View Article Online

ChemComm

Chemical Communications

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: K. Gogoi, B. R. Bora, G. Borah, B. Sarma and S. Gogoi, *Chem. Commun.*, 2021, DOI: 10.1039/D0CC07419E.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Published on 18 December 2020. Downloaded by Auckland University of Technology on 12/18/2020 7:55:22 AM.

COMMUNICATION

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Synthesis of Quaternary Carbon Centered Indolo[1,2*a*]quinazolinones and Indazolo[1,2-*a*]indazolones via C-H Functionalization

Kongkona Gogoi[†], Bidisha R. Bora[†], Geetika Borah[§], Bipul Sarma[‡], and Sanjib Gogoi^{†,*}

An unprecedented Ru(II)-catalyzed Csp²-H bond activation and annulation reaction of phenylindazolones with diaryl substituted alkynes and dialkyl substituted alkynes provided efficient routes for the construction of all-carbon quaternary centered indolo[1,2a]quinazolinones and quaternary carbon centered indazolo[1,2a]indazolones, respectively. The indolo[1,2-a]quinazolinones were fomed via the Csp²-H activation, alkyne insertion and 1,2-phenyl shift pathways. The indazolo[1,2-a]indazolones were formed through a cascade reaction via the formation of exocyclic double bond containing indolo[1,2-a]quinazolinones.

Indologuinazolinones are known to exhibit wide range of bioactivities such as anticancer, antibacterial, antifungal etc.¹ Among indologuinazolinones, the indolo[1,2the alguinazolinones have attracted considerable attention recently, owing to their poly(ADP-ribose) polymerase-1 (PARP-1) and protein kinase CK2 inhibitory activities (Figure 1).² Therefore, development of novel practical methods to construct this heterocyclic scaffold is a thrust research area.³ Again, recently, the indazole and indazolone ring fused heterocycles have emerged as pharmaceutically important compounds because of their remarkable biological activity.⁴ Pyrazolo[1,2-a]indazolone and indazolo[1,2-a]indazolone are two such fused heterocyclic scaffolds which have got much attention very recently for their bioactivity and interesting laser activity.⁴ However, method to construct the indazolo[1,2a]indazolone skeleton is not considerably explored. Therefore, a direct method to synthesize this heterocyclic scaffold using simple and readily available starting material is highly desired. Last few decades have witnessed the significant evolution of metal-catalyzed C-H activation and alkyne annulation reactions the step-economic construction for of important

heterocycles.⁵ Very recently, Perumal and co-workers used phenylindazolones to perform Rh(III)-catalyzed activation of Csp²-H bond followed by direct alkyne annulation to synthesize indazolo[1,2- α]cinnolines (Scheme 1, eq 1).^{5d} In our continuous

Figure 1. Examples of bioactive indolo[1,2-a]quinazolinones and pyrazolo[1,2-a]indazolone

effort to develop novel metal-catalyzed C-H bond functionalization reactions,⁶ herein, we describe a novel Ru(II)catalyzed Csp²-H activation and annulation reaction of phenylindazolones with aryl/heteroaryl substituted alkynes. This reaction proceeds through Csp²-H activation, alkyne insertion and 1,2-aryl shift to provide an efficient synthetic method for indolo[1,2-*a*]quinazolinones (Scheme 1, eq 2). We

Scheme 1. Metal-catalyzed annulation reactions of phenylindazolone and alkyne

also report an unprecedented Ru(II)-catalyzed cascade reaction of phenylindazolones with dialkyl substituted alkynes for the synthesis of indazolo[1,2-*a*]indazolones (Scheme 1, eq 2). Notably, these synthetic methods of indolo[1,2-

^{a.†}Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, AcSIR, Ghaziabad-201002, India, [§]Department of Chemistry, Dibrugarh University, Dibrugarh-786004, and [‡]Department of Chemical Sciences, Tezpur University, Tezpur-784028, India, Email: skgogoi@gmail.com; sanjibgogoi@neist.res.in

Electronic Supplementary Information (ESI) available: Experimental procedures, spectroscopic data and copies of ¹H NMR, ¹³C NMR and HRMS spectrum of the synthesized compounds, See DOI:

COMMUNICATION

Published on 18 December 2020. Downloaded by Auckland University of Technology on 12/18/2020 7:55:22 AM.

Journal Name

a]quinazolinones and indazolo[1,2-*a*]indazolones afford allcarbon quaternary carbon-centered and quaternary carboncentered heterocycles. Again, the creation of a new method to construct a quaternary carbon stereo center, which is present in many bioactive molecules has itself been considered as a challenging task in organic synthesis.⁷

Initially, we tested the reaction of phenylindazolone **1a** with alkyne **2a** for the synthesis of indoloquinazolinone **3aa** (Table SI-1). Among various transition metal complexes tested, the $[{RuCl_2(p-cymene)}_2]$ complex (5 mol %) together with the additive Cu(OAc)_2.H_2O produced the highest yield of the product **3aa** in ^tAmOH (38%) (entry 2). Then, to further improve the yield of **3aa** some other additives were tested. Fortunately, the additive CsOAc provided the highest yield (79%) of the product **3aa** (entry 7). Further studies on solvents and catalyst loading could not improve the yield of **3aa** (entries 10-15). The highest yielding reaction conditions were then applied first to study the substrate scope of diaryl or aryl heteroaryl substituted alkynes **2a-i**. As shown in Table 1, the

Table 1. Scope of alkynes (2a-i) and phenylindazolones (1a-i)

 \mathbf{R}^2 \mathbf{R}^4

2a-i

1a-

3aa (79%)

3ac (R = Me, 68%) 3ad (R = F, 57%)

3ag (64%)

[{RuCl₂(p-cymene)}₂]

(5.0 mol %)

CsOAc (1.0 equiv)

^tAmOH, 95 °C

24 h

3ab (63%)

3ae (65%)

3ah (48%)

OMe

R²

3aa-ai, 3ba-ia

3af (67%)

3ai (51%)

 3ba (R = Me, 68%)
 R

 3ca (R = OMe, 60%)
 3fa (R = Me, 65%)

 3da (R = Cl, 57%)
 3ga (R = OMe, 58%)

 3ea (R = Br, 58%)
 3ha (R = Cl, 53%)

 ^aReaction conditions: 1a (0.1 mmol), 2a (0.1 mmol), catalyst (5 mol %), additive (0.1 mmol) and 'AmOH (3.0 mL) at 95 °C under air for 24 h.

symmetrical alkynes possessing various electron-releasing or electron-withdrawing groups such as methyl, methoxy and fluoro on the phenyl ring of the alkyne (2a-e), endured the

57-79% Viewields Online conditions afford reaction to Then^{DOI:} 50/ମୂକ୍ତ/D06fC074the indoloquinazolinones 3aa-ae. representative unsymmetrical aryl group substituted alkynes 2f-h were tested with 1a, which afforded 48-67% yields of 3afah. Similarly, the unsymmetrical alkyne substituted with an aryl and a heteroaryl group 2i provided the desired product 3ai in 51% yield. Next, the optimized reaction conditions were applied to study the substrate scope of some of the phenylindazolones 1b-i with alkyne 2a. As shown in Table 1, phenylindazolones substituted with electron-releasing or electron-withdrawing methyl, methoxy and chloro substituents at 5-position of the fused phenyl ring 1b-d provided 57-68% yields of the desired compounds 3ba-da. The sensitive bromo substituted phenylindazolone 1e also tolerates the reaction conditions to afford 3ea (58%). Then, some of the phenylindazolones possessing electron-releasing or electron-withdrawing substituents such as methyl, methoxy and chloro on the substituted phenyl ring of phenylindazolone 1f-i were studied with alkyne 2a to provide 53-65% yields of compounds 3fa-ia. The annulation reaction of 1i and 2a was highly regioselective, which might be due to the steric effect of the substituted methyl group. Then, the optimized reaction conditions were tested for the annulation of dialkyl substituted alkyne 2j with 1a (Table 2). Notably, instead of providing the indolo[1,2-a]quinazolinone derivative, this reaction afforded indazolo[1,2-a]indazolone 4aj in 62% yield. Because of the

Table 2. Scope of dialkyl alkynes (2j-k)

 $^aReaction\ conditions:$ 1a (0.1 mmol), 2a (0.1 mmol), catalyst (5 mol %), additive (0.1 mmol) and $^t\!AmOH\ (3.0\ mL)$ at 95 °C under air for 24 h.

importance of indazolo[1,2-*a*]indazolone containing compounds, the scope of the reaction was further studied. The phenylindazolones possessing substituents either on the fused or substituted phenyl ring **1b**,**1d**-**g**,**1i** provided corresponding indazolo[1,2-*a*]indazolones **4bj**,**4dj**-**gj**,**4ij** with **2j**, albeit with

Published on 18 December 2020. Downloaded by Auckland University of Technology on 12/18/2020 7:55:22 AM.

COMMUNICATION

Journal Name

low yields (50-63%). Similarly, another dialkyl substituted alkyne 2k tested for this reaction provided 63% yield of 4ak. The structure of synthesized compounds was determined with the help of NMR spectroscopy and single X-ray crystallographic studies of compounds 3ab and 4ij.8 The phenyl acetylene, trimethyl(phenylethynyl)silane, methyl 3-phenylpropiolate, 1,2-di-o-tolylethyne, 1,2-bis(2-chlorophenyl)ethyne and 1octene could not provide corresponding annulated indolo[1,2a]quinazolinone derivatives. The practical utility of this annulation reaction was established by accomplishing a gramscale reaction between 1a and 2a which provided 75% yield of 3aa (Scheme 2). Next, to determine the mechanism of this reaction, some of the control experiments were performed. The reaction of 1a with 2j in the presence of one equivalent of TEMPO furnished only 23% yield of 4aj, indicating the involvement of free radical in the formation of 4aj. Again, when the reactions between 1a and 2j/2k were stopped in three hours, without allowing total consumption of the starting materials, the indolo[1,2- α]quinazolinones 4aj' (E isomer) and 4ak' (E:Z = 24:1) were formed in 33-36% yields. These intermediates disappeared once the reactions were

Scheme 2. Gram-scale synthesis and control experiments

allowed to run for longer time. In case of aryl alkyl group containing alkyne **2I**, the intermediate **4al'** (*E* isomer) did not disappear after 24 hours also.⁸ An experiment performed under standard conditions using **1a** alone and CD₃OD (or D₂O) as solvent could not provide the H/D exchanged compound **1a**-**D** (Scheme 2). This reaction indicates a non-reversible formation of acyclic ruthenium complex as an intermediate.

Based on the literature reports and our findings, a possible mechanism for the formation of compounds **3aa** and **4aj** is proposed (Scheme 3).⁹ The active Ru(II) catalyst **A** first activates C-H bond of **1a** irreversibly to form a Ru(II) complex **B**. Then, alkyne metal coordination, followed by insertion of alkyne in between C-Ru bond affords Ru complex **C**. Insertion of the metal in between the weak N-N bond affords a sixmembered Ru(IV) complex **D**, which on reductive elimination

of the metal and subsequent C-2 activation generates a seven membered Ru complex F. The reductive elimination of 4the metal from F might have generated G and G', using alkynes 2a and 2j respectively. Then, elimination of a molecule of acetic acid from G and concomitant 1,2-phenyl group migration

Scheme 3. Probable mechanism

affords the final compound **3aa**. In the presence of alkyl substituents, elimination of a proton from alkyl side chain of **G'** is faster than the elimination of a proton from amide N-H which results in the formation of **H'** (**4aj'**). Addition of a molecule of oxygen in the exocyclic double bond of **H'** (**4aj'**), followed by elimination of a molecule of water, subsequent N-N bond formation and rearrangement affords **L'**. Probably, the

Journal Name

intermediate J' might exist in equilibrium with the intermediate K'. Because of the presence of the attached conjugated electron withdrawing keto functionality in J', the quaternary nitrogen is more electrophilic and as a result intramolecular cyclization occurs leading to the formation of N-N bond. The tautomer M' of L' might generate the tricyclic intermediate N' on intramolecular cyclization. Then hydroxy group directed oxidative addition of the metal in the C-C bond of cyclopropane ring closer to the C=N bond, might afford a six membered Ru complex O', which in the presence of acetic acid generates **4aj** via intermediate P'.

In conclusion, we have developed novel routes for the synthesis of quaternary carbon centered indolo[1,2-*a*]quinazolinones and indazolo[1,2-*a*]indazolones using the Ru(II)-catalyzed Csp²-H activation and annulation reaction of readily available phenylindazolones with internal alkynes. Because of the rapid assemblage of complex skeletons and simplicity in operation, these methods might be useful for the synthesis of related heterocyclic scaffolds.

Conflicts of interest

COMMUNICATION

"There are no conflicts to declare".

Acknowledgment

The authors thank SERB and CSIR New Delhi for financial support via the GPP-0367 (CRG/2019/00l898) and OLP 2038 projects. B. R. Bora thanks DST for the INSPIRE-SRF fellowship. We are grateful to the Director, CSIR-NEIST for his keen interests.

References

- (a) R. Rohini, P. M. Reddy, K. Shankera, A. Hu and V. Ravinder, *Eur. J. Med. Chem.*, 2010, **45**, 1200; (b) A. K. Bhattacharjee, D. J. Skanchy, B. Jennings, T. H. Hudson, J. J. Brendle and K. A. Werbovetz, *Bioorg. Med. Chem.*, 2002, **10**, 1979; (c) C.-W. Jao, W.-C. Lin, Y.-T. Wu and P.-L. Wu, *J. Nat. Prod.*, 2008, **71**, 1275.
- (a) D. V. Ferraris, J. Med. Chem., 2010, 53, 4561; (b) K. Zimmermann, R. Portmann and D. F. Rigel, U. S. Patent 6964960, 2005; (c) E. Vangrevelinghe, K. Zimmermann, J. Schoepfer, R. Portmann, D. Fabbro and P. Furet, J. Med. Chem., 2003, 46, 2656.
- For example, see: (a) T. Abe, Y. Takahashi, Y. Matsubara and K. Yamada, Org. Chem. Front., 2017, 4, 2124; (b) H. Jiang, J. Yang, X. Tang and W. Wu, J. Org. Chem., 2016, 81, 2053; (c) S. Badigenchala and G. Sekar, J. Org. Chem., 2017, 82, 7657 and references cited therein.
- 4 (a) Y. Xu, M. Shen, X. Zhang and X. Fan, Org. Lett., 2020, 22, 4697; (b) X. Wu and H. Ji, J. Org. Chem., 2018, 83, 4650; (c) Z. Yang, Z. Song, L. Jie, L. Wang and X. Cui, Chem. Commun., 2019, 55, 6094; (d) C. K. Mahesha, S. K. Mandal and R. Sakhuja, Asian J. Org. Chem., 2020, 9, 1199; (e) J. Zhou, L. Zhang, J. Chen, J. Chen, C. Yin and C. Yu, Tetrahedron Lett., 2020, 61, 152350; (f) H. Tomioka, A. Okuno, T. Sugiyama and S. Murata, J. Org. Chem., 1995, 60, 2344; (g) E. C. Breinlinger, A. Burchat, J. D. Dietrich, M. Friedman, D. Ihle, D. Kinsman, K. Mullen, A. T. Osuma, A. Vasudevan and N. S. Wilson, US20180215764A1; (h) W. E. Conrad, R. Fukazawa, M. J. Haddadin and M. J. Kurth, Org. Lett., 2011, 13, 3138.
- 5 For recent reviews and examples, see: (a) G. Duarah, P. P. Kaishap, T. Begum and S. Gogoi, *Adv. Synth. Catal.*, 2019,

- 6 (a) P. P. Kaishap, G. Duarah, B. Sarma, D. Chetia and S. Gogoi, *Angew. Chem., Int. Ed.,* 2018, 57, 456; (b) S. Borthakur, S. Baruah, B. Sarma and S. Gogoi, *Org. Lett.,* 2019, 21, 2768.
- For the construction of all-carbon quaternary stereocenters, see: (a) A. Y. Hong and B. M. Stoltz, *Eur. J. Org. Chem.*, 2013, 2745; (b) J. P. Das and I. Marek, *Chem. Commun.*, 2011, 47, 4593.
- 8 CCDC 1922253, CCDC 2024912 and CCDC 1922254 contain the supplementary crystallographic data for **3ab**, **4ij** and **4al**', respectively. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.
- 9 (a) M. Gulías and J. L. Mascareñas, Angew. Chem., Int. Ed., 2016, 55, 11000; (b) Z. Zhang, H. Jiang and Y. Huang, Org. Lett., 2014, 16, 5976; (c) D. Zhao, Z. Shi and F. Glorius, Angew. Chem., Int. Ed., 2013, 52, 12426; (d) Z. Cheng, W. Jin and C. Liu, Org. Chem. Front., 2019, 6, 841; (e) C. A. Merlic, M. M. Miller, B. N. Hietbrink and K. N. Houk, J. Am. Chem. Soc., 2001, 123, 4904; (f) S. Battula, A. Kumar, A. P. Gupta and Q. N. Ahmed, Org. Lett., 2015, 17, 5562; (g) T. Tamaki, M. Ohashi and S. Ogoshi, Angew. Chem., Int. Ed., 2011, 50, 12067; (h) S. Ogoshi, M. Nagata and H. Kurosawa, J. Am. Chem. Soc., 2006, 128, 5350; (i) M. Lin, F. Li, L. Jiao and Z.-X. Yu, J. Am. Chem. Soc., 2011, 133, 1690.

ChemComm Accepted Manuscript

A cascade, Ru(II)-catalyzed annulative transformation of phenylindazolones and alkynes into indolo[1,2-*a*]quinazolinones and indazolo[1,2-*a*]indazolones is reported.

