

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

SYNTHETIC COMMUNICATIONS Vol. 32, No. 22, pp. 3449–3454, 2002

A CONVENIENT SYNTHESIS OF 2,4-DIARYLPOLYHYDROQUINOLINE DERIVATIONS IN THE PRESENCE OF AMMONIUM ACETATE

Xiang-Shan Wang,* Da-Qing Shi, and Shu-Jiang Tu

Department of Chemistry, Xuzhou Normal University, Xuzhou Jiangsu, 221009, China

ABSTRACT

A series of substituted 5-oxo-1,2,3,4,5,6,7,8-octahydroquinoline derivatives have been synthesized from 5,5-dimethyl-1,3-cyclohexane-dione (dimedone) and 1,3diaryl-2-propen-1-one in DMF at 80°C in the presence of ammonium acetate with high yields (64–98%), the structure of the product was confirmed by X-ray analysis.

Key Words: 2,4-Diarylpolyhydroquinoline; 1,3-Diaryl-2-propen-1-one; Ammonium acetate

1,4-Dihydropyridines (1,4-DHPS) are well-known compounds as a consequence of their pharmacological profile as calcium channel modulators.^[1] The chemical modifications carried on the DHP ring such as the presence of different substituents^[2] or heteroatoms^[3] have allowed expansion of the structure activity relationship and afforded some insight into the

3449

DOI: 10.1081/SCC-120014775 Copyright © 2002 by Marcel Dekker, Inc. 0039-7911 (Print); 1532-2432 (Online) www.dekker.com

^{*}Corresponding author. E-mail: wxs2001z@sina.com.cn

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

WANG, SHI, AND TU

molecular interactions at the receptor level. The usual method for 1,4-DHPS synthesis is from meldrum's acid and dimedone in the presence of different aldehydes catalyzed by ammonium acetate^[4] or NH_3H_2O .^[5] In our previous paper,^[6] we have reported one step synthesis of 4-arylpolyhydroquinoline derivatives from aromatic aldehyde, dimedone, ammonium acetate and ethyl acetoacete using microwave irradiation. In this paper we describe the synthesis of the 5-oxo-1,2,3,4,5,6,7,8-octahydroquinoline derivatives from dimedone **2** and 1,3-diaryl-2-propen-1-one **1** in the presence of ammonium acetate.

When 1,3-diaryl-2-propen-1-one 1 and dimedone 2 were treated with ammonium acetate in DMF at 80° C for 1–2 h (Sch. 1), the desired 5-oxo-1,2,3,4,5,6,7,8-octahydroquinoline derivatives 3 were obtained in good yields (64–98%) (Table 1).

The ¹H NMR spectra of compound **3d** show the NH proton ~ 8.64 ppm, the proton on C(9) exhibit double peaks at 4.54–4.63 ppm and form part of an AX system which is confirmed by another double peaks at 5.25–5.34 ppm corresponding to the proton on C(8) (J = 5.4 Hz). In order to confirm the structure of the product, the X-ray crystallographic study was carried out.^[7] Figure 1 shows the molecular structure of the compound 3d.

Scheme 1.

Entry	Ar	Ar'	Yield (%)
3a	C_6H_5	C_6H_5	85.1
3b	C_6H_5	$4-ClC_6H_4$	64.7
3c	$4-ClC_6H_4$	C_6H_5	78.5
3d	C ₆ H ₅	$4-BrC_6H_4$	94.3
3e	C ₆ H ₅	2,4-Cl ₂ -5-FC ₆ H ₂	98.0
3f	$4-ClC_6H_4$	2,4-Cl ₂ -5-FC ₆ H ₂	97.7
3g	3,4-(CH ₃ O) ₂ C ₆ H ₃	C_6H_5	72.6
3h	3,4-OCH ₂ OC ₆ H ₃	C_6H_5	92.0
3i	C ₆ H ₅	$4-CH_3C_6H_4$	68.5
3ј	3,4-OCH ₂ OC ₆ H ₃	$4-ClC_6H_4$	90.5

Table 1. The Yields of the Products

3450

3451

AQ1

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

Figure 1. The structure of compound 3d.

In conclusion, with high yields and mild conditions, we think that the present work described here in provide a useful method for the preparation of substituted 5-oxo-1,2,3,4,5,6,7,8-octahydroquinoline derivatives.

EXPERIMENTAL

Melting points were determined in open capillaries and are uncorrected. IR spectra were recorded on a FT IR-8101 spectrometer in KBr. ¹H NMR spectra were obtained for solution in DMSO-d₆ with Me₄Si as internal standard using an Inova-400 or R-1500A spectrometer. Elemental analyses were carried out using Carlo Erba 1110 analyzer. X-ray diffraction were measured on a Siemens P4 diffractometer.

General Procedure

A dry 50 mL flask was charged with 1,3-diaryl-2-propen-1-one **1** (2 mmol), 5,5-dimethyl-1,3-cyclohexanedione **2** (2.5 mmol), ammonium acetate (5 mmol) and DMF (10 mL). The mixture was stirred at 80° C for 1–2 h, then cooled to room temperature. The mixture was poured into

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

WANG, SHI, AND TU

200 mL water, the yellow solid was filtered off and washed with water. The crude product was purified by recrystallization from 95% EtOH to give **3**.

3a: M.p. 206–208°C; IR (KBr, ν , cm⁻¹): 3260, 3030, 2990, 1660, 1630, 1590, 1490, 1450, 770, 760, 695; ¹H NMR (DMSO-d₆, δ , ppm): 0.96 (3H, s, CH₃), 1.04 (3H, s, CH₃), 1.98–2.02 (1H, d, J = 16.0 Hz, C¹²-H), 2.16–2.20 (1H, d, J = 16.0 Hz, C¹²-H), 2.48 (2H, s, CH₂), 4.56–4.57 (1H, d, J = 5.6 Hz, C⁹-H), 5.21–5.22 (1H, dd, J = 2.0 Hz, J' = 3.6 Hz, C⁸-H), 7.09–7.50 (10H, m, ArH), 8.63 (1H, s, NH); Elemental analysis: Found (%): C, 83.93; H, 6.86; N, 4.03. Calcd. for C₂₃H₂₃NO: C, 83.85; H, 7.04; N, 4.25.

3b: M.p. 250–252°C; IR (KBr, ν , cm⁻¹): 3240, 3020, 2980, 1665, 1610, 1580, 1500, 1450, 835, 760, 690; ¹H NMR (DMSO-d₆, δ , ppm): 0.98 (3H, s, CH₃), 1.06 (3H, s, CH₃), 2.10 (2H, s, CH₂), 2.14 (2H, s, CH₂), 4.54–4.63 (1H, d, J = 5.4 Hz, C⁹-H), 5.24–5.33 (1H, d, J = 5.4 Hz, C⁸-H), 7.24 (5H, s, ArH), 7.50 (4H, s, ArH), 8.69 (1H, b, NH); Elemental analysis: Found (%): C, 76.04; H, 5.94; N, 3.68. Calcd. for C₂₃H₂₂ClNO: C, 75.91; H, 6.10; N, 3.85.

3c: M.p. 224–226°C; IR (KBr, ν , cm⁻¹): 3250, 3030, 2980, 1665, 1610, 1580, 1500, 1450, 830, 770, 700; ¹H NMR (DMSO-d₆, δ , ppm): 0.94 (3H, s, CH₃), 1.06 (3H, s, CH₃), 1.98–2.02 (1H, d, J=16.4 Hz, C¹²-H), 2.16–2.20 (1H, d, J=16.4 Hz, C¹²-H), 2.46 (1H, s, C¹⁶-H), 2.48 (1H, s, C¹⁶-H), 4.57–4.58 (1H, d, J=5.2 Hz, C⁹-H), 5.18–5.20 (1H, dd, J=1.2 Hz, J'=4.0 Hz, C⁸-H), 7.23–7.50 (9H, m, ArH), 8.68 (1H, s, NH); Elemental analysis: Found (%): C, 75.98; H, 5.90; N, 3.69. Calcd. for C₂₃H₂₂ClNO: C, 75.91; H, 6.10; N, 3.85.

3d: M.p. 264–266°C; IR (KBr, ν , cm⁻¹): 3250, 3010, 2980, 1670, 1610, 1590, 1510, 1490, 830, 770, 695; ¹H NMR (DMSO-d₆, δ , ppm): 0.99 (3H, s, CH₃), 1.06 (3H, s, CH₃), 2.10 (2H, s, CH₂), 2.13 (2H, s, CH₂), 4.54–4.63 (1H, d, J = 5.4 Hz, C⁹-H), 5.25–5.34 (1H, d, J = 5.4 Hz, C⁸-H), 7.24 (5H, s, ArH), 7.54 (4H, s, ArH), 8.64 (1H, b, NH); Elemental analysis: Found (%): C, 67.82; H, 5.29; N, 3.21. Calcd. for C₂₃H₂₂BrNO: C, 67.65; H, 5.43; N, 3.43.

3e: M.p. 166–168°C; IR (KBr, ν , cm⁻¹): 3280, 3010, 2990, 1670, 1600, 1510, 1470, 830, 680; ¹H NMR (DMSO-d₆, δ , ppm): 0.91 (3H, s, CH₃), 1.06 (3H, s, CH₃), 1.96–2.00 (1H, d, J = 16.0 Hz, C¹²-H), 2.15–2.19 (1H, d, J = 16.0 Hz, C¹²-H), 2.26–2.30 (1H, d, J = 16.4 Hz, C¹⁶-H), 2.37–2.42 (1H, d, J = 16.4 Hz, C¹⁶-H), 4.56–4.57 (1H, d, J = 5.6 Hz, C⁹-H), 4.92–4.94 (1H, dd, J = 1.6 Hz, J' = 3.6 Hz, C⁸-H), 7.08–7.91 (7H, m, ArH), 10.61 (1H, s, NH); Elemental analysis: Found (%): C, 66.52; H, 4.64; N, 3.13. Calcd. for C₂₃H₂₀Cl₂FNO: C, 66.35; H, 4.84; N, 3.36.

3f: M.p. 238–239°C; IR (KBr, ν , cm⁻¹): 3250, 3020, 2980, 1670, 1600, 1510, 1470, 830, 680; ¹H NMR (DMSO-d₆, δ , ppm): 0.91 (3H, s, CH₃), 1.06 (3H, s, CH₃), 1.96–2.00 (1H, d, J=16.0 Hz, C¹²-H), 2.15–2.19 (1H, d, J=16.0 Hz, C¹²-H), 2.26–2.30 (1H, d, J=16.4 Hz, C¹⁶-H), 2.37–2.42

3452

YYY.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

2,4-DIARYLPOLYHYDROQUINOLINE DERIVATIVES

3453

(1H, d, J = 16.4 Hz, C¹⁶-H), 4.56–4.57 (1H, d, J = 5.6 Hz, C⁹-H), 4.92–4.94 (1H, dd, J = 1.6 Hz, J' = 3.6 Hz, C⁸-H), 7.31–7.92 (6H, m, ArH), 8.85 (1H, s, NH); Elemental analysis: Found (%): C, 61.44; H, 4.01; N, 3.00. Calcd. for C₂₃H₁₉Cl₃FNO: C, 61.28; H, 4.25; N, 3.11.

3g: M.p. 196–198°C; IR (KBr, ν , cm⁻¹): 3260, 3020, 2990, 2980, 1660, 1620, 1590, 1510, 1495, 1460, 760, 700; ¹H NMR (DMSO-d₆, δ , ppm): 0.98 (3H, s, CH₃), 1.04 (3H, s, CH₃), 1.98–2.02 (1H, d, J=16.0 Hz, C¹²-H), 2.17–2.21 (1H, d, J=16.0 Hz, C¹²-H), 2.46 (1H, s, C¹⁶-H), 2.48 (1H, s, C¹⁶-H), 3.68 (6H, s, 2 × OCH₃), 4.49–4.50 (1H, d, J=5.2 Hz, C⁹-H), 5.20–5.22 (1H, dd, J=1.6 Hz, J'=4.0 Hz, C⁸-H), 6.70–7.49 (8H, m, ArH), 8.59 (1H, s, NH); Elemental analysis: Found (%): C, 77.28; H, 6.72; N, 3.37. Calcd. for C₂₅H₂₇NO₃: C, 77.09; H, 6.99; N, 3.60.

3h: M.p. 236–238°C; IR (KBr, ν , cm⁻¹): 3240, 3020, 2980, 1660, 1600, 1570, 1500, 1480, 830, 770, 700; ¹H NMR (DMSO-d₆, δ , ppm): 0.96 (3H, s, CH₃), 1.03 (3H, s, CH₃), 1.99–2.03 (1H, d, J=16.0 Hz, C¹²-H), 2.15–2.19 (1H, d, J=16.0 Hz, C¹²-H), 2.47 (2H, s, CH₂), 4.48–4.50 (1H, d, J=5.2 Hz, C⁹-H), 5.18–5.20 (1H, dd, J=2.0 Hz, J'=3.6 Hz, C⁸-H), 5.92 (2H, s, OCH₂O), 6.67–7.50 (8H, m, ArH), 8.61 (1H, s, NH); Elemental analysis: Found (%): C, 77.36; H, 6.07; N, 3.54. Calcd. for C₂₄H₂₃NO₃: C, 77.19; H, 6.21; N, 3.75.

3i: M.p. 210–212°C; IR (KBr, ν , cm⁻¹): 3250, 3010, 2995, 2980, 1650, 1620, 1590, 1490, 830, 770, 695; ¹H NMR (DMSO-d₆, δ , ppm): 0.96 (3H, s, CH₃), 1.06 (3H, s, CH₃), 1.97–2.01 (1H, d, J = 16.4 Hz, C¹²-H), 2.15–2.19 (1H, d, J = 16.4 Hz, C¹²-H), 2.30 (3H, s, CH₃), 2.48 (2H, s, CH₂), 4.54–4.55 (1H, d, J = 5.6 Hz, C⁹-H), 5.17–5.18 (1H, dd, J = 1.6 Hz, J' = 4.0 Hz, C⁸-H), 7.08–7.65 (9H, m, ArH), 8.56 (1H, s, NH); Elemental analysis: Found (%): C, 84.05; H, 7.18; N, 3.89. Calcd. for C₂₄H₂₅NO: C, 83.93; H, 7.34; N, 4.08.

3j: M.p. 176–177°C; IR (KBr, ν , cm⁻¹): 3250, 3020, 2990, 2980, 1675, 1620, 1590, 1500, 1480, 810; ¹H NMR (DMSO-d₆, δ , ppm): 0.93 (3H, s, CH₃), 1.01 (3H, s, CH₃), 1.97–2.01 (1H, d, J = 16.0 Hz, C¹²-H), 2.14–2.18 (1H, d, J = 16.0 Hz, C¹²-H), 2.26–2.30 (1H, d, J = 16.4 Hz, C¹⁶-H), 2.36–2.40 (1H, d, J = 16.4 Hz, C¹⁶-H), 4.48–4.49 (1H, d, J = 4.8 Hz, C⁹-H), 4.92–4.93 (1H, dd, J = 1.2 Hz, J' = 4.0 Hz, C⁸-H), 6.77–7.91 (7H, m, ArH), 8.77 (1H, s, NH); Elemental analysis: Found (%): C, 70.86; H, 5.23; N, 3.15. Calcd. for C₂₄H₂₂ClNO₃: C, 70.67; H, 5.44; N, 3.43.

ACKNOWLEDGMENT

We are grateful to the Foundation of the "Surpassing Project" of Jiangsu Province for financial support.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

3454

WANG, SHI, AND TU

REFERENCES

- 1. Janis, R.A.; Silver, P.J.; Triggle, D.J. Adv. Drug. Res. 1987, 16, 309–591.
- 2. Eisner, V.; Kuthan, J. Chen. Rev. 1972, 72, 1.
- 3. Chorvat, R.T.; Rorig, K.J. J. Org. Chem. 1988, 53, 5779-5781.
- 4. Marqarita, S.; Estael, O.; Yamila, V.; Beatriz, P. Tetrahedron **1999**, *55*, 875–884.
- 5. Sainani, J.B.; Shah, A.C. Indian J. Chem. 1994, 33B, 516.
- 6. Tu, S.J.; Zhou, J.F.; Deng, X.; Feng, J.C. Youji Huaxue **2001**, *21*(4), 313–316.
- 7. X-ray crystallography for **3d**: Empirical formula $C_{23}H_{22}BrNO$, *F.W.* 408.33, T = 297(2) K, Monoclinic, space group C2/c, a = 1.9687(4) nm, b = 1.3571(2) nm, c = 1.7311(3) nm, $\alpha = 90^{\circ}$, $\beta = 118.740(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 4.0553(12) nm³, Z = 8, Dc = 1.338 Mg/m³, $\lambda(MOK\alpha) = 0.071073$ nm, $\mu = 2.038$ mm⁻¹, *F*(000) = 1680. $1.91^{\circ} < \theta < 25.00^{\circ}$, R = 0.0539, wR =0.1369, S = 0.831, Largest diff. Peak and hole: 812 and $-313 \text{ e} \cdot \text{nm}^{-3}$.

Received in Japan August 10, 2001