturated derivative 4 obtained by hydrogenation of 3 could have either the 14α or 14β stereochemistry. From ¹³C NMR studies⁴ of 4c and 4d, it was tentatively concluded that 4 is $5\alpha.14\beta.17\alpha$ -cholestan- 3β -ol.

Acknowledgments. The work at the Worcester Foundation for Experimental Biology was supported by National Institutes of Health Grants GM 19882 and GM 16928 and by National Science Foundation Grant BMS72-02440 AO1. The work at the Medical Foundation of Buffalo was supported by National Institutes of Health Grants CA 10906 and AM 05619.

Supplementary Material Available. Tables of ¹³C chemical shifts and bond distances and angles will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche (105 \times 148 mm, 24 \times reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D.C. 20036. Remit check or money order for \$4.50 for photocopy or \$2.50 for microfiche, referring to code number JOC-75-2005.

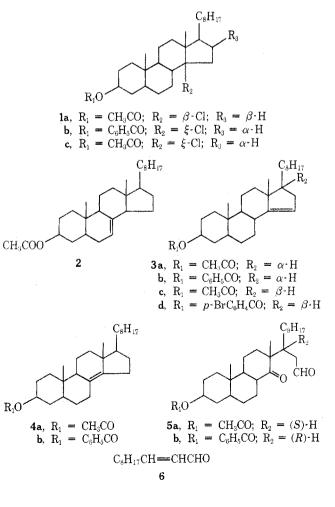
References and Notes

- (1) Professor A. Fiecchi and his associates at the University of Milano have obtained similar results. It was agreed to publish the results of both groups simultaneously. (2) J. W. Cornforth, I. Y. Gore, and G. Popjak. *Biochem. J.*, **65**, 94 (1957).
- These authors have carried out the referred to transformation on the $\Delta^{8(14)}$ benzoate. We have carried out the reactions described in this communication on both $\Delta^{8(14)}$ acetate and the benzoate. In both instances analogous products were obtained which were interrelated as the free C-3 alcohol. At present we report the results for the acetate.
- (3) All new compounds were fully characterized. ¹H NMR spectra were re-corded on a Varian DA-60 instrument. ¹³C NMR spectra were obtained on a Varian HA 100-15 instrument equipped with a Varian time-averaging computer (C-1024) and were recorded at 25.1 MHz. Mass spectra were obtained on a Du Pont 21-491 instrument.

Communications

- (4) A table of ¹³C chemical shifts of these compounds is published in the mi-
- crofilm edition of the journal immediately following these pages.
 C. Djerassi, *Pure Appl. Chem.*, 21, 205 (1970).
 T. A. Wittstruck and K. I. Williams, *J. Org. Chem.*, 38, 1542 (1973). (6)
- (7) A table of bond distances and angles averaged over the four molecules is published in the microfilm edition of the journal immediately following these pages.
- (a) Worcester Foundation for Experimental Biology, Shrewsbury, Mass. 01545. (b) Medical Foundation of Buffalo Research Laboratorles, Buffalo, (8)N.Y. 14203. (c) Extracted in part from the Ph.D. Thesis of J. P. Moreau to be submitted to the University of Orleans, France.

The Worcester Foundation for Experimental Biology Shrewsbury, Massachusetts 01545


Eliahu Caspi^{*8a} William L. Duax^{8b} Jane F. Griffin^{8b} Jacques P. Moreau^{8a,c} Thomas A. Wittstruck^{8a}

Received March 27, 1975

A Ready Synthesis of 17α Steroids^{1,2}

Summary: Reaction of sterol acetates with a Δ^7 , $\Delta^{8(14)}$, and Δ^{14} double bond with hydrogen chloride yields 3β -acetyloxy-14-chloro- 5α , 14 β , 17 α -cholestane (structure determined by X-ray analysis), which is easily dehydrohalogenated to 3β -acetyloxy- 5α , 17α -cholest-14-ene.

Sir: Anhydrous hydrogen chloride in chloroform has been described to promote the isomerization of Δ^7 , Δ^8 , and $\Delta^{8(14)}$ double bonds to the 14 position in sterols.^{3,4} Compound 1a (mp 104-106°) was obtained as the single reaction product by bubbling hydrogen chloride for 3 hr at -60° in a 20-25 mM solution of 3β -acetyloxy- 5α -cholest-7-ene (2) in diethyl ether. The ¹H NMR spectrum showed signals at δ

