Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry

ELSEVIER

journal homepage: www.elsevier.com/locate/bmc

p-Guanidinoethyl calixarene and parent phenol derivatives exhibiting antibacterial activities. Synthesis and biological evaluation

Maxime Mourer, Hugues Massimba Dibama, Stéphane Fontanay, Marion Grare, Raphaël E. Duval, Chantal Finance, Jean-Bernard Regnouf-de-Vains *

SRSMC, UMR 7565 Nancy Université—CNRS, Groupe d'Etude des Vecteurs Supramoléculaires du Médicament, Faculté de Pharmacie, 5, rue Albert Lebrun, BP 80403, 54001 Nancy Cedex, France

ARTICLE INFO

Article history: Received 5 March 2009 Revised 5 June 2009 Accepted 18 June 2009 Available online 25 June 2009

Keywords: Calix[4]arene Guanidinium Phenylethers Bipyridine Bithiazole Antibacterials

ABSTRACT

The tetra-*para*-guanidinoethyl-calix[4]arene, its distally-disubstituted ether derivatives involving 2,2'bithiazolyl- or 2,2'-bipyridyl-methyl groups, as well as the *para*-guanidinoethylphenol and its analogous derivatives have been synthesized, fully characterized and evaluated as antibacterial agents towards both Gram positive and Gram negative reference bacteria. The simple phenolic species showed lower activity than their calixarene analogues, confirming the hypothesis that a synergistic effect should result from the spatial organization of guanidinium and heterocycles on a macrocyclic scaffold. Introduction of the bithiazole and bipyridine substituents enhanced the activity of simple phenol derivatives, reaching, for the two *Staphylococcus aureus* strains in particular, the values obtained for their calixarenic parents. MTT viability assays were carried out to determine selectivity indexes.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The emergence of resistance in pathogenic microorganisms to commercial antibiotics requires the development of specific fields of research dedicated to the discovery of new drugs.¹ In this sense, we have focused on a promising approach based on a calixarene platform designed as a molecular drug dispenser with, at the lower rim, penicillin or quinolone moieties attached via a labile bound,² as well as on calixarene derivatives displaying intrinsic antimicrobial activity. For the latter, among the various approaches that are under current evaluation in our group, one is devoted to polycationic calixarene-based podands integrating, for example, guanidinium groups.³ In recent years, the guanidinium derivatives have been but infrequently investigated as pharmaceutical antimicrobial agents.⁴ Most compounds studied are poly-guanidinium species derived from the old antidiabetic and trypanocidal drugs Synthalin A or B,⁵ in which the guanidiniums are found at the ends or along alkyl or polymeric chains, that could be regarded as flexible linear organizing templates.

More rigid, the calixarene species are oligomeric phenolic macrocycles that have demonstrated their excellent organizational behaviour for a multitude of active functionalities.⁶ Some but very few reports, essentially in the form of patents, have focused on their intrinsic therapeutical properties; some of them, hydrophilic, have shown interesting levels of activity against bacteria,⁷ fungi, cancerous cells and viruses,⁸ enveloped viruses,⁹ as well as against thrombosis¹⁰ and fibrotic diseases.¹¹ In the mid 50s, the calixarene derivative 'Macrocyclon',¹² and more recently some parent species,¹³ were studied in the treatment of tuberculosis and other mycobacterioses. Functionalized calixarene mimics of vancomycin has also been studied as antimicrobial agents.¹⁴

Given that most bacteria have a negatively charged surface, the introduction of positive charges on the calixarene core, that should lead to a constrained and highly organized oligomeric polycation, could give rise, with regards to the simple phenolic analogue, to an interesting synergistic effect in ionic interactions with the surface of bacteria, possibly resulting in an antibacterial activity.

Of the few simple organic cations available, guanidinium was first chosen for its stability over a large range of pH values. Only few calixarene guanidinium derivatives have been studied so far.¹⁵ Biological studies related to plasmid DNA binding and cell transfection^{16a-c} or endothelial cell proliferation inhibition^{16d} properties of upper- or lower-rim guanidylated calixarene derivatives have recently been described.

Consistent with the anticipated synergistic effect described above, we have recently shown³ that the tetra-*para*-guanidinoethyl-calix[4]arene **4** displayed very interesting antibacterial properties against various Gram positive and Gram negative reference strains

^{*} Corresponding author. Tel.: +33 03 83682315; fax: +33 03 83682345.

E-mail address: jean-bernard.regnouf@pharma.uhp-nancy.fr (J.-B. Regnouf-de-Vains).

^{0968-0896/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2009.06.040

of bacteria, at levels similar to those required with the well-known hexamidine **34**, but with a lower cytotoxicity. We have also show- n^{3a} that the constitutive monomer of **4**, the *para*-guanidinoethyl-phenol **18**, does not display any antibacterial activity, confirming our first hypothesis on the probable role of cyclotetramerization on the acquisition of activity.

In order to enlarge this new family, and as part of our centre of interest deals with metal chelation that might be involved in biological activity, we have prepared the chelating podands **14**, **15** and **16**, incorporating in alternate positions of the lower rim of **4**, two 2,2'-bipyridyl-methyl (α -methyl/**14**, β -methyl/**15**) or 2,2'-bithiazolyl-methyl subunits, respectively. In the cone conformation of the calixarene, these derivatives should display an amphiphilic character, strongly orienting the resulting tetracationic head towards the bacterium surface, and leaving the additional functionalities externally or internally oriented for further interactions. To evaluate the strength of the synergistic effect generated by the calixarene platform, we have also prepared the corresponding bipyridyl and bithiazolyl *para*-guanidinoethylphenyl ethers **29**, **30** and **31** (Scheme 1).

As reference compounds, we have chosen the old anthelminthic but toxic (pancreas) Synthalin A **33**,^{3,5a} having two guanidino groups attached at the ends of a linear decyl chain, and the well-known and widely used cutaneous antiseptic 1,6-bis-(*para*-amidinophenoxy)hexane **34** (hexamidine). The latter, as commercially available antibacterial compound with the structurally closest ionic functionality, is described as an antibacterial for Gram positive bacteria.

We present here the syntheses of calixarenes species **4**, **14**, **15** and **16**, and of their constitutive monomers **18**, **29**, **30** and **31**, as well as Synthalin A **33**, accompanied by evaluation of their antibacterial activity and cellular viability.

2. Chemistry

2.1. Synthalin A and hexamidine

Synthalin A **33** was prepared (Scheme 2) by an adaptation of the procedure of Elliot et al.,¹⁷ based on the reaction of 1,12-diaminodecane and 1,3-bis-(*tert*-butoxycarbonyl)-2-methyl-2-thio-

Scheme 1. Water-soluble guanidinium and amidinium compounds of this study.

Scheme 2. Reagents and conditions: (i) J, NEt₃, HgCl₂, DMF, Ar, rt, 52%; (j) TFA, CH₂Cl₂, rt, dialysis, 70%.

pseudourea J, in the presence of $HgCl_2$; the resulting tetra-(Boc) species **32** was treated with TFA in CH_2Cl_2 at rt to give after dialysis and lyophilization the double trifluoroacetate salt **33**. All analyses were consistent with the proposed structure, and elemental analysis of each batch confirmed the presence of one molecule of associated water.

The hexamidine di-isetionate **34** was obtained by evaporation of solvents and lyophilization of the commercial solution, containing also 0.75 equiv of sodium acetate. The composition of each batch was monitored by ¹H NMR and elemental analysis.

2.2. Calixarenes

The tetra-*para*-guanidinoethylcalix[4]arene tetra-trifluoroacetate **4** was prepared via a four-step process from the tetra*para*-aminoethyl-calix[4]arene **A**, obtained as tetra-hydrochloride salt according to Gutsche et al.¹⁸ Following a standard procedure (Scheme 3), **A** was then transformed (90% yield) into its tetra-(*N*-tert-butoxycarbonyl)- analog **1**, easy to purify, and key compound for the development of lower-rim substituted derivatives. Compound **1** was then deprotected in acidic conditions (TFA, CH₂Cl₂) to give the tetra-*para*-aminoethyl-calix[4]arene, tetra-

Scheme 3. Reagents and conditions: (i) (Boc)₂O, NaOH, dioxane, H₂O, rt, ca. 12 h, 90%; (j) RCH₂Br, K₂CO₃, MeCN, reflux, Ar, 5–7 h, **5**: R = 6-yl-(6'-methyl-2,2'-bipyridine) (bpy-α), 70%; **6**: R = 5-yl-(5'-methyl-2,2'-bipyridine) (bpy-β), 61.4%; **7**: R = 4-yl-(4'-methyl-2,2'-bithiazole) (btz), 69%; (k) CH₂Cl₂, TFA, rt, **2**: R = H, 92%; **8**: R = bpy-α, 91%; **9**: R = bpy-β, 96%; **10**: R = btz, 93%; (l) **K**, NEt₃, CH₂Cl₂, MeOH, rt, 3–5 h, **3**: R = H, 65%; **11**: R = bpy-α, 76%; **12**: R = bpy-β, 84%; **13**: R = btz, 77%; (m) CH₂Cl₂, TFA, rt, **4**: R = H, 95%, **14**: R = bpy-α. TFA, 74%, **15**: R = bpy-β, 83%; **16**: R = btz, 73%. (bpy-α, bpy-β, btz: see offset in Scheme 4).

trifluoroacetate **2**, in 92% yield. The reaction of **2** with N_1,N_2 -(di-Boc)- N_3 -triflylguanidine **K** under the conditions defined by Baker et al.¹⁹ afforded the *octa*-boc guanidino derivative **3** in 65% yield after chromatography. Attempts to prepare **3** with the *Elliot's* less expensive process resulted in the formation of multiple products not easy to separate, leading us to prefer *Baker's* procedure.

Acidic hydrolysis of **3** in TFA/CH₂Cl₂ gave the tetra-guanidino derivative **4**, in 95% yield after a quality normalization process involving multiple dialysis–lyophilization cycles.

The preparation of the bis-(2,2'-bipyridyl) and bis-(2,2'-bithiaz-olyl) guanidino podands **14**, **15** and **16** followed a similar strategy, starting from the tetra-*para*-(boc-aminoethyl)calix[4]arene **1**. Thus, the reaction of 6-bromomethyl-6'-methyl-2,2'-bipyridine^{20a} or 5-bromomethyl-5'-methyl-2,2'-bipyridine^{20b,c} or 4-bromomethyl-4'-methyl-2,2'-bithiazole²¹ with **1** in dry MeCN, in the presence of K₂CO₃ as base, and following the usual stoichiometries proposed for base-strength regioselective functionalization of calix[4]arene,²² afforded the podands **5**, **6** and **7**, respectively, with yields of 60–70%. Acidic hydrolysis of amine protecting groups was performed under the usual conditions (TFA, CH₂Cl₂), giving the tetra ammonium trifluoroacetates **8**, **9** and **10**, respectively, in almost quantitative yields.

The reaction of **8**, **9** and **10** with **K** under the conditions of Baker et al.¹⁹ afforded in yields of ca. 75% after chromatography the *octa*boc guanidino bipyridyl and bithiazolyl derivatives **11**, **12** and **13**, respectively. Attempts to synthesize **11**, **12** and **13** by reaction of bromomethyl heterocycles with the protected guanidino calixarene **3** gave unsatisfactory results, notably in terms of yield and ease of purification process. Acidic hydrolysis of the Boc-protective groups in TFA/CH₂Cl₂ mixture finally gave the corresponding tetraguanidinium trifluoroacetates **14**, **15** and **16**, respectively, in yields of 75–85%; a quality normalization process involving multiple dialysis–lyophilization cycles was applied in each case.

2.3. Phenol derivatives

The *para*-guanidinoethylphenol was prepared as its trifluoroacetate salt **18** by acidic hydrolysis of the *para*- N_1 , N_2 -di(Boc)-guanidinoethylphenol 17 in a mixture of TFA and CH₂Cl₂ at rt. Compound 17 was obtained from tyramine hydrochloride F in two different ways: the first one was an adaptation of the procedure of Elliot et al.¹⁷ similar to that providing **33**, with an interesting yield of 90%; the second one consisted in the reaction of **K** with **F**, adapting the procedure of Baker et al.,¹⁹ giving **17** with in 72% yield. As for the calixarenes, the introduction of the bipyridyl and bithiazolyl arms was done on an N-protected derivative of tyramine; for consistency in work-up procedures, the boc-protective group was chosen. The N-Boc-para-aminoethylphenol 19 was prepared by reaction of (Boc)₂O and **F** under standard conditions, with a yield of ca. 70% after chromatography. The bipyridyl and bithiazolyl derivatives 20, 21 and 22 were prepared in yields of ca. 80% after chromatography via nucleophilic attack of 6-bromomethyl-6-methyl-2,2'-bipyridine, 5-bromomethyl-5'-methyl-2,2'-bipyridine or 4-bromomethyl-4'-methyl-2,2'-bithiazole by 19 in MeCN, using K₂CO₃ as base. Standard acidic deprotection of amino groups of 20, 21 and 22 afforded the trifluoroacetate salts 23, 24 and 25, in yields of 85%, 96% and 93%, respectively. The formation of the di(Boc)-guanidino derivatives 26 and 28 was carried out according to the two procedures mentioned above, with a clearly better yield when using *N*,*N*'-bis(*tert*-butoxycarbonyl)-*N*''-triflylguanidine **K**. Only this procedure was employed to synthesize 27. The acidic hydrolysis of Boc-protective groups afforded the bipyridyl derivatives 29 and 30 in yields of 80% and 95%, respectively, and the bithiazolyl derivative 31 in almost quantitative yield.

¹H, ¹³C NMR, elemental analyses and mass spectrometry were consistent with the proposed formulas for all new compounds.

According to the criterions established by de Mendoza and coworkers, 23 13 C NMR spectrum of **4** (D₂O) indicated that the molecule adopts the cone conformation, showing an Ar-CH₂-Ar resonance signal at δ 30.96. Nonetheless, the corresponding protons appear as a broad singlet at 3.82 ppm, indicating that the conformation is quite mobile.^{3a} The incorporation of bipyridyl and bithiazolyl arms resulted in rigidification of the calixarene platform in the cone conformation, characterized by the appearance of AB systems (J_{AB} = ca. 13 Hz) for the Ar-CH₂-Ar protons in the ¹H NMR spectra of **14**, **15** and **16**, and by corresponding ¹³C NMR resonance signals at δ ca. 31 ppm. Elemental analysis of compounds **14** and **15** was consistent with the presence of 6 molecules of CF₃COOH, indicating the additional protonation of each bipyridyl group, while **16**, that includes the less basic bithiazolyl groups. contains 4 acid groups. Negative and/or positive mode electrospray was employed for mass spectrometric analysis of all compounds. giving in each case the expected information. As already observed for other poly-ionic calixarene species,²⁴ the amino- and guanidino-derivatives generally showed, here in the positive mode, a succession of groups of signals attributed to mono-, di- and tricharged species resulting from the loss of one to four CF₃COOH equilibrated by protonation.

3. Biological evaluation

The *para*-guanidinoethylphenol **18**, monomer of **4**, has been evaluated as an uptake inhibitor of prazosin by transport-P system,²⁵ for treating mitochondria-associated diseases,²⁶ non-insulin-dependent diabetes mellitus and obesity,²⁷ and hypotension,²⁸ but no antibiotic activity evaluation had been described until our previous report.^{3a}

In this study, in vitro antibacterial activity [e.g., minimum inhibition concentration (MIC) determination] of compounds **4**, **14**, **15** and **16** was evaluated and compared to their corresponding monomers **18**, **29**, **30** and **31**. Hexamidine **34** and 1,10-bis-guanidinodecane (Synthalin A) **33** were chosen as reference compounds. MICs were determined for two Gram negative (*Escherichia coli* ATCC 25922, *Pseudomonas aeruginosa* ATCC 27853) and three Gram positive (*Staphylococcus aureus* ATCC 25923 and ATCC 29213, *Enterococcus faecalis* ATCC 29212) reference strains, by broth microdilution method recommended by the CLSI.²⁹ Due to its presence in high amounts in calixarenes species, the trifluoroacetate anion was also evaluated; in fact, sodium trifluoroacetate did not exhibit any activity at concentrations inferior to 256 µg mL⁻¹.

Drugs were also tested for their effect on eukariotic cell viability by MTT assays on MRC-5 cells (human pulmonary embryonic fibroblasts), or by LDH assays in order to determine IC_{50} (inhibitory concentration 50%) and deduce selectivity indexes (SI), at 24, 48 and 168 h exposure to drugs.

As shown in Table 1, the MIC values obtained for the calixarene species **14**, **15** and **16** remain in the micromolar range, close to the unsubstituted analog **4** and to hexamidine **34**, but with a better homogeneity with regards to the Gram character of the bacterial strains. The introduction of the bipyridyl and bithiazolyl arms at the lower rim of the calixarene platform does not result in a strong modification of the apparent antibacterial behaviour, with regards to **4**.

Passing to the monomeric species **29**, **30** and **31**, and depending on the bacterial strain, this behaviour changes drastically. These compounds display a variable but sometimes very interesting antibacterial activity, notably against the two *S. aureus* strains, and, for **30**, against *E. coli*. Compared to the unsubstituted analog **18**, the presence of the biheterocyclic arms appears to generate an important gain of activity against all of the tested strains.

Scheme 4. Reagents and conditions: (i) (Boc)₂O, NaOH, dioxane, H₂O, rt, ca. 12 h, 73%; (j) RCH₂Br, K₂CO₃, MeCN, reflux, Ar, 5 h, **20**: R = 6-yl-(6'-methyl-2,2'-bipyridine) (bpy-α), 82%; **21**: R = 5-yl-(5'-methyl-2,2'-bipyridine) (bpy-β), 80%; **22**: R = 4-yl-(4'-methyl-2,2'-bithiazole) (btz), 85%; (k) CH₂Cl₂, TFA, rt, **23**: R = bpy-α.1/2 TFA, 86%; **24**: R = bpy-β, 96%; **25**: R = btz, 95%; (l) way 1: **K**, NEt₃, CH₂Cl₂, MeOH, rt, 2–4 h, **17**: R = H, 72%; **26**: R = bpy-α, 85%; **27**: R = bpy-β, 84%; **28**: R = btz, 95%; way 2: **J**, NEt₃, HgCl₂, DMF, rt, Ar, **17**: R = H, 90%; **26**: R = bpy-α, 64%; **28**: R = btz, 60%; (m) CH₂Cl₂, TFA, rt, **18**: R = H, 90%; **29**: R = bpy-α.1/2 TFA, 82%; **30**: R = bpy-β, 95%; **31**: R = btz, 98%.

Table 1

MIC values ($\mu g m L^{-1}$ and (10⁻⁶ mol L⁻¹)) obtained by broth microdilution method, according to CLSI guideline

	E. coli ATCC 25922	P. aeruginosa ATCC 27853	S. aureus ATCC 25923	S. aureus ATCC 29213	E. faecalis ATCC 29212
Minimum inhibitory concentra	tion (MIC) in $\mu g m L^{-1}$ (10 ⁻⁶ mol	L^{-1})			
4 (1239.0)	4 (3.2)	32 (26.0)	8 (6.5)	8 (6.5)	32 (26.0)
18 (293.24)	512 (1750.0)	>512 (1750.0)	512 (1750.0)	512 (1750.0)	>512 (1750.0)
14 (1867.53)	16 (8.6)	16 (8.6)	16 (8.6)	16 (8.6)	16 (8.6)
29 (532.47)	128 (240.0)	128 (240.0)	16 (30.0)	8 (15.0)	64 (120.2)
15 (1885.56)	32 (17)	32 (17)	8 (4.2)	8 (4.2)	8 (4.2)
30 (475.46)	8 (16.8)	128 (270)	8 (16.8)	4 (8.4)	64 (135)
16 (1695.49)	16 (9.5)	16 (9.5)	8 (4.7)	16 (9.5)	8 (4.7)
31 (487.52)	64 (131.3)	128 (262.5)	16 (33.0)	8 (16.4)	64 (131.3)
33 (498.45)	64 (128.4)	128 (256.8)	64 (128.4)	16 (32.0)	256 (513.6)
34 (668.22)	8 (12.0)	32 (47.9)	4 (6.0)	<1 (1.5)	2 (3.0)

Molecular weights in italic.

The analysis of molar or massic MIC ratios (Table 2; monomer vs calixarene) confirms the smaller impact of the calixarene structure on the antibacterial activity, for the group of the substituted species.

As shown in Table 3, the bipyridyl and bithiazolyl analogs **14**, **16**, **29**, **31** and, to a lesser extent, **15** and **30**, have an impact on MRC-5 cells viability stronger than **4** and **18**, reaching the IC_{50} of hexamidine **34** and Synthalin A **33** at 24 h.

The calculated selectivity indexes SI, that is, IC_{50} at 24 h/MIC reported in Table 4, thus appear less interesting for the substituted species in the calixarene family, and sometimes better for the

Table 2

Massic (mr)	and	molar	(Mr)	MIC	ratios	between	calixarene	species	and	their
corresponding	g mo	nomers								

	18/4		29/14		30/15		31/16	
	mr	Mr	mr	Mr	mr	Mr	mr	Mr
E. coli ATCC 25922	128	547	8	28	0.25	1	4	14
P. aeruginosa ATCC 27853	>16	>67	8	28	4	16	8	28
S. aureus ATCC 25923	64	269	1	3.5	1	4	2	7
S. aureus ATCC 29213	64	269	0.5	1.7	0.5	2	0.5	1.7
E. faecalis ATCC 29212	>16	>67	4	14	8	32	8	28

Table 3

IC50	values	obtained	with	viability	assays	(MTT;	^a :LDH)
						· ·	

	4 1239.0 ^b	18 293.2	14 1867.5	29 532.5	15^a 1885.5	30 ª 475.5	16 1695.5	31 487.5	33 498.5	34 668.2
IC ₅₀ (μg mL ⁻	¹)									
24 h	256<	256<	16-32	32-64	>128	>128	16-32	64-128	128-256	32-64
48 h	256<	256<	16-32	16-32	>128	>128	16-32	32-64	8-16	16-32
168 h	128-256	32-64	16-32	2-4	nd	nd	16-32	8-16	<1	4-8

Compounds were added at concentrations from 256 to 1 μg mL⁻¹ for 24, 48 and 168 h. Each value is representative of three independent determinations. nd: not determined. ^bMolecular weights in g mol⁻¹.

Table 4

Selectivity indexes calculated for the five reference strains, after 24 h exposure of MRC-5 cells to the compounds of the study

	E. coli ATCC 25922	P. aeruginosa ATCC 27853	S. aureus ATCC 25923	S. aureus ATCC 29213	E. faecalis ATCC 29212					
Selectivity indexes IC ₅₀ 24 h/MIC										
4	>64	>8	>32	>32	>8					
18	>0.5	0.5	>0.5	>0.5	0.5					
14	1–2	1–2	1-2	1-2	1–2					
29	0.25-0.5	0.25-0.5	2-4	4-8	0.5-1					
15	>4	>4	>16	>16	>16					
30	16	>1	>16	>32	>2					
16	1–2	1–2	2-4	1–2	2-4					
31	1–2	0.5-1	4-8	8-16	1–2					
33	2-4	1-2	2-4	8-16	0.5-1					
34	4-8	1–2	8-16	32-64	16-32					

monomers (cases of **30** and **31**). Nevertheless, the bipyridyl calixarene **15** exhibits a relatively pronounced selectivity towards Gram positive strains, with SI >16.

It is interesting to note (Table 3) that the toxicity of all calixarene species remains stable at 48 and 168 h, while the monomers, Synthalin A and hexamidine become more toxic, resulting for the latter in lower selectivity indexes. This fact can be of great importance when considering differences in eukaryotic and prokaryotic cell growth kinetics, or when considering long-lasting decontamination processes. This point is the subject of current specific investigations.

4. Conclusion

The results obtained in this study show that the introduction of two bipyridyl or bithiazolyl arms at the lower rim of the tetra*para*-guanidinoethyl-calix[4]arene platform does not greatly modify the antibacterial properties of the lead compound **4**, maintaining the micromolar activity levels encountered for commercial products for both the reference Gram positive and negative strains.

These new calixarene compounds have a stronger impact on eukariotic cell viability at 24 h, thus diminishing their selectivity indexes; nevertheless, the fact that this toxicity remains stable for calixarenes **4**, **14**, **15** and **16** at 48 and 168 h, a contrario to reference compounds, reinforces the general interest of these structures for the building of a new family of antibacterial agents.

As for the initially-studied unsubstituted derivatives, but to a lesser extent, our results tend to confirm the organizational role of the calixarene core, that tethers close together and arrays at its upper rim four guanidinium groups, for the genesis of an antibacterial activity. At this stage of the study, and according to previous results, this seems indicative of a synergistic effect in ionic interactions with the membrane targets. Nevertheless, the introduction of the biheterocyclic substituents on the single phenol unit (monomers) generates an antibacterial activity unforeseen with the unsubstituted analog. This may be attributable to either the amphiphilic character of the new monomeric species, or to a specific activity of the water-solubilized biheterocyclic subunits. In this sense, such properties could be involved in the structureactivity relationships of the calixarene family, but seem only translated by a gain in cellular toxicity.

The development of new derivatives and investigations devoted to the mode of antibacterial action of these two new families of compounds are now under way.

5. Experimental

5.1. Chemistry

5.1.1. General remarks

Melting points (°C, uncorrected) were determined on an Electrothermal 9200 in Capillary apparatus. ¹H and ¹³C spectra were recorded on a Bruker DRX 400 (chemical shifts in ppm). Mass spectra (electronic ionization—EI, and electrospray—ES) were recorded on a Micromass Platform II apparatus, at the Service Commun de Spectrométrie de Masse Organique, Nancy. Infrared measurements were performed on a Vector 22 Bruker FT apparatus (KBr, ν in cm⁻¹) and UV spectra were recorded a SAFAS *UV mc*² apparatus, λ_{max} in nm, ε in dm³ mol⁻¹ cm⁻¹. Elemental analyses were performed at the Service de Microanalyse, Nancy. Merck TLC plates were used for chromatography analysis (SiO₂, ref 1.05554; Al₂O₃, ref 1.05581). All commercially available products were used without further purification unless otherwise specified.

5.1.2. 5,11,17,23-Tetra-(Boc-aminoethyl)-25,26,27,28-calix[4]arene tetrol 1

1 M aqueous NaOH (14 mL, 14 mmol) was added to a solution of A (0.83 g, 1.05 mmol) in a mixture of dioxane and H_2O (40 and 24 mL, respectively). After stirring during 10 min, di-tert-butyldicarbonate (Boc₂O) (0.97 g, 4.44 mmol) was added. The resulting solution was stirred overnight at rt and under Ar (TLC monitoring: Al₂O₃, CH₂Cl₂/MeOH, 98:2). The solution was concentrated under vacuum, and AcOEt (40 mL) was added; the pH was brought to 8 with 1 M HCl, and the organic phase was recovered. The aqueous phase was extracted with AcOEt (2 \times 30 mL), and the combined organic phases were dried over Na₂SO₄, and evaporated to dryness. The resulting oily material was chromatographed (Al₂O₃, CH₂Cl₂/ MeOH, 99:1) to give 1 (0.93 g, 90%). White solid. Mp: 131-131 °C. IR (KBr): 3351.6 (OH); 1701.3 (CO); 1509.6 (NH). UV-vis (CH₂Cl₂): 280 (31,186). ¹H NMR (400 MHz, CDCl₃): 1.27 (m, 36H, *Me*₃C); 2.59 (t, *J* = 6.6 Hz, 8H, CH₂CH₂N); 3.27 (br s, 8H, CH₂CH₂N); 3.44–4.21 (AB, J_{AB} = 13.6 Hz; 8H, ArCH₂Ar); 6.86 (s, 8H, ArH); 10.26 (s, 4H, OH). ¹³C NMR (100 MHz, CDCl₃): 28.64 (Me₃C); 32.34 (ArCH₂Ar); 35.73 (CH₂CH₂N); 42.17 (CH₂CH₂N); 79.54 (Me₃C); 128.57 (C_o); 129.91 (C_m); 132.96 (C_p); 147.75 (C_{ipso}); 156.40 (CO). Anal. Calcd for C₅₆H₇₆O₁₂N₄ (997.31): C, 67.44; H, 7.68; N, 5.61. Found: C, 67.43; H, 7.35; N, 5.61. ES-MS (pos. mode): 1019.08 [M+Na⁺]⁺. ES-MS (neg. mode): 995.15 [M-H⁺]⁻.

5.1.3. Compounds 5, 6 and 7-general procedure

A mixture of **1** (1 equiv) and K_2CO_3 (1 equiv) in dry MeCN was refluxed under Ar during 0.5 h. The bromoalkyl reactant (2 equiv)

was then added, and reflux was maintained during \times h (TLC monitoring, Al₂O₃, CH₂Cl₂/MeOH 98:2). After cooling to rt, the solvent was evaporated to dryness, and the solid residue was dissolved in CH₂Cl₂, filtered, then chromatographed to give the pure podand.

5.1.3.1. 5,11,17,23-Tetra-(Boc-aminoethyl)-25,27-bis(6-methyl-eneoxy-6'-methyl-2,2'-bipyridyl)-26,28-dihydroxycalix[4]arene

5. From 1 (0.1 g, 0.1 mmol), K₂CO₃ (0.014 g, 0.1 mmol), MeCN 6-bromomethyl-6'-methyl-2,2'-bipyridine (10 mL), (0.053 g, 0.2 mmol); 5 h (TLC monitoring, Al₂O₃, CH₂Cl₂/MeOH 98:2); chromatography: Chromatotron, Al_2O_3 , CH_2Cl_2 ; **5** (0.09 g, 70%). White powder. Mp: 114-115 °C. IR (KBr): 3367.5 (OH); 1707.9 (CO). UVvis (CH₂Cl₂): 290 (47737). ¹H NMR (400 MHz, CDCl₃): 1.41-1.43 (m, 36H, Me₃C); 2.43 (m, 4H, CH₂CH₂N of **B**); 2.61 (s, 6H, Me bpy); 2.69 (m, 4H, CH₂CH₂N of **A**); 3.11 (m, 4H, CH₂CH₂N of **B**); 3.33 (m, 4H, CH₂CH₂N of **A**); 3.34–4.38 (AB, *J*_{AB} = 13.2 Hz, 8H, ArCH₂Ar); 4.50-4.62 (m, 4H, NH); 5.21 (s, 4H, OCH₂bpy); 6.72 (s, 4H, ArH of **B**); 6.89 (s, 4H, ArH of **A**); 7.04 (d, I = 7.5 Hz, 2H, $H_{5'}$ bpy); 7.54 (t, J = 7.5 Hz, 2H, $H_{4'}$ bpy); 7.61 (d, J = 7.5 Hz, 2H, H_4 bpy); 7.76 (br s, 2H, OH); 8.04 (d, J = 7.6 Hz, 2H, H₅ bpy); 8.16 (d, J = 7.8 Hz, 2H, H_{3'} bpy); 8.35 (d, I = 7.8 Hz, 2H, H_3 bpy). ¹³C NMR (100 MHz, CDCl₃): 25.00 (Me bpy); 28.89 (CMe₃); 31.98 (ArCH₂Ar); 35.69 (CH₂CH₂N of A); 36.13 (CH₂CH₂N of B); 42.24 (CH₂CH₂N of B); 42.63 (CH₂CH₂N of **B**); 79.16 (OCH₂bpy); 79.47 (CMe₃); 118.70 (C₃ bpy); 120.51 (C₃ bpy); 121.51 (C₅ bpy); 123.75 (C_{5'} bpy); 128.27 (C₀ of **A**); 129.37 (*C_m* of **A**); 129.77 (*C_p* of **A**); 129.86 (*C_m* of **B**); 133.48 (*C_o* of **B**); 136.26 (*C*_p of **B**); 137.45 (*C*₄ bpy); 128.50 (*C*₄ bpy); 151.19 (*C*_{ipso} of **B**); 152.26 (*C*_{*ipso*} of **A**); 155.68 (*C*₆ bpy); 156.22 (*C*_{6'} bpy); 156.39 (COO of **A** and **B**); 156.68 (*C*₂ bpy); 158.23 (*C*_{2'} bpy). Anal. Calcd for C₈₀H₉₆O₁₂N₈·0.5H₂O (1370.68): C, 70.10; H, 7.13; N, 8.17. Found: C, 68.82; H, 6.93; N, 8.12. ES-MS (pos. mode): 681.5 [M+2H]^{2+/2}, 692.9 [M+H+Na]^{2+/2}, 703.5 [M+2Na]^{2+/2}, 711.4 [M+Na+K]^{2+/2}, 1361.9 [M+H]⁺, 1384.0 [M+Na]⁺, 1400.7 [M+K]²⁺.

5.1.3.2. 5,11,17,23-Tetra-(Boc-aminoethyl)-25,27-bis(5-methyl-eneoxy-5'-methyl-2,2'-bipyridyl)-26,28-dihydroxycalix[4]arene

6. From 1 (0.3 g, 0.3 mmol), K₂CO₃ (0.105 g, 0.8 mmol), MeCN 5-bromomethyl-5'-methyl-2-2'-bipyridine (30 mL). (0.158 g. 0.6 mmol); 4 h (TLC monitoring, SiO₂, CH₂Cl₂/MeOH 98:2); chromatography: Al_2O_3 , CH_2Cl_2 ; **6** (0.251 g, 61.4%). White powder. Mp: 127-128 °C. IR (KBr): 3365.02 (OH); 1708.98 (CO). UV-vis (CH₂Cl₂): 290 (68,214). ¹H NMR (400 MHz, CDCl₃): 1.42 (br s, 36H, Me_3C); 3.13 (m, I = 5.8 Hz; 4H, CH_2CH_2N of **B**); 3.27 (m, 4H, CH₂CH₂N of A); 3.26–4.20 (AB, J_{AB} = 13.08 Hz, 8H, ArCH₂Ar); 5.14 (s, 4H, OCH₂bpy); 6.72 (s, 4H, ArH of **B**); 6.83 (s, 4H, ArH of **A**); 7.51 (dd, J = 7.2 Hz, 2H, $H_{4'}$ bpy); 7.61 (br s, 2H, OH); 8.12 (dd, $J = 8.04 \text{ Hz}, 2\text{H}, H_{3'} \text{ bpy}$; 8.23 (d, $J = 8.04 \text{ Hz}, 2\text{H}, H_4 \text{ bpy}$); 8.38 (d, J = 7.6 Hz, 2H, H_3 bpy); 8.39 (s, 2H, $H_{6'}$ bpy); 8.87 (s, 2H, H_6 bpy). ¹³C NMR (100 MHz, CDCl₃): 18.72 (Mebpy); 28.86 Me₃C; 32.14 (ArCH₂Ar); 35.64, 36.18 (CH₂CH₂N); 42.25, 42.52 (CH₂CH₂N); 76.09 (OCH₂bpy); 79.45 (Me₃C); 121.14, 121.27, 136.95, 137.72, 148.82, 149.83 (C_3 , C_3 , C_4 , C_4 , C_6 , C_6 , of bpy); 129.27, 129.89 (C_m of Ar); 128.26, 132.20, 133.68, 136.39, 150.90 (C_o and C_p of Ar, C₅, C_{5'}, of bpy); 151.96, 153.56 (C_i of Ar); 156.25 (COO); 156.40, 156.52 (C₂, C_{2'}, of bpy). Anal. Calcd for C₈₀H₉₆N₈O₁₂·0.25CH₂Cl₂ (1444.66): C, 69.70; H, 7.03; N, 8.10. Found: C, 69.87; H, 6.98; N, 8.09. ES-MS (pos. mode): 1361.5 [M+H]⁺, 1383.5 [M+Na]⁺, 1389.2 $[3M+3H+CH_2Cl_2]^{3+/3}$.

5.1.3.3. 5,11,17,23-Tetra-(Boc-aminoethyl)-25,27-bis(4-methyleneoxy-4'-methyl-2,2'-bithiazolyl)-26,28-dihydroxycalix[4]arene 7. From **1** (0.33 g, 0.33 mmol), K₂CO₃ (0.046 g, 0.33 mmol), MeCN (15 mL), 4-bromomethyl-4'-methyl-2,2'-bithiazole (0.182 g, 0.66 mmol); 7 h (TLC monitoring, Al₂O₃, CH₂Cl₂/MeOH 98:2); chromatography: Al₂O₃, CH₂Cl₂; **7** (0.28 g, 69%). Yellow powder. Mp: 128–129 °C. IR (KBr): 3370.9 (OH); 1704.7 (CO); 1509.8 (NH).

UV-vis (CH₂Cl₂): 291 (23,731); 330 (34,366). ¹H NMR (400 MHz, CDCl₃): 1.46 (m, 36H, Me₃C); 2.48 (br t, J = 7.1 Hz, 4H, CH₂CH₂N of **B**); 2.54 (s, 6H, Mebtz); 2.67 (br t, J = 6.9 Hz, 4H, CH₂CH₂N of **A**); 3.14 (br t, J = 6.5 Hz, 4H, CH₂CH₂N of **B**); 3.30 (m, 4H, CH₂CH₂N of **A**); 3.32–4.30 (AB, J_{AB} = 13.1 Hz, 8H, ArCH₂Ar); 4.55 (br s, 2H, NH of **A** or **B**); 4.66 (br s, 2H, NH of **A** or **B**); 5.23 (s, 4H, OCH₂ btz); 6.73 (s, 4H, ArH of **B**); 6.87 (s, 4H, ArH of **A**); 7.00 (s, 2H, H_{5'} btz); 7.70 (br s, 2H, OH); 7.96 (s, 2H, H₅ btz). ¹³C NMR (100 MHz, CDCl₃): 17.54 (Me btz); 28.89 (CMe₃); 31.91 (ArCH₂Ar); 35.67 (CH₂CH₂N of A); 36.17 (CH₂CH₂N of B); 42.21 (CH₂CH₂N of B); 42.56 (CH₂CH₂N of A); 74.57 (OCH₂btz); 79.50 (CMe₃); 116.40 (C₅, btz); 118.28 (C₅ btz); 128.23 (C_p of A); 129.40 (C_m of A); 129.88 (C_m of B); 129.99 (C_o of **B**); 133.55 (C_o of **A**); 136.45 (C_p of **B**); 150.93 (C_{ipso} of **B**); 152.03 (Cipso of A); 154.02 (C2 btz); 154.75 (C2' btz); 156.24 (COO of **B**); 156.39 (COO of **A**); 160.76 (C_{4'} btz); 162.27 (C₄ btz). Anal. Calcd for C₇₂H₈₈O₁₂N₈S₄·2CH₂Cl₂ (1552.45): C, 57.13; H, 5.96; N, 7.20; S, 8.25. Found: C, 56.97; H, 5.49; N, 7.27; S, 8.53. ES-MS (pos. mode): 1406.6 [M+Na⁺]⁺.

5.1.4. Compounds 2, 8, 9 and 10-general procedure

A solution of tetra-boc aminoethyl calixarene derivative in dry CH_2Cl_2 and TFA was stirred at rt under Ar during ca. 3 h. The solvent were evaporated, and the residual TFA was eliminated by five dissolution in CH_2Cl_2 -evaporation cycles. The semi-solid residual material was dried under high vacuum, then triturated in dry Et_2O to give the corresponding salt.

5.1.4.1. 5,11,17,23-Tetra-(aminoethyl)-25,26,27,28-calix[4]arene tetrol, tetra-trifluoroacetate salt 2. From 1 (0.53 g, 0.54 mmol), CH₂Cl₂ (40 mL), TFA (10 mL); **2** (0.53 g, 92%). White precipitate. Mp: >200 °C (dec). IR (KBr): 3144.7 (OH); 1686.6 (COO). UV-vis (H₂O): 284 (9675). ¹H NMR (400 MHz, DMSO- d_6): 2.59 (t, J = 7.9 Hz, 8H, CH₂CH₂N), 2.92 (br s, 8H, CH₂CH₂N); 3.67 (br s, 8H, ArCH₂Ar), 6.91 (s, 8H, ArH), 7.84 (br s, 12H, NH₃). ¹H NMR (400 MHz, D₂O): 2.66 (t, J = 7.1 Hz, 8H, CH₂CH₂N); 3.04 (t, J = 7.3 Hz, 8H, CH₂CH₂N); 3.83 (br s, 8H, ArCH₂Ar); 6.97 (s, 8H, ArH). ¹³C NMR (100 MHz, D₂O): 31.01 (Ar-CH₂-Ar); 32.25 (ArCH₂CH₂N); 40.83 (ArCH₂CH₂N); 116.78 (q, $J = 291.97 \text{ Hz}, CF_3COOH); 128.98 (C_m); 129.32 (C_o); 130.62 (C_p);$ 147.80 (C_{ipso}); 163.07 (q, J = 35.21 Hz, CF₃COOH). Anal. Calcd for C₃₆H₄₄O₄N₄ 4CF₃COOH H₂O (1070.86): C, 49.35; H, 4.70; N, 5.23. Found: C, 49.31; H, 4.85; N, 5.30. ES-MS (pos. mode): 711.00 [M-3CF₃COOH+H⁺]⁺. ES-MS (neg. mode): 1050.60 [M-H⁺]⁻, 936.76 [M-CF₃COOH-H⁺]⁺, 822.99 [M-2CF₃COOH-H⁺]⁺, 709.03 [M-3CF₃ COOH-H⁺]⁺, 595.19 [M-4CF₃COOH-H⁺]⁺.

5.1.4.2. 5,11,17,23-Tetra-(aminoethyl)-25,27-bis(6-methyleneoxy-6'-methyl-2,2'-bipyridyl)-26,28-dihydroxycalix[4]arene, hexa-trifluoroacetate salt 8. From 5 (0.15 g, 0.119 mmol), CH₂Cl₂ (15 mL), TFA (5 mL); 8 (0.17 g, 91%). White precipitate. Mp: 100-101 °C. IR (KBr): 3413.3 (OH); 2934.8 (NH₃⁺); 1677.9 (COO). UVvis (H₂O): 286 (28,048). ¹H NMR (400 MHz, D₂O): 2.53 (s, 6H, Mebpy); 2.62 (t, J = 7.3 Hz, 4H, CH_2CH_2N of **A**); 2.88 (t, J = 7.5 Hz, 4H, CH_2CH_2N of **B**); 3.03 (t, J = 7.5 Hz, 4H, CH_2CH_2N of **A**); 3.21 (t, J = 7.5 Hz, 4H, CH₂CH₂N of **B**); 3.56–4.33 (AB, $J_{AB} = 13.1$ Hz, 8H, ArCH₂Ar); 5.13 (s, 4H, OCH₂ bpy); 6.98 (s, 4H, ArH of B); 7.19 (s, 4H, ArH of **A**); 7.58 (d, *J* = 8.3 Hz, 2H, *H*₅ bpy); 7.85 (d, *J* = 8.8 Hz, 2H, $H_{5'}$ bpy); 7.91 (t, J = 7.8 Hz, 2H, H_4 bpy); 8.16 (d, J = 7.8 Hz, 2H, H_3 bpy); 8.27 (d, J = 8.1 Hz, 2H, $H_{3'}$ bpy); 8.48 (t, J = 7.8 Hz, 2H, $H_{4'}$ bpy). ¹H NMR (400 MHz, DMSO- d_6): 2.54 (s, 6H, CH₃ bpy); 2.60 (t, I = 8.3 Hz, 4H, CH₂CH₂N of **A** or of **B**); 2.68 (t, I = 8.0 Hz, 4H, CH₂CH₂N of **A** or **B**); 2.96 (m, 8H, CH₂CH₂N of **A** or **B**); 3.44-4.31 (AB, J_{AB} = 12.8 Hz, 8H, ArCH₂Ar); 5.14 (s, 4H, OCH₂ bpy); 6.99 (s, 4H, ArH of **A** or **B**); 7.06 (s, 4H, ArH of **A** or **B**); 7.26 (d, *J* = 7.6 Hz, 2H, H bpy); 7.66 (t, *J* = 7.8 Hz, 2H, *H* bpy); 7.70 (t, *J* = 7.8 Hz, 2H, *H* bpy); 7.77 (d, I = 7.5 Hz, 2H, H bpy); 7.88 (br s, 12H, NH); 8.19 (d, J = 7.8 Hz, 2H, H bpy); 8.32 (d, J = 7.8 Hz, 2H, H bpy); 8.40 (s, 2H, OH). ¹³C NMR (100 MHz, D₂O): 19.44 (*Mebpy*); 30.92 (ArCH₂Ar); 32.31 (CH₂CH₂N of **A**); 32.36 (CH₂CH₂N of **B**); 40.57 (CH₂CH₂N of **A**); 41.03 (CH₂CH₂N of **B**); 77.12 (OCH₂bpy); 116.71 (q, J = 291.8 Hz, CF₃COO⁻); 122.37 (C₃' bpy); 122.48 (C₃ bpy); 125.13 (C₅ bpy); 128.43 (C₅' bpy); 129.02 (C_p of **B**); 129.11 (C_o of **A** or **B**); 129.68 (C_m of **A**); 129.85 (C_m of **B**); 134.57 (C_o of **A** or **B**); 134.75 (C_p of **A**); 140.13 (C₄ bpy); 146.55 (C₆ bpy); 147.18 (C₄' bpy); 147.54 (C₆' bpy); 150.75 (C_{ipso} of **B**); 151.20 (C_{ipso} of **A**); 155.19 (C₂' bpy); 156.99 (C₂ bpy); 163.21 (q, J = 35.2 Hz, CF₃COO⁻). Anal. Calcd for C₆₀H₆₄O₄N₈·6CF₃COOH·4H₂O (1717.38): C, 50.35; H, 4.57; N, 6.52. Found: C, 50.39; H, 4.43; N, 6.76. ES-MS (pos. mode): 1189.97 [M-2CF₃COOH+H⁺]⁺, 1074.93 [M-3CF₃COOH+H⁺]⁺, 481.47 [M-4CF₃COOH+2H⁺]^{2+/2}, 321.51 [M-4CF₃COOH+3 H⁺]^{3+/3}.

5.1.4.3. 5,11,17,23-Tetra-(aminoethyl)-25,27-bis(5-methyleneoxy-5'-methyl-2,2'-bipyridyl)-26,28-dihydroxycalix[4]arene, hexatrifluoroacetate salt 9. From 6 (0.2 g, 0.15 mmol), CH₂Cl₂ (20 mL), TFA (7 mL); 9 (0.199 g, 96%). Slightly pink solid. Mp: 129-130 °C. IR (KBr): 3400.2 (OH); 2900.8 (NH₃⁺); 1660.1 (COO). UV-vis (H₂O): 286 (38,304). ¹H NMR (400 MHz, D₂O) 2.41 (s, 6H, Mebpy); 2.65 (t, J = 7.42 Hz, 4H, CH₂CH₂NH of **A**); 2.87 (t, J = 7.3 Hz, 4H, CH₂CH₂N of **B**); $3.04 (t, J = 7.54 Hz, 4H, CH_2CH_2N \text{ of } \mathbf{B}); 3.22 (t, J = 7.3 Hz, 4H, CH_2CH_2N$ of **B**); 3.55–4.21 (AB, J_{AB} = 13.6 Hz, 8H, ArCH₂Ar); 5.23 (s, 4H, OCH₂ bpy); 6.97 (s, 4H, ArH of **B**); 7.16 (s, 4H, ArH of **A**); 7.82–7.89 (m, 2H_{4'} and 4*H*_{3',3} of bpy); 8.26 (s, 2H, *H*_{6'} bpy); 8.37 (d, *J* = 7.8 Hz, 2H, *H*₄ bpy); 9.03 (s, 2H, H₆ bpy). ¹³C NMR (100 MHz, D₂O): 17.74 (Mebpy); 30.93 (ArCH₂Ar); 32.25, 32.29 (CH₂CH₂N); 40.47, 41.00 (CH₂CH₂N); 74.47 (OCH₂bpy); 116.71 (q, *J* = 291.8 Hz, CF₃COO⁻); 122.00, 122.31, 129.55, 129.93, 137.78, 142.94, 145.55, 146.68 (C3, C3', C4, C4', C6, C6', of bpy and C_m of Ar); 128.11, 128.70, 133.79, 135.00, 135.58, 137.69, 147.10, 149.05, 150.26, 151.30 (C₂, C₂', C₅, C₅' of bpy; C_p, C_o and C_i of Ar); 163.21 (q, J = 35.2 Hz, CF₃COO⁻). Anal. Calcd for C₆₀H₆₄O₄N₈·6CF₃ COOH 1.5H2O (1671.48): C, 51.71; H, 4.40; N, 6.70. Found: C, 51.69; H, 4.19; N, 6.87. ES-MS (pos. mode): 1075.3 [M-3CF₃COOH+H⁺]⁺, 961.3 $[M-4CF_{3}COOH+H^{+}]^{+}$, 481.29 $[M-4CF_{3}COOH+2H^{+}]^{2+/2}$.

5.1.4.4. 5,11,17,23-Tetra-(aminoethyl)-25,27-bis(4-methyleneoxy-4'-methyl-2,2'-bithiazolyl)-26,28-dihydroxycalix[4]arene, tetra-trifluoroacetate salt 10. From 7 (0.7 g, 0.56 mmol), CH₂Cl₂ (40 mL), TFA (15 mL); 10 (0.75 g, 93%). Pale yellow powder. Mp: 90-91 °C. IR (KBr): 3412.3 (OH); 2929.6 (NH₃⁺); 1678.5 (NH₃⁺). UV-vis (D₂O): 289 (8521); 330 (21,231). ¹H NMR (400 MHz, D₂O): 2.66 (s, 6H, CH_3 btz); 2.58 (t, J = 7.2 Hz, 4H, CH_2CH_2N of **A** or **B**); 2.88 (t, J = 7.4 Hz, 4H, CH₂CH₂N of **A** or **B**); 3.01 (t, J = 7.3 Hz, 4H, CH₂CH₂N of **A** or **B**); 3.25 (t, *J* = 7.3 Hz, 4H, CH₂CH₂N of **A** or **B**); 3.49–4.35 (AB, J_{AB} = 13.6 Hz, 8H, ArCH₂Ar); 4.98 (s, 4H, OCH₂btz); 6.85 (s, 4H, ArH of **B**); 7.10 (s, 6H, ArH of **A** and H₅ btz); 7.69 (s, 2H, H_5 btz). ¹H NMR (400 MHz, DMSO- d_6): 2.46 (s, 6H, CH₃ btz); 2.62 $(t, I = 7.7 \text{ Hz}, 4\text{H}, CH_2CH_2N \text{ of } \mathbf{B})$; 2.69 $(t, I = 7.6 \text{ Hz}, 4\text{H}, CH_2CH_2N \text{ of } \mathbf{B})$ **A**); 2.97 (CH₂CH₂N of **A** and **B**) 3.42–4.27 (AB, J_{AB} = 12.8 Hz, 8H, ArCH₂Ar); 6.99 (s, 4H, ArH of **B**); 7.06 (s, 4H, ArH of **A**); 7.49 (s, 2H, $H_{5'}$ btz); 7.98 (m, 12H, H_5 btz and NH₃); 8.15 (s, 2H, OH). ¹³C NMR (100 MHz, DMSO-d₆): 17.02 (Me btz); 30.94 (ArCH₂Ar); 32.55 (CH₂CH₂N of **A**); 32.90 (CH₂CH₂N of **B**); 40.36, 40.42 (CH₂CH₂N of **A** and **B**); 117.90 (*C*_{5'} Btz); 119.88 (*C*₅ btz); 127.89 (*C*_p of **A**); 128.08 (*C_o* of **B**); 129.09 (*C_m* of **A**); 129.58 (*C_m* of **B**); 134.21 (*C_p* of **B**); 134.84 (C_o of **A**); 151.16 (C_{ipso} of **B**); 151.84 (C_{ipso} of **A**); 153.36 (C₂ btz); 154.20 (C_{2'} btz); 159.75 (C_{4'} Btz); 161.51 (C₄ Btz); no visible TFA. Anal. Calcd for C₅₂H₅₆O₄N₈S₄·4CF₃COOH·4H₂O, (1512.45): C, 47.66; H, 4.53; N, 7.40; S, 8.48. Found: C, 47.64; H, 4.28; N, 7.27; S, 8.57. ES-MS (pos. mode): 1213.24 [M-2CF₃COOH+H⁺]⁺, 1098.44 [M-3CF₃COOH+H⁺]⁺, 984.61 [M-4CF₃COOH+H⁺]⁺, 493.23 [M-4CF₃ COOH+2H⁺]^{2+/2}, 329.35 [M-4CF₃COOH+3H⁺]^{3+/3}. ES-MS (neg. mode): 1439.22 [M-H⁺]⁻, 1325.32 [M-CF₃COOH-H⁺]⁻, 1210.28 $[M-2CF_3COOH-H^+]^-$.

5.1.5. Compounds 3, 11, 12 and 13-general procedure

The calixarene tetra-ammonium salt, then Et_3N were added to a solution of *N*,*N*'-bis(*tert*-butoxycarbonyl)-*N*''-triflylguanidine **K** in dry CH₂Cl₂ and MeOH. The mixture was stirred at rt under Ar (TLC monitoring; SiO₂, CH₂Cl₂/MeOH 99:1), and the solvent were evaporated to dryness. The solid residue was dissolved in CH₂Cl₂, washed with 2 M NaHSO₄ then with saturated NaHCO₃. The aqueous phases were washed with CH₂Cl₂ and the combined organic phases were dried over Na₂SO₄ or MgSO₄, filtered and concentrated. The residue was chromatographed to give the expected tetra-(di-boc-guanidinoethyl) calixarene derivative.

5.1.5.1. 5.11.17.23-Tetra-[(N.N-di-Boc)guanidinoethyl]-25.26.27.28calix[4]arene tetrol 3. From A (0.24 g, 0.32 mmol) or 2 (0.34 g; 0.32 mmol), Et₃N (0.53 mL, 3.81 mmol), K (0.50 g, 1.28 mmol) in CH₂Cl₂/MeOH (30 mL; 1:1). 3 h (TLC monitoring; SiO₂, CH₂Cl₂/MeOH 99:1); washings: 2 M NaHSO₄ (30 mL), satd NaHCO₃ (30 mL), CH₂Cl₂ (10 mL). Drying: MgSO₄. Chromatography (SiO₂, from CH₂Cl₂ to CH₂Cl₂/MeOH 99:1). 3 (0.33 g, 65%). White solid. Mp: 134-135 °C. IR (KBr): 3336.8 (OH); 2978.8 (CH₃); 1721.2 (COO); 1638.7 (NH). UV-vis (CH₂Cl₂): 280 (11,703). ¹H NMR (400 MHz, CDCl₃): 1.50 (s, 9H, Me₃C); 1.52 (s, 9H, Me₃C); 2.69 (t, J = 7 Hz, 8H, CH₂CH₂N); 3.47-4.22 (AB, J_{AB} = 12.8 Hz, 8H, ArCH₂Ar); 3.63 (q, J = 6.5 Hz, 8H, CH₂CH₂N); 6.92 (s, 8H, ArH); 8.41 (s, 4H, CH₂NH); 10.17 (s, 4H, OH); 11.50 (s, 4H, CNH). ¹³C NMR (100 MHz, CDCl₃): 28.47 (*Me*₃C); 28.72 (*Me*₃C); 32.12 (ArCH₂₋ Ar); 34.84 (ArCH₂CH₂NH); 42.59 (ArCH₂CH₂NH); 79.75 (Me₃C); 83.47 (Me₃C); 128.69 (C_o); 129.75 (C_m); 132.50 (C_p); 147.80 (C_{ipso}); 153.57 (CO); 156.46 (C guan); 163.89 (CO). Anal. Calcd for C₈₀H₁₁₆O₂₀N₁₂ (1565.85): C, 61.36; H, 7.46; N, 10.73. Found: C, 61.27; H, 7.35; N, 10.68. ES-MS (neg. mode): 1562.5 [M-H⁺]⁻, ES-MS (pos. mode): 1587.66 [M+Na⁺]⁺.

5.1.5.2. 5,11,17,23-Tetra-[(N,N'-di-Boc)guanidinoethyl]-25,27bis(6-methyleneoxy-6'-methyl-2,2'-bipyridyl)-26,28-dihydroxycalix[4]arene 11. From 8 (0.28 g, 0.163 mmol), CH₂Cl₂ (20 mL), MeOH (some drops), Et_3N (0.33 mL, 2.37 mmol), **K** (0.31 g, 0.79 mmol). 3 h (TLC monitoring: Al₂O₃, CH₂Cl₂). CH₂Cl₂ (30 mL); washings: 2 M NaHSO₄ (30 mL), satd NaHCO₃ (30 mL). Drying: Na_2SO_4 . Chromatography (Al_2O_3 , CH_2Cl_2). **11** (0.24 g, 76%). White powder. Mp: 138-139 °C. IR (KBr): 3336.5 (OH), 1721.7 (CO); 1639.77 (NCO, NHCO). UV-vis (CH₂Cl₂): 288 (54,477). ¹H NMR (400 MHz, CDCl₃): 1.42–1.50 (m, 72H, Me₃C); 2.59 (t, J = 7.2 Hz, 4H, CH₂CH₂N of **B**); 2.63 (s, 6H, CH₃ bpy); 2.77 (t, J = 7.0 Hz, 4H, CH₂CH₂N of **A**); 3.36, 4.37 (AB, J_{AB} = 13.2 Hz, 8H, ArCH₂Ar); 3.53 (q, J = 6.9 Hz; 4H, CH₂CH₂N of **B**); 3.64 (q, J = 6.8 Hz; 4H, CH₂CH₂N of A); 5.20 (s, 4H, OCH₂bpy); 6.79 (s, 4H, ArH of B); 6.93 (s, 4H, ArH of **A**); 7.12 (d, J = 7.6 Hz, 2H, $H_{5'}$ bpy); 7.60 (t, J = 7.8 Hz, 4H, $H_{4-4'}$ bpy); 7.95 (s, 2H, OH); 8.09 (d, J = 7.5 Hz, 2H, H_5 bpy); 8.18 (d, J = 7.8 Hz, 2H, $H_{3'}$ bpy); 8.33 (m, 4H, CH₂NH of **B** and H_3 bpy); 8.41 $(t, I = 6.5 \text{ Hz}, 2\text{H}, C\text{H}_2\text{NH of } A)$; 11.47 (s, 2H, NH of A or B); 11.48 (s, 2H, NH of **A** or **B**). ¹³C NMR (100 MHz, CDCl₃): 25.03 (*Me* bpy); 28.43, 28.51; 28.73 (CMe₃); 31.93 (ArCH₂Ar); 34.90 (CH₂CH₂N of A); 35.19 (CH₂CH₂N of B); 42.65 (CH₂CH₂N of B); 43.01 (CH₂CH₂N of **A**); 79.14 (OCH₂bpy); 79.65, 83.35 (Me₃C); 118.73 (C_{3'} bpy); 120.44 (C₃ bpy); 121.46 (C₅ bpy); 123.76 (C_{5'} bpy); 128.18 (C_o of **A**); 129.17 (*C_p* of **A**); 129.42 (*C_m* of **B**); 130.13 (*C_m* of **A**); 133.42 (*C_o* of **B**); 135.78 (*C_p* of **B**); 137.52 (*C_{4'}* bpy); 138.58 (*C*₄ bpy); 151.18 (*C_{ipso}* of **B**); 152.47 (*C*_{*ipso*} of **A**); 153.53 (*C*0); 156.43 (*C* guan of **B**); 156.50 (*C* guan of **A**); 153.54, 155.73, 156.83, 158.23 (*C*₂, *C*_{2'}, *C*₆, *C*_{6'} of bpy); 163.98 (CO). Anal. Calcd for C₁₀₄H₁₃₆O₂₀N₁₆, (1930.3): C, 64.71; H, 7.10; N, 11.61. Found: C, 64.65; H, 6.86; N, 11.34. ES-MS (pos. mode): 1828.99 [M-boc+2H⁺]⁺, 1951.98 [M+Na⁺]⁺.

5.1.5.3. 5,11,17,23-Tetra-[(*N*,*N'*-di-Boc)guanidinoethyl]-25,27bis(5-methyleneoxy-5'-methyl-2,2'-bipyridyl)-26,28-dihydroxycalix[4]arene 12. From 9 (0.205 g, 0.144 mmol), CH_2Cl_2 (20 mL), MeOH (some drops), Et_3N (241 µL, 1.735 mmol), K (0,226 g,

0,578 mmol), 16 h (TLC monitoring, Al₂O₃, CH₂Cl₂). CH₂Cl₂ (50 mL); washings: H_2O (2 × 30 mL). Drying: Na₂SO₄. Chromatography (Al₂O₃, CH₂Cl₂); **12** (0,234 g, 84%). Slightly pink solid. Mp: 125-126 °C. IR (KBr): 3334.06 (OH); 1721.1 (COO); 1638.76 (NCO, NHCO). UV-vis (CH₂Cl₂): 289 (52,921). ¹H NMR (400 MHz, CDCl₃) 1.39–1.51 (m, 72H, Me₃C); 2.34 (s, 6H, CH₃ bpy); 2.57 (t, J = 7.17 Hz, 4H, CH₂CH₂N of **B**); 2.72 (t, J = 7.18 Hz, 4H, CH₂CH₂N of **A**); 3.27–4.22 (AB, J_{AB} = 13.1 Hz, 8H, ArCH₂Ar); 3.52 (q, J = 6.86 Hz, 4H, CH₂CH₂N of **B**); 3.6 (q, J = 6.79 Hz; 4H, CH₂CH₂N of **A**); 5.13 (s, 4H, OCH₂bpy); 6.78 (s, 4H, ArH of **B**); 6.87 (s, 4H, ArH of **A**); 7.47 (dd, *J* = 8,3 Hz, 2H, $H_{4'}$ bpy); 7.76 (s, 2H, OH); 8.14 (dd, J = 8.06 Hz, 2H, H_4 bpy); 8.21 (d, J = 8.06 Hz, 2H, $H_{3'}$ bpy); 8.29 (t, J = 6 Hz, 2H, CH₂NH of **B** or **A**); 8.35–8.41 (m, 6H, 2H₃, 2H₆ of bpy and 2 CH₂NH of **B** or **A**); 8.89 (dd, *J* = 1.51 Hz, 2H, *H*₆ of **A**); 11.46 (s, 4H, NH guan). ¹³C NMR (100 MHz, CDCl₃): 18.74 (Me bpy); 28.41, 28.48, 28.72 (Me₃C); 32.06 (ArCH₂Ar); 34.85, 35.15 (CH₂CH₂N); 42.55, 42.89 (CH₂CH₂N); 76.17 (OCH₂ bpv): 79.58, 79.63, 83.29, 83.34 (CMe₃): 121.08, 121.25, 128.15, 130.16, 136.69, 137.55, 148.66, 149.88 (C₃, C_{3'}, C₄, C_{4'}, C₆, C_{6'}, of bpy and C_m of Ar); 128.18, 129.33, 132.28, 133.50, 133.61, 135.92, 137.59, 150.96, 152.22, 153.52, 153.73, 156.43, 156.49, 156.59 (C₂, *C*_{2'}, *C*₅, *C*_{5'} of bpy; *C*_p, *C*_o and *C*_i of Ar; *C* guan, CO); 153.57, 164.03 (CO). Anal. Calcd for C₁₀₄H₁₃₆O₂₀N₁₆·CH₂Cl₂ (2013.94): C, 62.62; H, 6.90; N, 11.12. Found: C, 62.85; H, 7.03; N, 11.36. ES-MS (pos; mode): 1930.7 $[M+H^+]^+$, 1831.0 $[M-Boc+H+H^+]^+$; 965.5 $[M+2H^+]^{2+/2}$, 915.6 $[M-Boc+H+2H^+]^{2+/2}$; 644.5 $[M+3H^+]^{3+/3}$, 610.8 $[M-Boc+H+3H]^{3+/3}$, 577.4 [M-2Boc+2H+3H]^{3+/3}, 544.1 [M-3Boc+3H+3H]^{3+/3}, 510.51 [M-4Boc+4H+3H]^{3+/3}, 477.4 [M-5Boc+5H+3H]^{3+/3}, 444.0 [M-6Boc+ 6H+3H]^{3+/3}, 410.6 [M-7Boc+7H+3H]^{3+/3}, 377.4 [M-8Boc+8H+ 3H]^{3+/3}.

5.1.5.4. 5,11,17,23-Tetra-[(N,N'-di-Boc)guanidinoethyl]-25,27bis(4-methyleneoxy-4'-methyl-2,2'-bithiazolyl)-26,28-dihydroxycalix[4]arene 13. From 10 (0.45 g, 0.30 mmol), CH₂Cl₂ (40 mL), MeOH (some drops), Et_3N (522 μ L, 3.75 mmol), K (0.49 g, 1.24 mmol). 5 h (TLC monitoring: Al₂O₃, CH₂Cl₂). CH₂Cl₂ (50 mL); washings: 2 M NaHSO₄ (40 mL), satd NaHCO₃ (40 mL). Drying: Na₂SO₄. Chromatography (Al₂O₃, CH₂Cl₂/Hex 90:10); 13 (0.48 g, 77%). White powder. Mp: 147-178 °C. IR (KBr): 3335.9 (OH), 1721.1 (CO); 1638.8 (NCO, NHCO). UV-vis (CH₂Cl₂): 291 (12,133); 330 (27,720). ¹H NMR (400 MHz, CDCl₃): 1.44–149 (m, 72H, Me₃C); 2.53 (s, 6H, CH₃ btz); 2.58 (t, J = 7.0 Hz, 4H, CH₂CH₂N of **A** or **B**); 2.75 (t, *J* = 7.0 Hz, 4H, CH₂CH₂N of **A** or **B**); 3.33–4.30 (AB, J_{AB} = 13.1 Hz, 8H, ArCH₂Ar); 3.52 (q, J = 6.5 Hz, 4H, CH₂CH₂N of **A** or **B**); 3.63 (q, I = 6.5 Hz, 4H, CH₂CH₂N of **A** or **B**); 5.22 (s, 4H, OCH₂btz); 6.78 (s, 4H, ArH of **A** or **B**); 6.91 (s, 4H, ArH of **A** or **B**); 6.98 (s, 2H, OH); 7.80 (s, 2H, H btz); 7.97 (s, 2H, H btz); 8.30 (t, J = 4.6 Hz, 2H, CH₂CH₂NH of **A** or **B**); 8.40 (t, J = 4.6 Hz, 2H, CH₂CH₂NH of **A** or **B**); 11.47 (s, 2H, NH of **A** or **B**); 11.48 (s, 2H, NH of **A** or **B**). ¹³C NMR (100 MHz, CDCl₃): 17.59 (*Me* btz); 28.45, 28.51, 28.72 (*Me*₃C); 31.85 (ArCH₂Ar); 34.90 (CH₂CH₂N of **A**); 35.19 (CH₂CH₂N of B); 42.56 (CH₂CH₂N of B); 42.93 (CH₂CH₂N of A); 79.62 (OCH₂btz); 83.34 (Me₃C); 116.33 (C_{5'} btz); 118.22 (C₅ btz); 128.17 (C_o of **A**); 129.43 (C_m of **A**); 130.13 (C_m of **B**); 133.50 (Co of B); 135.99 (Cp of B); 150.90 (Cipso of B); 152.23 (Cipso of A); 153.56 (*C_p* of **A**); 154.11 (*C*₂ btz); 154.75 (*C*_{2'} btz); 156.44 (*C* guan of **A**); 156.50 (C guan of **B**); 160.85 (C_{4'} btz); 162.20 (C₄ btz); 164.00 (CO of **B**); 164.04 (CO of **A**). Anal. Calcd for C₉₆H₁₂₈O₂₀N₁₆S₄·1.5CH₂Cl₂ (2074.28): C, 56.17; H, 6.29; N, 10.80. Found: C, 56.32; H, 6.30; N, 10.82. ES-MS (pos. mode): 1952.34 [M+H⁺]⁺, 1852.50 [M–COOC(CH₃)₃+H⁺]⁺.

5.1.6. Compounds 4, 14, 15 and 16-general procedure

A solution of Boc-guanidino calixarene derivative in a mixture of CH₂Cl₂ and TFA was stirred at rt under Ar. The solvent were evaporated, and the residual TFA was eliminated by five dissolution in CH₂Cl₂– evaporation cycles. The semi-solid residual material was dried under

high vacuum, then triturated in dry Et_2O to give a precipitate. The latter was dissolved in H_2O , dialyzed (Float-A-Lyser, cellulose acetate, MWCO 100D) then lyophilized to give the expected guanidinium salt.

5.1.6.1. 5,11,17,23-Tetra-(guanidinoethyl)-25,26,27,28-calix[4]arene tetrol, tetra-trifluoroacetate salt 4. From 3 (0.19 g, 0.12 mmol), CH₂Cl₂ (11 mL), TFA (4 mL); 1 h. 4 (0.14 g, 95%). White cotton. Mp: 215 °C (dec). IR (KBr): 3365 (OH); 3185 (=NH); 1671 (NH₂). UV-vis (H₂O): 285 (3460). ¹H NMR (400 MHz, D₂O): 2.56 $(t, J = 6.4 \text{ Hz}; 8H, CH_2CH_2N); 3.23 (t, J = 6.4 \text{ Hz}; 8H, CH_2CH_2N);$ 3.82 (br s, 8H, ArCH₂Ar), 6.94 (s, 8H, ArH). ¹H NMR (400 MHz, DMSO- d_6): 2.51 (m, 8H, CH₂CH₂N); 3.22 (q, J = 6.5 Hz, 8H, CH₂CH₂N); 3.55 (br s, 8H, ArCH₂Ar); 6.94 (s, 8H, ArH); 7.56 (t, *J* = 4.9 Hz, CH₂CH₂NH). ¹³C NMR (100 MHz, D₂O): 30.96 (ArCH₂Ar); 33.65 (CH₂CH₂N); 42.77 (CH₂CH₂N); 129.12 (C_o); 129.44 (C_m); 132.34 (C_p); 147.73 (C_{ipso}); 156.99 (C guan); no visible TFA. Anal. Calcd for C₄₀H₅₂O₄N₁₂·4CF₃COOH·H₂O (1239.02): C, 46.53; H, 4.71; N, 13.56. Found: C, 46.50; H, 4.71; N, 13.13. ES-MS (ES⁻): 1332.54 [M+CF₃COO⁻]⁻, 1218.68 [M–H⁺]⁻. ES-MS (pos. mode): 1106.72 [M-CF₃COO⁻]⁺, 992.86 [M-2CF₃COO⁻+H⁺]⁺, 878.99 [M-2CF₃COO⁻+2H⁺]⁺, 765.19 [M-4CF₃COO⁻+3H⁺]⁺.

5.1.6.2. 5,11,17,23-Tetra-(guanidinoethyl)-25,27-bis(6-methyleneoxy-6'-methyl-2,2'-bipyridyl)-26,28-dihydroxycalix[4]arene, hexa-trifluoroacetate salt 14. From 11 (0.35 g, 0.18 mmol), CH₂Cl₂ (20 mL), TFA (7.5 mL); 3 h. **14** (0.25 g, 74%). White cotton. Mp: 94-95 °C. IR (KBr): 3386.2 (OH); 1676.2 (NH). UV-vis (H₂O): 286 (26,644). ¹H NMR (400 MHz, D_2O): 2.47 (t, J = 4.8 Hz, 4H, CH_2CH_2N of **A**); 2.49 (s, 6H, Me bpy); 2.78 (t, J = 6.4 Hz, 4H, CH_2CH_2N of **B**); 3.17 (t, J = 6.0 Hz, 4H, CH_2CH_2N of **A**); 3.41 $(t, J = 6.5 \text{ Hz}, 4\text{H}, \text{CH}_2\text{CH}_2\text{N of } \mathbf{B}); 3.51-4.30 \text{ (AB, } J_{AB} = 13.3 \text{ Hz}, 8\text{H},$ ArCH₂Ar); 5.09 (s, 4H, OCH₂ bpy); 6.90 (s, 4H, ArH of **B**); 7.16 (s, 4H, ArH of **A**); 7.49 (d, J = 7.8 Hz, 4H, H_5 bpy); 7.68 (d, J = 7.8 Hz, 4H, $H_{5'}$ bpy); 7.83 (t, J = 7.8 Hz, 4H, H_4 bpy); 8.10 (d, J = 7.8 Hz, 4H, H_3 bpy); 8.16 (d, J = 8.1 Hz, 4H, $H_{3'}$ bpy); 8.30 (t, J = 7.5 Hz, 4H, $H_{4'}$ bpy). ¹H NMR (400 MHz, DMSO- d_6): 2.55 (s, 6H, Me bpy); 2.63 (t, J = 7.0 Hz, 8H, CH₂CH₂N); 3.26 (m, 8H, CH₂CH₂N); 3.41-4.37 (AB, J_{AB} = 13.0 Hz, 8H, ArCH₂Ar); 5.14 (s, 4H, OCH₂ bpy); 7.03 (s, 4H, ArH); 7.08 (s, 4H, ArH); 7.26 (d, *J* = 7.4 Hz, 4H, *H* bpy); 7.64 (t, J = 7.6 Hz, 4H, H bpy); 7.69 (t, J = 7.6 Hz, 4H, H bpy); 7.79 (d, *J* = 7.4 Hz, 4H, *H* bpy); 8.20 (d, *J* = 7.8 Hz, 4H, *H* bpy); 8.33 (d, I = 7.8 Hz, 4H, Hbpy); 8.37 (s, 2H, OH). ¹³C NMR (100 MHz, D₂O): 19.57 (Me bpy); 30.93 (ArCH₂Ar); 33.73 (CH₂CH₂N of **B**); 33.82 (CH₂CH₂N of **A**); 42.39 (CH₂CH₂N of **A**); 42.98 (CH₂CH₂N of **B**); 77.25 (OCH₂ bpy); 116.72 (q, J = 291.9 Hz, CF₃COO⁻); 122.16 (C₃ bpy); 122.38 (*C*_{3'} bpy); 125.07 (*C*₅ bpy); 128.22 (*C*_{5'} bpy); 128.98 (C_o of **A** or **B**); 129.73 (C_m of **A**); 129.83 (C_m of **B**); 130.72 (C_p of **B**); 134.44 (*C*_o of **A** or **B**); 136.38 (*C*_p of **A**); 140.01 (*C*₄ bpy); 146.69 (C_{4'} bpy); 146.87 (C₆ bpy); 147.78 (C_{6'} bpy); 150.42 (C_{ipso} of **B**); 150.93 (*C*_{ipso} of **A**); 155.26 (*C*_{2'} bpy); 156.84 (*C*₂ bpy and *C* guan of **A**); 157.12 (*C* guan of **B**); 163.17 (q, *J* = 35.5 Hz, CF₃COO⁻). Anal. Calcd for C₆₄H₇₂O₄N₁₆·6CF₃COOH·4H₂O (1867.53): C, 48.87; H, 4.53; N, 12.00. Found: C, 48.71; H, 4.35; N, 11.86. ES-MS (neg. mode): 1697.56 [M+CF₃COOH-H⁺]⁻. ES-MS (pos. mode): 1470.74 [M-CF₃COOH+H⁺]⁺, 1356.85 [M-2CF₃COOH+H⁺]⁺, $1243.08 \quad [M-3CF_{3}COOH+H^{+}]^{+}, \quad 1129.00 \quad [M-4CF_{3}COOH+H^{+}]^{+},$ 565.39 $[M-4CF_{3}COOH+2H^{+}]^{2+/2}$, 377.46 $[M-4CF_{3}COOH+3H^{+}]^{3+/3}$.

5.1.6.3. 5,11,17,23-Tetra-(guanidinoethyl)-25,27-bis(5-methyl-eneoxy-5'-methyl-2,2'-bipyridyl)-26,28-dihydroxycalix[4]arene, hexa-trifluoroacetate salt 15. From **12** (0.2 g, 0.104 mmol), CH₂Cl₂ (20 mL), TFA (6 mL); **15** (0.163 g, 83%). Slightly pink solid. Mp: 120–121 °C. IR (KBr): 3357.88 (OH); 1673.88 (NH). UV-vis (H₂O): 287 (40,098). ¹H NMR (400 MHz, D₂O). 2.38 (s, 6H, *Me* bpy); 2.56 (t, J = 6.42 Hz, 4H, CH₂CH₂N of **A**); 2.75 (t, J = 6.5 Hz, 4H, CH₂CH₂N of **B**); 3.23 (t, J = 6.42 Hz, 4H, CH₂CH₂N of **A**); 3.39

5505

 $(t, I = 6.67 \text{ Hz}, 4\text{H}, \text{CH}_2\text{CH}_2\text{N of } \mathbf{B}); 3.56-4.25 \text{ (AB, } I_{AB} = 13.34 \text{ Hz}, 8\text{H},$ ArCH₂Ar); 5.24 (s, 4H, OCH₂ bpy); 6.96 (s, 4H, ArH of **B**); 7.13 (s, 4H, ArH of **A**); 7.80 (s, 4H, $H_{4'}$, 4 bpy); 7.84 (d, I = 8.31 Hz, 2H, $H_{3'}$ bpy); 8.24 (s, 2H, $H_{6'}$ bpy); 8.35 (d, I = 9.32 Hz, 2H, H_3 bpy); 8.99 (s, 2H, H₆ bpy). ¹³C NMR (100 MHz, DMSO-d₆): 18.10 (*Me* bpy); 31.20 (ArCH₂Ar); 33.96 (CH₂CH₂N of **B**); 34.36 (CH₂CH₂N of **A**); 42.24 (CH₂CH₂N of **A**); 42.91 (CH₂CH₂N of **B**); 75.84 (OCH₂ bpy); 117.65 (q, J = 298.6 Hz, CF₃COO⁻); 120.61, 120.65, 136.71, 138.40, 148.33, 148.98 (C_3 , $C_{3'}$, C_4 , C_4 , C_6 , $C_{6'}$ of bpy); 127.66 (C_o of Ar **B**); 129.40 (*C_m* of Ar **A**); 129.51 (*C_p* of **B**); 129.84 (*C_m* of Ar **B**); 133.94 (*C_o* of Ar **A**); 136.08 (*C_p* of Ar **A**); 150.90, 151.37 (*C_i* of Ar **A** and Ar **B**); 133.02, 134.23, 151.81, 154.56 (C2, C2', C5, C5' of bpy); 157.25 (C guan); 163.17 (q, J = 35.5 Hz, CF₃COO⁻). Anal. Calcd for C₆₄H₇₂O₄N₁₆₋ 6CF₃COOH·4H₂O (1885.56): C, 48.41; H, 4.60; N, 11.89. Found: C, 48.82; H, 4.21; N, 11.98. ES-MS (pos. mode): 1471.4 [M-2CF₃-COOH-CF₃COO⁻]⁺, 1357.3 [M-3CF₃COOH-CF₃COO⁻]⁺, 1243.4 $[M-4CF_{3}COOH-CF_{3}COO^{-}]^{+}, 1129.3 [M-5CF_{3}COOH-CF_{3}COO^{-}]^{+}, 565.3 [M-6CF_{3}COOH+2H^{+}]^{2+/2}, 377.3 [M-6CF_{3}COOH+3H^{+}]^{3+/3}.$

5.1.6.4. 5,11,17,23-Tetra-(guanidinoethyl)-25,27-bis(4-methyleneoxy-4'-methyl-2,2'-bithiazolyl)-26,28-dihydroxycalix[4] arene, tetra-trifluoroacetate salt 16. From 13 (0.23 g, 0.111 mmol), CH₂Cl₂ (20 mL), TFA (7 mL); 2 h. 16 (0.15 g, 73%). White cotton. Mp: 110-111 °C. IR (KBr): 3366.1 (OH); 2179.5 (NH₃⁺); 1671.1 (NH₃⁺). UV-vis (H₂O): 289 (10,595); 330 (24414). ¹H NMR (400 MHz, D₂O): 2.29 (s, 6H, CH₃ btz); 2.44 (t, J = 5.6 Hz, 4H, CH₂CH₂N of **A** or **B**); 2.76 (t, J = 6.4 Hz, 4H, CH₂CH₂N of **A** or **B**); 3.17 (t, *J* = 6.4 Hz, 4H, CH₂CH₂N of **A** or **B**); 3.39 (t, J = 7.0 Hz, 4H, CH₂CH₂N of **A** or **B**); 3.40–4.25 (AB, $J_{AB} = 13.0$ Hz, 8H, ArCH₂Ar); 5.03 (s, 4H, OCH₂ btz); 6.80 (s, 4H, ArH of **A** or **B**); 7.00 (s, 2H, H btz); 7.05 (s, 4H, ArH of **A** or **B**); 7.63 (s, 2H, H btz). ¹H NMR (400 MHz, DMSO-*d*₆): 2.46 (s, 6H, CH₃ btz); 2.55 (m, 4H, CH_2CH_2N of **B**); 2.62 (t, J = 6.1 Hz, 4H, CH_2CH_2N of **A**); 3.26 (m, 8H, CH₂CH₂N of **A** and **B**); 3.38–4.29 (AB, J_{AB} = 13.1 Hz, 8H, ArCH₂Ar); 5.17 (s, 4H, OCH₂ btz); 6.60-7.60 (br signal, 16H, NH guanidine); 7.01 (s, 4H, ArH of **B**); 7.06 (s, 4H, ArH of **A**); 7.49 (s, 2H, $H_{5'}$ btz); 7.61 (m, CH₂CH₂NH of **A** or **B**); 7.69 (m, CH₂CH₂NH of **A** or **B**); 7.97 (s, 2H, H₅ btz); 8.10 (s, 2H, OH). ¹³C NMR (100 MHz, DMSO-*d*₆): 17.03 (*Me* btz); 31.00 (ArCH₂Ar); 33.98 (CH₂CH₂N of A); 34.37 (CH₂CH₂N of B); 42.24, 42.92 (CH₂CH₂N of **A** and **B**); 73.74 (OCH₂btz); 117.45 (q, *J* = 298.5 Hz, CF₃COO⁻); 117.92 (C_{5'} btz); 119.73 (C₅ btz); 127.72 (C_o of **A**); 129.19 (C_n of **A**); 129.30 (C_m of **A**); 129.69 (C_m of **B**);134.04 (C_n of **B**);135.84 (*C_p* of **B**); 150.92 (*C_{ipso}* of **B**); 151.56 (*C_{ipso}* of **A**); 153.43 (C₂ btz); 154.22 (C_{2'} btz); 157.14, 157.19 (C guan); 159.28 (q, J = 30.8 Hz, CF₃COO⁻); 159.75 (C_{4'} btz); 161.51 (C₄ btz). Anal. Calcd for C₅₆H₆₄O₄N₁₆S₄·4CF₃COOH·3H₂O, (1695.49): C, 45.35; H, 4.39; N, 13.20. Found: C, 45.33; H, 4.39; N, 13.21. ES-MS (pos. mode): 1494.22 [M-CF₃COOH+H⁺]⁺, 1380.29 [M-2 CF₃ COOH+H⁺]⁺, 1266.54 [M-3CF₃COOH+H⁺]⁺, 1152.49 [M-4 CF₃COOH+H⁺]⁺, 577.20 [M-4CF₃COOH+2H⁺]^{2+/2}, 385.29 [M-4 $CF_3COOH+3H^+]^{3+/3}$.

5.1.7. N-Boc-tyramine 19

A solution of NaOH (0.46 g, 11,5 mmol) in H₂O (15 mL) was added to a solution of tyramine hydrochloride **F** (1.00 g, 5.76 mmol) in dioxane/H₂O (25/12 mL). The mixture was stirred at rt under Ar during 10 min, and di-*tert-butyl*-dicarbonate (Boc₂O) (1.26 g, 5.76 mmol) was added. The solution was stirred overnight at rt, then was concentrated. AcOEt (40 mL) was added and pH was brought to 7–8 with 1 M HCl. The aqueous phase was collected and washed with AcOEt (2×15 mL). The combined organic phases were dried over Na₂SO₄, filtered and evaporated to dryness. The raw material was chromatographed (Al₂O₃, CH₂Cl₂/Hex, 85:15) to give **19** (0.98 g, 73%). Mp: 61–62 °C. IR (KBr): 3378.9 (–OH; –CONH–); 1686.6 (CO). UV–vis (CH₂Cl₂): 277 (1803). ¹H NMR

(400 MHz, CDCl₃): 1.441 (s, 9H, Me_3 C); 2.703 (t, J = 7.9 Hz; 2H, CH_2CH_2N); 3.329 (m, 2H, CH_2CH_2N); 4.602 (br s, 1H, NH or OH); 6.023 (br s, 1H, NH or OH); 6.774 (d, J = 8.3 Hz; 2H; ArH); 7.013 (d, J = 8.3 Hz; 2H; ArH). ¹³C NMR (100 MHz, CDCl₃): 28.84 (Me_3 C); 35.64 (CH_2CH_2N); 42.49 (CH_2CH_2N); 80.15 (Me_3 C); 115.97 (C_m); 130.18 (C_o); 130.50 (C_p); 155.38 (C_{ipso}); 156.84 (CO). Anal. Calcd for C₁₃H₁₉O₃N (237.29): C, 65.80; H, 8.07; N, 5.90. Found: C, 65.77; H, 8.09; N, 5.90. EI-MS: 181 [M–(Me)₃-CO–H+Na]⁺; 107 [M–(Me)₃COC(O)NHCH₂]⁺.

5.1.8. Compounds 20, 21 and 22-general procedure

 K_2CO_3 (1 equiv) was added to a solution of **19** (1.1 equiv) in anhydrous MeCN. The mixture was refluxed under Ar during 30 min, and the bromomethyl reactant (1 equiv) was added in one portion. Reflux was continued during 5 h (TLC monitoring), and the solvent was evaporated to dryness. The residue was triturated in CH₂Cl₂, then filtered. The filtrate was concentrated and chromatographed to give the expected ether.

5.1.8.1. N-Boc-Aminoethyl-4-[6-methyleneoxy-6'-methyl-2,2'bipyridyl]-benzene 20. From K₂CO₃ (0.04 g, 0.33 mmol), 19 (0.09 g, 0.38 mmol), MeCN (20 mL), 6-bromomethyl-6'-methyl-2,2'-bipyridine (0.09 g, 0.33 mmol). TLC monitoring: Al₂O₃; CH₂Cl₂. Chromatography: Al₂O₃; CH₂Cl₂/Hex 90:10. 20 (0.12 g, 85%). White solid. Mp: 81-82 °C. IR (KBr): 3353.5 (-CONH-); 1685.6 (CO). UVvis (CH₂Cl₂): 289 (19,189). ¹H NMR (400 MHz, CDCl₃): 1.43 (s, 9H, *Me*₃C); 2.64 (s, 3H, *Mebpy*); 2.73 (t, *J* = 6.8 Hz, 2H, *CH*₂CH₂NH); 3.34 (m, 2H, CH₂CH₂NH); 4.52 (br s, 1H, NH); 5.27 (s, 2H, OCH₂bpy); 6.96 (d, J = 8.3 Hz, 2H, ArH); 7.11 (d, J = 8.3 Hz, 2H, ArH); 7.18 (d, J = 7.5 Hz, 2H, H bpy); 7.52 (d, J = 7.8 Hz, 2H, H bpy); 7.71 (t, J = 7.7 Hz, 2H, H bpy); 7.82 (t, J = 7.7 Hz, 2H, H bpy); 8.20 (d, J = 7.5 Hz, 2H, H bpy); 8.32 (d, J = 7.5 Hz, 2H, H bpy). ¹³C NMR (100 MHz, CDCl₃): 25.09 (Mebpy); 28.83 (Me₃C); 35.70, 42.34 (CH₂CH₂NH and CH₂CH₂NH); 71.34 (Me₃C); 79.54 (OCH₂bpy); 115.37 (*C*_o or *C*_m); 118.63, 120.40, 121.35, 123.72 (*C*₃, *C*_{3'}, *C*₅ and *C*_{5'} of bpy); 130.22 (C_o or C_m); 131.90 (C_p); 137.46, 138.01 (C₄, C_{4'} of bpy); 155.88, 156.30, 156.36, 157.27, 157.53,158.37 (*C*₂, *C*₂', *C*₆, *C*₆' of bpy, Cipso, CO). Anal. Calcd for C₂₅H₂₉O₃N₃ (419.52): C, 71.57; H, 6.96; N, 10.01. Found: C, 71.52; H, 6.84; N, 9.94. EI-MS: 421 [M+H⁺]⁺.

5.1.8.2. N-Boc-Aminoethyl-4-[5-methyleneoxy-5'-methyl-2,2'bipyridyl]-benzene 21. From K₂CO₃ (0.12 g, 0.843 mmol), MeCN (30 mL), 19 (0.2 g, 0.843 mmol), 5-bromomethyl-5'-methyl-2-2'bipyridine (0.222 g, 0.843 mmol); 23 h (TLC monitoring, SiO₂, CH₂Cl₂/MeOH 98:2) addition of NEt₃ (2 drops); chromatography: SiO₂, CH₂Cl₂/MeOH 99.4:0.6. **21** (0.281 g, 80%). White solid. Mp: 134-135 °C. IR (KBr): 3378.32 (-CONH-); 1689.06 (CO). UV-vis (CH₂Cl₂): 289 (26,079). ¹H NMR (400 MHz, CDCl₃): 1.43 (s, 9H, Me_3C); 2.39 (s, 3H, Mebpy); 2.73 (t, J = 6.8 Hz, 2H, CH_2CH_2NH); 3.34 (br s, 2H, CH₂CH₂NH); 4.53 (br s, 1H, NH); 5.11 (s, 2H, OCH₂bpy); 6.93 (d, J = 8.56 Hz, 2H, ArH); 7.12 (d, J = 8.6 Hz, 2H, ArH); 7.26 (dd, *J* = 8.06 Hz, 1H, *H* bpy); 7.87 (dd, *J* = 8.31 Hz, 1H, *H* bpy); 8.28 (d, J = 8.06 Hz, 1H, H bpy); 8.38 (d, J = 8.06 Hz, 2H, H bpy); 8.50 (s, 1H, H bpy); 8.71 (dd, J = 1.26 Hz, 1H, H bpy). ¹³C NMR (100 MHz, CDCl₃): 18.78 (Mebpy); 28.82 (Me₃C); 35.71 (CH₂CH₂NH); 42.33 (CH₂CH₂NH); 68.00 (Me₃C); 79.59 (OCH₂bpy); 115.40, 130.27 (C_o and C_m of Ar); 121.00, 121.04 (C_{3'}, ₃ of bpy); 132.18 (C_p of Ar); 136.64, 137.89, 148.73, 150.09 (C_4 , C_4 , C_6 , $C_{6'}$ of bpy); 132.66, 133.95, 156.28, 156.50 (C₂, C_{2'}, C₅, C_{5'} of bpy);153.72 (C_i of Ar);157.46 (COO). Anal. Calcd for C₂₅H₂₉O₃N₃ (419.52): C, 71.57; H, 6.97; N, 10.02. Found: C, 71.65; H, 6.88; N, 9.93. ES-MS (pos. mode): 420.1 [M+H⁺]⁺, 442.2 [M+Na⁺]⁺.

5.1.8.3. *N*-Boc-Aminoethyl-4-[4-methyleneoxy-4'-methyl-2,2'bithiazolyl]-benzene **22.** From K₂CO₃ (0.23 g, 1.64 mmol), **19** (0.45 g, 1.89 mmol), MeCN (40 mL), 4-bromomethyl-4'-methyl-2, 2'-bithiazole (0.45 g, 1.64 mmol). TLC monitoring: Al₂O₃; CH₂Cl₂. Chromatography: Al₂O₃, CH₂Cl₂/Hex 85:15. **22** (0.60 g, 85%). White solid. Mp: 126–127 °C. IR (KBr): 3333.4 (–CONH–); 1684.2 (CO). UV–vis (CH₂Cl₂): 330 (6979). ¹H NMR (400 MHz, CDCl₃): 1.46 (s, 9H, *Me*₃C); 2.54 (s, 3H, *Me*btz); 2.77 (t, *J* = 6.8 Hz, 2H, CH₂CH₂NH); 3.37 (m, 2H, CH₂CH₂NH); 4.54 (br s, 1H, NH); 5.26 (s, 2H, OCH₂btz); 6.97 (d, *J* = 8.5 Hz, 2H, ArH); 7.02 (s, 1H, *H* btz); 7.15 (d, *J* = 8.3 Hz, 2H, ArH); 7.42 (s, 1H, *H* btz). ¹³C NMR (100 MHz, CDCl₃): 17.54 (*Me*btz); 28.82 (*Me*₃C); 35.72 (CH₂CH₂NH); 42.30 (CH₂CH₂NH); 66.70 (Me₃C); 79.57 (OCH₂btz); 115.31 (*C*_m); 116.27, 118.04 (*C*₅ and *C*₅' of btz) 130.24 (*C*₀); 132.14 (*C*_p); 154.31 (*C*_{ipso}); 154.70, 156.27, 157.37, 160.79 (*C*₂, *C*₂', *C*₄, *C*_{4'} of btz); 162.19 (CO). Anal. Calcd for C₂₁H₂₅O₃N₃S₂ (431.57): C, 58.44; H, 5.83; N, 9.73. Found: C, 57.90; H, 5.73; N, 9.52. EI-MS: 431 [M+H⁺]⁺.

5.1.9. Compounds 23, 24 and 25-general procedure

TFA was added to a solution of boc-aminoethyl derivative in CH_2Cl_2 . The mixture was stirred at rt under Ar during ca. 2 h (TLC monitoring). The solvents were evaporated, and the residual TFA was eliminated by successive dissolution in CH_2Cl_2 -evaporation cycles, until a white solid was obtained (ca. four cycles). The latter was dried under high vacuum, triturated in Et_2O , filtered and rinsed with Et_2O to give the expected ammonium salt.

5.1.9.1. Aminoethyl-4-[6-methyleneoxy-6'-methyl-2,2'-bipyridyl]-benzene, sesqui-trifluoroacetate salt 23. From TFA (10 mL), 20 (0.52 g, 1.24 mmol), CH₂Cl₂ (30 mL). TLC monitoring: SiO₂, CH₂Cl₂/MeOH 99:1. **23** (0.52 g, 86%). White powder. Mp: 130-131 °C. IR (KBr): 3029.6 (-NH₃⁺); 1674.2 (COO); 1515.88 (-NH₃⁺). UV-vis (H₂O): 287 (11,399). ¹H NMR (400 MHz, D₂O): 2.73 (s, 3H, Mebpy); 2.93 (t, J = 7.5 Hz, 2H, CH_2CH_2N); 3.22 (t, J = 7.3 Hz, 2H, CH₂CH₂N); 5.34 (s, 2H, OCH₂bpy); 7.08 (d, J = 8.6 Hz, 2H, ArH); 7.27 (d, J = 8.6 Hz, 2H, ArH); 7.63 (d, J = 7.5 Hz, 1H, H bpy); 7.69 (d, J = 6.8 Hz, 1H, H bpy); 8.03 (m, 3H, *H* bpy); 8.18 (m, 1H, *H* bpy). ¹H NMR (400 MHz, DMSO-*d*₆): 2.57 (s, 3H, Mebpy); 2.79 (t, J = 8.0 Hz, 2H, CH_2CH_2N); 3.01 (m, 2H, CH₂CH₂N); 5.27 (s, 2H, OCH₂bpy); 7.04 (d, *J* = 8.3 Hz, 2H, ArH); 7.20 (d, J = 8.6 Hz, 2H, ArH); 7.34 (d, J = 7.5 Hz, 1H, H bpy); 7.57 $(d, J = 7.5 \text{ Hz}, 1\text{H}, H \text{ bpy}); 7.77 (\text{br s}, 3\text{H}, \text{NH}_3); 7.85 (t, J = 7.7 \text{ Hz},$ 1H, H bpy); 7.98 (t, *J* = 7.8 Hz, 1H, H bpy); 8.19 (d, *J* = 7.8 Hz, 1H, *H* bpy); 8.32 (d, I = 7.8 Hz, 1H, *H* bpy). ¹³C NMR (100 MHz, DMSO-d₆): 24.57 (Mebpy); 32.57 (CH₂CH₂N); 40.51 (CH₂CH₂N); 70.78 (OCH₂bpy); 115.35 (C₀ or C_m); 118.07, 119.86, 122.08, 124.05 (C₃, C₃, C₅, C₅, of bpy); 129.99 (C_p); 130.17 (C_o or C_m); 137.91, 138.43 (C₄, C_{4'} of bpy); 154.64, 155.28, 156.89, 157.42, 157.95 (C_2 , C_2 , C_6 , $C_{6'}$ of bpy; C_{inso}); no visible TFA. Anal. Calcd for C₂₀H₂₁ON₃·1.5CF₃COOH (490.43): C, 56.32; H, 4.92; N, 8.56. Found: C, 56.09; H, 4.25; N, 8.56. ES-MS (pos. mode): 320.35 [M-CF₃COOH+H⁺]⁺, 184.31 [CH₃-bpy-CH₂⁺]⁺.

5.1.9.2. Aminoethyl-4-[5-methyleneoxy-5'-methyl-2,2'-bipyridyl]-benzene, trifluoroacetate salt 24. From TFA (6 mL), 21 (0.25 g, 0.6 mmol), CH₂Cl₂ (20 mL), TLC monitoring: Al₂O₃, CH₂Cl₂. 24 (0.255 g, 96%). Slightly pink solid. Mp: 169-170 °C. IR (KBr): 3007 (NH₃⁺); 1676 (COO); 1554 (C=N). UV-vis (H₂O): 288 (27,679), 240 (22,009), 228 (20,464). ¹H NMR (400 MHz, D₂O) 2.36 (s, 3H, Mebpy); 2.92 (t, J = 7.17 Hz, 2H, CH_2CH_2N); 3.22 (t, J = 7.17 Hz, 2H, CH₂CH₂N); 5.19 (s, 2H, OCH₂bpy); 7.04 (d, J = 8.6 Hz, 2H, ArH); 7.25 (d, J = 8.31 Hz, 2H, ArH); 7.78 (d, I = 8.56 Hz, 1H, H bpy); 7.89 (d, I = 7.81 Hz, 1H, H bpy); 7.98 (s, 2H, H bpy); 8.41 (s, 1H, H bpy); 8.61 (s, 1H, H bpy). ¹³C NMR (100 MHz, DMSO-d₆): 18.18 (Mebpy); 32.56 (CH₂CH₂N); 40.52 (CH₂CH₂N); 67.08 (OCH₂bpy); 115.38, 130.16 (C_o and C_m of Ar); 120.24, 120.38, 137.03, 137.99, 148.93, 149.92 (C₃, C_{3'}, C₄, C_{4'}, C₆, *C*_{6'} of bpy); 133.10, 134.10, 152.82, 155.36 (*C*₂, *C*₂', *C*₅, *C*_{5'} of bpy); 130.02 (C_p of Ar); 157.30 (C_i of Ar); no visible TFA. Anal. Calcd for

 $\begin{array}{l} C_{20}H_{21}ON_3\cdot CF_3COOH\cdot 0.5H_2O\ (442.17);\ C,\ 59.72;\ H,\ 5.24;\ N,\ 9.50.\\ Found:\ C,\ 59.77;\ H,\ 5.20;\ N,\ 9.57.\ ES-MS\ (pos.\ mode);\ 320.0\\ [M-CF_3COO^-]^*. \end{array}$

5.1.9.3. Aminoethyl-4-[4-methyleneoxy-4'-methyl-2,2'-bithiazolyl]-benzene, trifluoroacetate salt 25. From TFA (10 mL), 22 (0.55 g, 1.27 mmol), CH₂Cl₂ (40 mL). TLC monitoring: Al₂O₃, CH₂Cl₂. **25** (0.55 g, 95%). White powder. Mp: 184–185 °C. IR (KBr): 3093.2, 1675.4, 1515.15 (NH₃⁺). UV-vis (H₂O): 331 (13649). ¹H NMR (400 MHz, D₂O): 2.41 (s, 3H, Mebtz); 2.94 (t, J = 7.3 Hz, 2H, CH₂CH₂N); 3.24 (t, J = 7.3 Hz, 2H, CH₂CH₂N); 5.17 (s, 2H, OCH₂btz); 7.05 (d, J = 8.3 Hz, 2H, ArH); 7.27 (d, J = 7.3 Hz, 2H, ArH); 7.27 (s, 1H, H btz); 7.66 (s, 1H, H btz). ¹H NMR (400 MHz, DMSO-*d*₆): 2.44 (s, 3H, *Me*btz); 2.80 (t, *J* = 7.7 Hz, 2H, CH₂CH₂N); 3.02 (br s, 2H, CH₂CH₂N); 5.21 (s, 2H, OCH₂btz); 7.04 (d, J = 7.55 Hz, 2H, ArH); 7.20 (d, J = 7.55 Hz, 2H, ArH); 7.52 (s, 1H, H btz); 7.80 (br s, 2H, NH₂); 7.89 (s, 1H, H btz). ¹³C NMR (100 MHz, D₂O): 17.03 (*Mebtz*); 32.58 (*C*H₂CH₂N); 40.52 (CH₂CH₂N); 65.49 (OCH₂btz); 115.29 (C_o or C_m); 117.66, 120.72 $(C_5, C_{5'} \text{ of btz}); 130.02 (C_p); 130.13 (C_o \text{ or } C_m); 153.56, 154.11,$ 157.30 (C₂, C_{2'}, C₄, C_{4'} of btz; C_{ipso}); no visible TFA. Anal. Calcd for C₁₆H₁₇ON₃S₂·CF₃COOH·0.5H₂O (454.48): C, 47.57; H, 4.21; N, 9.24; S, 14.11. Found: C, 47.48; H, 4.13; N, 9.13; S, 13.66. ES-MS (pos. mode): 332.33 [M-CF₃COOH+H⁺]⁺, 195.28 [CH₃-btz-CH₂]⁺.

5.1.10. Compounds 17, 26, 27 and 28-general procedure way 1

A suspension of the ammonium salt in CH₂Cl₂ was solubilized by addition of the minimum amount of MeOH. NEt₃, then **K** were added, and the solution was stirred at rt under Ar. The reaction was followed by TLC. When all the amine was consumed, the solvent were evaporated to dryness. The residue was solubilized in CH₂Cl₂, and the solution was washed with 2 M aqueous NaHSO₄, satd aqueous NaHCO₃, then satd aqueous NaCl. After drying over Na₂SO₄ or MgSO₄, filtration and evaporation, the resulting material was chromatographed to give the expected di-boc guanidinoethyl derivative. General procedure way 2: A solution of ammonium salt (1 equiv), NEt₃ (ca. 4 equiv)), 1,3-bis(tert-butoxycarbonyl)-2methyl-2-thiopseudourea I(1.1-1.2 equiv) in dry DMF (dstd over CaH₂, or conserved over anhydrous CaSO₄) was cooled at 4 °C under Ar. HgCl₂ was added in one portion, and stirring was continued at rt under Ar to give a white suspension. The solvent was evaporated to dryness under high vacuum, and the solid residue was triturated in AcOEt or CH₂Cl₂, and filtered over Celite. The filtrate was evaporated to dryness, and residual J was eliminated by trituration of the residue with heptane, and filtration. The resulting solid was finally chromatographed to give the expected di-boc guanidinoethyl derivative.

5.1.10.1. 4-[(N,N'-Di-Boc)guanidinoethyl]-phenol 17. Way 1: From tyramine hydrochloride F (0.21 g, 1.20 mmol), K (0.47 g, 1.20 mmol), NEt₃ (0.66 mL, 0.48 g, 4.80 mmol), CH₂Cl₂ (10 mL), MeOH (10 mL). 2 h, TLC monitoring, SiO₂, CH₂Cl₂, and the solvent were evaporated to dryness. Washings: CH₂Cl₂ (20 mL), 2 M NaH-SO4 (30 mL), satd NaHCO3 (30 mL), satd NaCl (40 mL). Chromatography: SiO₂ deactivated with NEt₃; CH₂Cl₂). **17** (0.32 g, 72%). White powder. Way 2: from tyramine hydrochloride F (0.50 g, 2.87 mmol), NEt₃ (0.74 mL, 10.07 mmol), DMF (15 mL), J (0.92 g, 3.16 mmol), HgCl₂ (0.86 g, 3.16 mmol). 18 h. Trituration in AcOEt. Chromatography: SiO₂, CH₂Cl₂/MeOH, 99:1. **17** (0.98 g; 90%). White solid. Mp: 142-143 °C. IR (KBr): 3447.9 (OH); 1724.7 (COO); 1624.5 (C=N). UV-vis (CH₂Cl₂): 276 (1762). ¹H NMR (400 MHz, CDCl₃): 1.48 (s, 9H, Me₃C); 1.49 (s, 9H, Me₃C); 2.77 (t, J = 7.4 Hz, 2H, CH₂CH₂NH); 3.60 (q, J = 7.0 Hz, 6H, CH₂CH₂NH); 5.82 (br s, 1H, NH); 6.75 (d, J = 8.5 Hz, 2H, ArH); 7.00 (d, *J* = 8.3 Hz, 2H, ArH); 8.43 (s, 1H, OH); 11.44 (s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): 28.42, 28.59 (Me₃C); 34.75 (CH₂CH₂N); 43.13

 (CH_2CH_2N) ; 80.18, 83.70 (Me₃C); 115.98 (C_o); 129.76 (C_p); 129.95 (C_m); 153.50 (CO); 155.42 (C_{ipso}); 156.59 (C guan). Anal. Calcd for $C_{19}H_{29}O_5N_3$ (379.45): C, 60.14; H, 7.70; N, 11.07. Found: C, 60.13; H, 7.65; N, 11.04. ES-MS (pos. mode): 380.37 [M+H⁺]⁺.

5.1.10.2. [(N,N'-Di-Boc)-guanidinoethyl]-4-[6-methyleneoxy-6'methyl-2,2'-bipyridyl]-benzene 26. Way 1: From 23 (0.25 g, 0.51 mmol), NEt₃ (0.24 mL, 1.73 mmol), K (0.23 g, 0.58 mmol), CH₂Cl₂ (20 mL), EtOH. 2 h, TLC monitoring: Al₂O₃, CH₂Cl₂. Washings: CH₂Cl₂ (40 mL), 2 M NaHSO₄ (30 mL), satd NaHCO₃ (30 mL). Drying: Na₂SO₄. Chromatography: Al₂O₃, CH₂Cl₂. **26** (0.28 g, 85%). White powder. Way 2: from 23 (0.64 g, 1.30 mmol), NEt₃ (0.72 mL, 5.14 mmol), J (0.47 g, 1.61 mmol), DMF (30 mL). HgCl₂ (0.44 g, 1.61 mmol). 5 h. Trituration in CH₂Cl₂. Chromatography: Al₂O₃, CH₂Cl₂. 26 (0.47 g, 64%). Mp: 132–133 °C. IR (KBr): 3328.4 (CONH); 1734.3 (CO); 1654.9, 1619.0 (NCO); 1511.2 (NH). UV-vis (CH₂Cl₂): 290 (17.595). ¹H NMR (400 MHz, CDCl₃): 1.47 (s. 9H, Me₃C): 1.50 (s, 9H, Me₃C); 2.64 (s, 3H, Mebpy); 2.81 (t, J = 7.3 Hz, 2H, CH₂CH₂N); 3.63 (q, I = 7.0 Hz, 2H, CH₂CH₂N); 5.27 (s, 2H, OCH₂bpy); 6.95 (d, *J* = 8.6 Hz, 2H, ArH); 7.14 (d, *J* = 8.6 Hz, 2H, ArH); 7.18 (d, *J* = 7.8 Hz, 1H, H bpy); 7.51 (d, J = 7.5 Hz, 1H, H bpy); 7.71 (t, J = 7.8 Hz, 1H, H bpy); 7.82 (t, *J* = 7.8 Hz, 1H, *H* bpy); 8.20 (d, *J* = 7.8 Hz, 1H, *H* bpy); 8.32 (d, I = 7.8 Hz, 1H, H bpy); 8.35 (m, 1H, CH₂CH₂NH); 11.46 (s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): 25.02 (Mebpy); 28.46, 28.72 (Me₃C); 34.81 (CH₂CH₂N); 42.85 (CH₂CH₂N); 71.31 (Me₃C); 79.66 (OCH₂bpy); 83.42 (Me₃C); 115.36 (C_m); 118.69, 120.44, 121.38, 123.74 (C₃, C_{3'}, C₅, C_{5'} of bpy); 130.25 (C_o); 131.46 (C_p); 137.55, 138.01 (C₄, C_{4'} of bpy); 153.57 (C_{ipso}); 156.23 (CO); 156.51 (C guan); 155.85, 157.30, 157.61, 158.34 (C₂, C_{2'}, C₆, C_{6'} of bpy); 163.97 (CO). Anal. Calcd for C₃₁H₃₉O₅N₅ (561.67): C, 66.29; H, 6.99; N, 12.47. Found: C, 66.34; H, 7.02; N, 12.38. EI-MS: 345 [M-(Me)₃-COC(O)NH-(Me)₃COC(O)]⁺; 302 [M-((Me)₃COC(O))₂guan]⁺; 289 $[M-((Me)_{3}COC(O))_{2}guanCH_{2}]^{+}$.

5.1.10.3. [(N,N'-Di-Boc)-guanidinoethyl]-4-[5-methyleneoxy-5'-

methyl-2,2'-bipyridyl]-benzene 27. From 24 (0.233 g, 0.54 mmol), NEt₃ (0.3 mL, 2.15 mmol), K (0,21 g, 0,54 mmol), CH₂Cl₂ (25 mL), MeOH. 23 h (TLC monitoring, SiO₂, CH₂Cl₂/MeOH 98:2 with 2 drops of NEt₃). CH₂Cl₂ (50 mL). Washings: H₂O (2×30 mL). Drying: Na₂SO₄. Chromatography: SiO₂, deactivated by CH₂Cl₂/NEt₃ 90:10 then CH₂Cl₂; **12** (0.234 g, 84%) slightly pink powder. Mp: 148–149 °C. IR (KBr): 3331.55 (CONH); 1709.01(CO); 1636.81 (NCO); 1512.12 (NH). UV-vis (CH₂Cl₂): 289 (28,230). ¹H NMR (400 MHz, CDCl₃) 1.47 (s, 9H, Me₃C); 1.50 (s, 9H, Me₃C); 2.41 (s, 3H, Mebpy); 2.82 (t, J = 7.16 Hz, 2H, CH₂CH₂N); 3.64 (q, J = 7.0 Hz, 2H, CH₂CH₂N); 5.29 (s, 2H, OCH₂bpy); 6.92 (d, J = 8.56 Hz, 2H, ArH); 7.15 (d, J = 8.56 Hz, 2H, Ar*H*); 7.67 (d, *J* = 7.8 Hz, 1H, *H* bpy); 7.9 (dd, *J* = 8.2 Hz, 1H, *H* bpy); 8.33 (d, J = 8.08 Hz, 1H, H bpy); 8.37 (br s, 1H, NH); 8.43 (d, *J* = 8.04 Hz, 1H, *H* bpy); 8.52 (s, 1H, *H* bpy); 8.72 (s, 1H, *H* bpy); 11.46 (s, 1H, NH guan). ¹³C NMR (100 MHz, CDCl₃): 18.78 (*Mebpy*); 28.44, 28.71 (Me₃C); 34.81 (CH₂CH₂N); 42.79 (CH₂CH₂N); 67.99 (Me₃C); 79.63 (OCH₂bpy); 83.41 (Me₃C); 115.37, 130.30 (C_o and C_m of Ar); 120.99, 121.05, 136.64, 137.87, 148.73, 150.07 (C₃, C_{3'}, C₄, C_{4'}, *C*₆, *C*₆' of bpy); 131.73 (*C*_p of Ar); 132.67, 133.91, 156.53, 157.55 (*C*₂, C_{2'}, C₅, C_{5'} of bpy); 153.57, 153.74 (C_{ipso} of Ar, CO); 157.55 (C₂ of bpy); 156.47 (C guan); 164.02 (CO). Anal. Calcd for C₃₁H₃₉N₅O₅ 0.33-CH₂Cl₂ (589.98): C, 63.79; H, 6.78; N, 11.87. Found: C, 63.70; H, 5.57; N, 11.96. EI-MS (pos. mode): 320.1 [M-(BocNH-C=NBoc)]⁺; 342.0 $[M-(BocNH-C=NBoc)+Na^{+}]^{+}; 639.3 [2(M-(BocNH-C=NBoc))+H^{+}]^{+}.$

5.1.10.4. [(*N*,*N*'-Di-Boc)-guanidinoethyl]-4-[4-methyleneoxy-4'methyl-2,2'-bithiazolyl]-benzene 28. *Way 1: From* 25 (0.25 g, 0.55 mmol), NEt₃ (0.235 mL, 1.68 mmol), **K** (0.22 g, 0.56 mmol), CH₂Cl₂ (20 mL), MeOH. 4 h, TLC monitoring: Al₂O₃, CH₂Cl₂. Washings: CH₂Cl₂ (30 mL), 2 M NaHSO₄ (20 mL), satd NaHCO₃ (20 mL). Drying: Na₂SO₄. Chromatography: Al₂O₃, CH₂Cl₂. 28 (0.31 g, 95%). White powder. *Way* 2: from **25** (0.74 g, 1.63 mmol), NEt₃ (0.80 mL, 5.81 mmol), **J** (0.53 g, 1.82 mmol), DMF (30 mL), HgCl₂ (0.49 g, 1.82 mmol). 5 h. Trituration in CH₂Cl₂. Chromatography: Al₂O₃, CH₂Cl₂/Hex, 1:1. **28** (0.58 g, 60%). White powder. Mp: 126–127 °C. IR (KBr): 3347.0 (CONH); 1720.9 (CO); 1647,2, 1617.7

Al₂O₃, CH₂Cl₂/Hex, 1:1. 28 (0.58 g, 60%). White powder. Mp: 126-127 °C. IR (KBr): 3347.0 (CONH); 1720.9 (CO); 1647,2, 1617.7 (NCO); 1510.5 (NH). UV-vis (CH₂Cl₂): 286 (2387). ¹H NMR (400 MHz, CDCl₃): 1.48 (s, 9H, Me₃C); 1.51 (s, 9H, Me₃C); 2.52 (s, 3H, Mebtz); 2.84 (t, J = 6.9 Hz, 2H, CH_2CH_2N); 3.63 (q, J = 6.5 Hz, 2H, CH₂CH₂N); 5.24 (s, 2H, OCH₂btz); 6.94 (d, J = 8.1 Hz, 2H, ArH); 6.99 (s, 1H, H btz); 7.15 (d, J = 8.3 Hz, 2H, ArH); 3.39 (s, 1H, H btz); 8.48 (br s, 1H, NH); 11.47 (s, 1H, NH). ¹³C NMR (100 MHz, CDCl₃): 17.55 (Mebtz); 28.46, 28.72 (Me₃C); 34.80 (CH₂CH₂N); 42.82 (CH₂CH₂N); 66.69 (Me₃C); 79.66 (OCH₂btz); 83.43 (Me₃C); 115.29 (C_o or C_m); 116.25, 118.01 (C₅, C_{5'} btz); 130.27 (C_o or C_m) 131.69 (C_p); 153.56 (C_{ipso}); 154.30, 154.70 (C₂, C_{2'} btz); 156.50 (C guan); 157.43 (CO); 160.80, 162.19 (C₄, C_{4'} btz); 163.91 (CO). Anal. Calcd for C₂₇H₃₅O₅N₅S₂·0.2CH₂Cl₂ (590.7): C, 54.30; H, 6.04; N, 11.86; S, 10.86. Found: C, 55.41; H, 6.09; N, 11.98; S, 10.85. ES-MS (pos. mode): 374.2 [M-2Boc+3H⁺]⁺; 474.3 [M-Boc+2H⁺]⁺; 574.2 [M+H⁺]⁺.

5.1.11. Compounds 18, 29, 30 and 31-general procedure

TFA was added to a solution of di-boc-guanidinoethyl derivatives in CH_2Cl_2 . The mixture was stirred at rt under Ar during ca. 2–3 h (TLC monitoring). The solvents were evaporated, and the residual TFA was eliminated by successive dissolution in CH_2Cl_2 evaporation cycles, until a white solid was obtained (ca. four cycles). The latter was dried under high vacuum, triturated in Et₂O, filtered and rinsed with Et₂O to give the expected guanidinium salt.

5.1.11.1. 4-(Guanidinoethyl)-phenol, trifluoroacetate salt 18. From 17(0.5 g, 1.31 mmol), CH₂Cl₂(30 mL), TFA(10 mL). 2 h, TLC monitoring: SiO₂, CH₂Cl₂/MeOH 99:1. 18 (0.35 g, 90%). White solid. Mp: 156–157 °C. IR (KBr): 3408.8 (OH); 1686.3 (NH). UV-vis (H₂O): 274 (1916). ¹H NMR (400 MHz, D₂O): 2.80 (t, J = 6.6 Hz, 2H, CH₂CH₂NH); 3.41 (t, J = 6.6 Hz, 2H, CH₂CH₂NH); 6.86 (d, *J* = 7.5 Hz, 2H, ArH); 7.17 (d, *J* = 7.8 Hz, 2H, ArH). ¹H NMR (400 MHz, DMSO-*d*₆): 2.66 (t, *J* = 7.3 Hz, 2H, CH₂CH₂NH); $3.29(q, J = 6.7 Hz, 2H, CH_2CH_2NH); 6.70(d, J = 8.6 Hz, 2H, ArH); 6.90(br)$ s, 1H, NH), 7.05 (d, J = 8.3 Hz, 2H, ArH); 7.34 (br s, 2H, NH₂); 7.5 (s, 1H, OH); 9.27 (s, 1H, NH). ¹³C NMR (400 MHz, D₂O): 33.68 (CH₂CH₂NH); 42.82 (CH₂CH₂NH); 115.82 (C_o); 116.71 (q, J = 291.9 Hz, CF₃COOH); 130.59 (C_m); 130.64 (C_p); 154.49 (C_{ipso}); 157.06 (C guan); 163.35 (q, *J* = 35.9 Hz, CF₃COOH). Anal. Calcd for C₉H₁₃ON₃·CF₃COOH (293.24): C, 45.05; H, 4.81; N, 14.33. Found: C, 44.85; H, 4.90; N 14.03. ES-MS (pos. mode): 180.38 [M–CF₃COOH+H⁺]⁺. ES-MS (neg. mode): 406.17 $[M+CF_3COOH-H^+]^-$.

5.1.11.2. Guanidinoethyl-4-[6-methyleneoxy-6'-methyl-2,2'-bipyridyl]-benzene, sesqui-trifluoroacetate salt 29. From 26 (0.23 g, 0.41 mmol), CH₂Cl₂ (20 mL), TFA (5 mL). 2 h, TLC monitoring: SiO₂, $CH_2Cl_2/MeOH$ 99:1. **29** (0.18 g, 82%). White solid. Mp: 142–143 °C. IR (KBr): 3422.2 (NH₂); 3182.0 (NH₃⁺); 1694.0 (C=O); 1663.5, 1514.7 (NH₃⁺). UV-vis (H₂O): 286 (15,506). ¹H NMR (400 MHz, D₂O): 2.66 (s, 3H, Mebpy); 2.84 (t, J = 6.5 Hz, 2H, CH₂CH₂N); 3.43 (t, J = 6.5 Hz, 2H, CH₂CH₂N); 5.34 (s, 2H, OCH₂btz); 7.07 (d, J = 8.8 Hz, 2H, ArH); 7.26 (d, J = 8.6 Hz, 2H, ArH); 7.50 (d, J = 7.5 Hz, 1H, H bpy); 7.65 (d, J = 7.5 Hz, 1H, H bpy); 7.89 (d, J = 7.8 Hz, 1H, H bpy); 7.97 (t, J = 7.0 Hz, 1H, H bpy); 8.01 (d, J = 7.8 Hz, 1H, H bpy); 8.02 (t, J = 7.8 Hz, 1H, H bpy). ¹H NMR $(400 \text{ MHz}, \text{DMSO-}d_6)$: 2.58 (s, 3H, Mebpy); 2.73 (t, I = 7.0 Hz, 2H, CH₂CH₂N); 3.42 (q, J = 5.8 Hz, 2H, CH₂CH₂N); 5.26 (s, 2H, OCH₂btz); 6.70–7.80 (broad signal, 3H, NH guan); 7.03 (d, J = 7.6 Hz, 2H, ArH); 7.21 (d, J = 7.6 Hz, 2H, ArH); 7.35 (d, J = 7.6 Hz, 1H, H bpy); 7.49 (br s, 1H, CH₂CH₂NH); 7.55 (d, *J* = 7.6 Hz, 1H, *H* bpy); 7.86 (d, *J* = 7.5 Hz, 1H, H bpy); 7.98 (t, I = 7.3 Hz, 1H, H bpy); 8.49 (d, I = 7.8 Hz, 1H, H bpy); 8.32 (t, J = 7.8 Hz, 1H, H bpy). ¹³C NMR (100 MHz, DMSO- d_6):

24.54 (*Mebpy*); 33.93 (CH_2CH_2N); 42.59 (CH_2CH_2N); 70.77 (OCH_2b- py); 115.12 (C_o or C_m); 118.10, 119.87, 122.09, 124.08 (C_3 , C_3 ', C_5 , C_5 ' bpy); 130.27 (C_o or C_m); 131.06 (Cp); 137.97, 138.43 (C_4 , C_4 ' bpy); 156.94 (C guan); 157.14 (C_{ipso}); 154.60, 155.21, 157.20, 157.94 (C_2 and C_2 ', C_6 , C_6 ' bpy). Anal. Calcd for $C_{21}H_{23}ON_5$.1.5CF₃COOH (532.47): C, 54.13; H, 4.63; N, 13.15. Found: C, 54.25; H, 4.76; N, 13.03. ES-MS (pos. mode): 365.35 [M-CF_3COOH+H⁺]⁺. ES-MS (neg. mode): 588.12 [M+CF_3COO⁻]⁻.

5.1.11.3. Guanidinoethyl-4-[5-methyleneoxy-5'-methyl-2,2'-bipyridyl]-benzene, trifluoroacetate salt 30. From 27 (0.244 g, 0.434 mmol), CH₂Cl₂ (25 mL), TFA (6 mL). 22 h, TLC monitoring: SiO₂, CH₂Cl₂/MeOH 98:2. **30** (0.195 g, 95%). Slightly pink solid. Mp: 162–163 °C. IR (KBr): 3392.73 (NH₂); 3116.38 (NH₃⁺); 1673.98 (C=O); 1626.79, 1513.25 (NH₃⁺). UV-vis (H₂O): 288 (19,072), 240 (15,422), 228 (14,836). ¹H NMR (400 MHz, D₂O): 2.35 (s, 3H, Mebpy); 2.79 (t, J = 6.28 Hz, 2H, CH₂CH₂N); 3.43 (t, $I = 6.54 \text{ Hz}, 2\text{H}, C\text{H}_2C\text{H}_2\text{N}$; 5.16 (s, 2H, OCH₂bpy); 7.00 (d, J = 8.04 Hz, 2H, ArH); 7.20 (d, J = 8.28 Hz, 2H, ArH); 7.76 (d, I = 7.04. Hz, 1H, H bpy); 7.87 (d, I = 7.28 Hz, 1H, H bpy); 7.96 (s, 2H, H bpy); 8.40 (s, 1H, H bpy); 8.58 (s, 1H, H bpy). ¹H NMR $(400 \text{ MHz}, \text{DMSO-}d_6)$: 2.64 (s, 3H, Mebpy); 2.86 (t, I = 7.16 Hz, 2H, CH_2CH_2N ; 3.45 (q, I = 4.78H, CH_2CH_2N); 5.33 (s, 2H, OCH_2bpy); 7.14 (d, J = 8.32 Hz, 2H, ArH); 7.34 (d, J = 8.32 Hz, 2H, ArH); 6.9-7.77 (broad signal, 3H, NH guan); 7.79 (br s, 1H, CH₂CH₂NH);); 7.89; (d, *J* = 7.8 Hz, 1H, *H* bpy); 8.12 (d, *J* = 8.28 Hz, 1H, *H* bpy); 8.42 (t, *J* = 8.04 Hz, 1H, *H* bpy); 8.51 (d, *J* = 8.08 Hz, 1H, *H* bpy); 8.66 (s, 1H, H bpy); 8.87 (s, 1H, H bpy). ¹³C NMR (100 MHz, DMSO-*d*₆): 18.19 (*Mebpy*); 33.93 (CH₂CH₂N); 42.59 (CH₂CH₂N); 67.08 (OCH₂bpy); 115.16, 130.24 (Co or Cm of Ar); 120.22, 120.37, 137.02, 137.98, 148.95, 149.94 (C₃, C₃', C₄, C₄', C₆, C_{6'} of bpy); 131.09 (C_p of Ar); 133.13, 134.09, 152.84, 155.37 (C₂, C_{2'}, C₅, C_{5'} of bpy); 157.10, 157.14 (C guan; C_{ipso} of Ar); 158.85 (q, J = 30.9 Hz, CF₃COO⁻); CF₃COO⁻ not observed. Anal. Calcd for C₂₁H₂₃ON₅₋ CF₃COOH (475.46): C, 58.10; H, 5.09; N, 14.73. Found: C, 57.96; H, 5.20; N, 14.63. ES-MS (pos; mode): 362.1 [M-CF₃COO⁻]⁺.

5.1.11.4. Guanidinoethyl-4-[4-methyleneoxy-4'-methyl-2.2'-bithiazolyl]-benzene, trifluoroacetate salt 31. From 28 (0.25 g, 0.42 mmol), CH₂Cl₂ (30 mL), TFA (10 mL). 3 h, TLC monitoring: Al₂O₃, CH₂Cl₂. **31** (0.2 g, 98%). White solid. Mp: 179-180 °C. IR (KBr): 3367.2 (NH₂); 3166.7 (NH₃⁺); 1674.9 (C=O); 1624.2, 1515.3 (NH₃⁺). UV-vis (H₂O): 331 (12,553). ¹H NMR (400 MHz, D_2O): 2.44 (s, 3H, Mebtz); 2.85 (t, I = 6.5 Hz, 2H, CH_2CH_2N); 3.43 $(t, J = 6.5 \text{ Hz}, 2\text{H}, CH_2CH_2\text{N}); 5.22 (s, 2\text{H}, OCH_2btz); 7.06 (d, CH_2btz); 7.06 (d, CH_2btz);$ J = 8.1 Hz, 2H, ArH); 7.26 (d, J = 8.1 Hz, 2H, ArH); 7.30 (s, 1H, H btz); 7.68 (s, 1H, H btz). ¹H NMR (400 MHz, DMSO-d₆): 2.44 (s, 3H, Mebtz); 2.74 (t, J = 7.3 Hz, 2H, CH_2CH_2N); 3.33 (q, J = 6.8 Hz, 2H, CH₂CH₂N); 5.20 (s, 2H, OCH₂btz); 6.50-7.80 (broad signal, 4H, NH_{3^+} , NH); 7.02 (d, J = 8.4 Hz, 2H, ArH); 7.21 (d, J = 8.5 Hz, 2H, ArH); 7.51 (s, 1H, H btz); 7.63 (m, 1H, CH₂CH₂NH); 7.88 (s, 1H, H btz). ¹³C NMR (100 MHz, DMSO-d₆): 17.03 (Mebtz); 33.94 (CH₂CH₂N); 42.60 (CH₂CH₂N); 65.48 (OCH₂btz); 115.06 (C₀ or *C_m*); 117.67, 120.69 (*C*₅, *C*_{5'} btz); 130.22 (*C_o* or *C_m*); 131.08 (*C_p*); 153.60, 154.12 (C₂, C_{2'} btz); 157.09, 157.14 (C_{ipso} and C guan); 159.85, 161.34 (C₄, C_{4'} btz); no visible TFA. Anal. Calcd for C17H19ON5S2·CF3COOH (487.52): C, 46.81; H, 4.13; N, 14.36; S, 13.15. Found: C, 46.61; H, 4.42; N, 14.39; S, 12.79. ES-MS (pos. mode): 374.24 [M-CF₃COOH+H⁺]⁺. ES-MS (neg. mode): 600.04 $[M+CF_{3}COO^{-}]^{-}$.

5.1.12. 1,10-Bis-[(*N*,*N*-di-Boc)-guanidino]-decane 32

The 1,10-diaminodecane (0.25 g, 1.45 mmol) was added under Ar to a solution of NEt₃ (1.41 mL, 10.15 mmol) and **J** (0.93 g, 3.19 mmol) in dry DMF (15 mL). The mixture was cooled to 4 °C, and HgCl₂ (0.86 g, 3.19 mmol) was added in one portion. Stirring was continued at rt during 20 h, giving a light brown precipitate. The solvent was evaporated under high vacuum, to give a solid that was triturated in CH₂Cl₂, filtered over Celite, concentrated and chromatographed (Al₂O₃, CH₂Cl₂/Hex, 70:30) to give **32** (0.50 g, 52%). Mp: 101–102 °C. IR (KBr): 3336.8 (–NH, –NH₂); 1739.3 (– C=N); 1654.5 (–N–CO). ¹H NMR (400 MHz, CDCl₃): 1.26 (m, 12H, $H_{3,4,5}$); 1.50 (m, 40H, H_2 , Me_3 C); 3.39 (q, J = 7.2 Hz, 4H; H_1), 8.29 (s, 2H, NH); 11.50 (s, 2H, NH). ¹³C NMR (100 MHz, CDCl₃): 27.21, 29.33, 29.73 (C_3 , C_4 , C_5); 28.45, 28.69 (Me_3 C); 29.59 (C_2); 41.34 (C_1); 79.51, 83.30 (Me₃C); 153.70 (CO); 156.78 (C guan); 164.04 (CO). Anal. Calcd for C₃₂H₆₀O₈N₆·O.33C₆H₁₂ (685.58): C, 59.56; H, 9.51; N, 12.26. Found: C, 59.42; H, 9.17; N, 12.63. EI-MS: 577 [M–(Me)₃COC(O)+Na]^{*}; 577 [M–(Me)₃COC(O)–(Me)₃C+Na]^{*}.

5.1.13. 1,10-Bis-(guanidino]-decane, bis-trifluoroacetate salt 33; Synthalin A

TFA (15 mL) was added to a solution of **32** (1.14 g. 1.7 mmol) in anhydrous CH₂Cl₂ (40 mL). The mixture was stirred at rt under Ar during 3 h, and the solvents were evaporated. The residual TFA was eliminated by successive dissolution in CH₂Cl₂-evaporation cycles, until a white solid was obtained (ca. four cycles). The latter was dried under high vacuum, triturated in Et₂O, filtered and rinsed with Et₂O (0.85 g). This last solid was dialyzed (Float-A-Lyser, cellulose acetate, MWCO 100 D) and lyophilized to give **33** (0.6 g; 70%). White cotton. Mp: 109-110 °C. IR (KBr): 3376.7 (NH, NH₂); 1675.9 (C=N). ¹H NMR (400 MHz, D₂O): 1.28 (m, 12H, H_{3,4,5}); 1.56 (m, J = 6.4 Hz, 4H, H_2); 3.15 (t, J = 7.0 Hz, 4H, H_1). ¹H NMR (400 MHz, DMSO-d₆): 1.26 (m, 12H, H_{3,4,5}); 1.45 (m, 4H, H₂); 3.09 (m, J = 6.4 Hz, 4H, H_1). ¹³C NMR (100 MHz, D_2 O): 26.17, 28.65, 28.89 (C_3 , C_4 , C_5); 28.20 (C_2); 41.53 (C_1); 116.67 (q, J = 291.4 Hz, CF₃COO⁻); 157.05 (C guan); 163.20 (q, J = 35.2 Hz, CF₃COO⁻). Anal. Calcd for C₁₂H₂₈N₆·2CF₃COOH·H₂O (498.45): C, 38.55; H, 6.47; N, 16.86. Found: C, 38.55; H, 6.50; N, 16.99. ES-MS (pos. mode): 371.41 [M-CF₃COOH+H⁺]⁺; 257.54 [M-2CF₃COOH+H⁺]⁺. ES-MS (neg. mode): 597.25 [M+CF₃COOH-H⁺]⁻; 483.38 [M+CF₃ COOH-H⁺]⁻; 369.45 [M-CF₃COOH-H⁺]⁻.

5.2. Biology

5.2.1. Bacteriology

Bacteria were grown in Mueller-Hinton broth (Difco, 275730), or Mueller Hinton agar (Difco, 225250); purity of isolates was checked at the time of every test by examination of colony morphology and Gram staining. For MIC determination experiments, bacteria were inoculated in 96-well U shape microtiter plates to yield a final inoculum of 1×10^5 colony-forming units (CFU)/mL. Then various concentrations of the drugs were added. The cultures were grown for 18–24 h at 35 °C. The resulting bacterial growth was measured with an ELISA plate reader (Multiskan EX, Thermo Electron Corporation, France) at a wavelength of 540 nm.

5.2.2. Cell viability

MRC-5 cells (human pulmonary embryonic fibroblasts) were obtained from BioMerieux (France). The cells were maintained in modified Eagle's medium (MEM, Invitrogen 41090) supplemented with 10% decomplemented fetal bovine serum (FBS, Invitrogen 10270, batch 40Q5150K) without antibiotics at 37 °C, 5% CO₂, under a humid atmosphere. Cells were plated at 10⁴ cells/well in 96-well plates (Sarstedt 831835). Forty eight hours after plating, the growth medium was removed and replaced with the test solutions (100 µL). Viability tests were performed after 24, 48 and 168 h exposure to drugs; they were carried out using a commercially available cell proliferation reagent MTT [3-(4,5-dimethyl-thiazolyl-2-yl-2,5-diphenyltetrazolium bromide] (Sigma 1350380) as described previously.^{3,30} The assay is based on cleavage of the tetrazolium salt MTT by active mitochondria to produce an

insoluble purple formazan salt. Since this conversion only occurs with viable cells, it directly correlates with cell count. After 24, 48 and 168 h exposure, 10 µL of a 5 mg/mL MTT solution were added to each well and plates were incubated at 37 °C for 4 h. Then, insoluble purple formazan was dissolved by adding 100 µL SDS to each well. The absorbance A_{540 nm} was measured with a reference wavelength of $A_{690 \text{ nm}}$, using an ELISA reader (Multiskan EX, Thermo Electron Corporation, France). The results were expressed as the percent absorbance of treated versus untreated control cultures. Eight wells per dose and time point were counted in 3 differexperiments. Lactate dehydrogenase ent (LDH) release experiments: The detection procedures of LDH release were in accordance with the manufacturer's instructions (CytoTox 96[®] Non-Radioactive Cytotoxicity Assay, Promega Corp, Madison, WI). Briefly, all reagents stocked at 4 °C were slowly warmed up. Then, on appropriate microtiter plate (MTP), 10 µL of lysis solution were added to 'control cell' wells in order to determine 100% release of LDH; and MTP was centrifuged at 2500 g for 4 min to have 'cellfree' supernatants. Subsequently, 25 µL of each sample were transferred to a new MTP, and 25 µL of freshly prepared Substrate Mix were added to each well and incubated up to 30 min in the dark at room temperature. Finally, 50 µL of stop solution were added to each well. The absorbance A_{490 nm} was measured using an ELISA reader (Multiskan EX, Thermo Electron Corporation, France). The results were expressed as the percent absorbance of treated versus untreated control cultures. Eight wells per dose and time point were counted in 3 different experiments.

Acknowledgements

We are grateful to the MRES and CNRS for financial support, especially M. Mourer for a PhD grant. The authors thank E. Dubs for preparing some of the chemical intermediates, J.-M. Ziegler, F. Dupire and S. Adach for mass measurements and elemental analyses, and Mrs. Nicole Marshall for correcting the manuscript.

References and notes

- 1. Leeb, M. Nature 2004, 431, 892.
- (a) Ben Salem, A.; Regnouf-de-Vains, J.-B. *Tetrahedron Lett.* 2001, 42, 7033; (b) Ben Salem, A.; Regnouf-de-Vains, J.-B. *Tetrahedron Lett.* 2003, 44, 6769.
- (a) Mourer, M.; Duval, R. E.; Finance, C.; Regnouf-de-Vains, J.-B. *Bioorg. Med. Chem. Lett.* 2006, *16*, 2960; (b) Grare, M.; Mourer, M.; Regnouf-de-Vains, J.-B.; Finance, C.; Duval, R. E. *Pathol. Biol.* 2006, *54*, 470; (c) Grare, M.; Mourer, M.; Fontanay, S.; Regnouf-de-Vains, J.-B.; Finance, C.; Duval, R. E. *J. Antimicrob. Chemother.* 2007, *60*, 575.
- (a) Laqua, A.; Holtschmidt, U.; Bertelmann, G. Fr 2,418,789, 1979.; (b) Wallhaüsser, K. H.; May, A.; Bücking, H.-W. EP 0,003,999, 1979.; (c) Diery, H.; Wagemann, W.; Bücking, H.-W.; Hille, M.; Wallhaüsser, K. H. U.S. Patent 4,339,459, 1982.; (d) Butlion, M. WO 98/56366, 1998. Amtmann, E. U.S. Patent 0,192,717, 2004.

- (a) Frank, E.; Nothmann, M.; Wagner, A. Klinische Wochenschrift **1926**, 5, 2100;
 (b) Frank, E.; Nothmann, M.; Wagner, A. Klinische Wochenschrift **1928**, 7, 1996;
 (c) Lourie, E. M.; Yorke, W. Ann. Trop. Med. **1937**, 31, 435. cf C.A. 31, 8006.9.
- (a) For example: Gutsche, C. D. Calixarenes, In Stoddart, J. F., Ed.; Monographs in Supramolecular Chemistry; Royal Society of Chemistry: Cambridge, 1989.; (b)*Calixarenes 2001*; Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J., Eds.; Kluwer: Dordrecht, The Netherlands, 2001.
- 7. Yo, T., Fujiwara, K., Otsuka, M. JP 10203906, 1998.
- 8. (a) Harris, S. J. WO Patent 9519974, 1995.; (b) Harris, S. J. WO Patent 0244121, 2002.
- 9. Hwang, K. M.; Qi, Y. M.; Liu, S. Y.; Choy, W.; Chen, J. WO Patent 9403164, 1994. 10. Hwang, K. M.; Qi, Y. M.; Liu, S. Y.; Lee, T. C.; Choy, W.; Chen, J. WO Patent
- 9403165, 1994. 11. Hulmes, D.; Coleman, A.; Aubert-Foucher, E. (CNRS, Fr) WO Patent 0007585, 2000.
- Cornforth, J. W.; D'Arcy Hart, P.; Nicholls, G. A.; Rees, R. J. W.; Stock, J. A. Br. J. Pharmacol. 1955, 10, 73.
- (a) D'Arcy Hart, P.; Armstrong, A. J.; Brodaty, E. Infect. Immun. **1996**, 64, 1491;
 (b) Colston, M. J.; Hailes, H. C.; Stavropoulos, E.; Herve, A. C.; Herve, G.; Goodworth, K. J.; Hill, A. M.; Jenner, P.; Hart, P. D.; Tascon, R. E. Infect. Immun. **2007**, 72, 6318; (c) Loiseau, F. A.; Hill, A. M.; Hil, K. K. Tetrahedron **2007**, 63, 9947.
- 14. Casnati, A.; Fabbi, M.; Pelizzi, N.; Pochini, A.; Sansone, F.; Ungaro, R.; Di Modugno, E.; Tarzia, G. Bioorg. Med. Chem. Lett. **1996**, 6, 2699.
- For example: (a) Auletta, T.; Dordi, B.; Mulder, A.; Sartori, A.; Onclin, S.; Bruinink, C. M.; Péter, M.; Nijhuis, C. A.; Beijleved, H.; Schönherr, H.; Vancso, G. J.; Casnati, A.; Ungaro, R.; Ravoo, B. J.; Huskens, J.; Reinhoudt, D. N. Angew. Chem., Int. Ed. **2004**, 43, 369; (b) Mulder, A.; Auletta, T.; Sartori, A.; Del Ciotto, S.; Casnati, A.; Ungaro, R.; Huskens, J.; Reinhoudt, D. N. J. Am. Chem. Soc. **2004**, 126, 6627.
- (a) Dudic, M.; Colombo, A.; Sansone, F.; Casnati, A.; Donofrio, G.; Ungaro, R. *Tetrahedron* 2004, 60, 11613; (b) Sansone, F.; Dudic, M.; Donofrio, G.; Rivetti, C.; Baldini, L.; Casnati, A.; Cellai, S.; Ungaro, R. J. Am. Chem. Soc. 2006, 128, 14528; (c) Bagnacani, V.; Sansone, F.; Donofrio, G.; Baldini, L.; Casnati, A.; Ungaro, R. Org. Lett. 2008, 10, 3953; (d) Dings, R. P. M.; Chen, X.; Hellebrekers, D. M. E. I.; van Eijk, L. I.; Zhang, Y.; Hoye, T. R.; Griffioen, A. W.; Mayo, K. H. J. Natl. Cancer Inst. 2006, 98, 932.
- Elliot, A. J.; Morris, P. E.; Petty, S. L., Jr.; Williams, C. H. J. Org. Chem. 1997, 62, 8071.
 - 18. Gutsche, C. D.; Nam, K. C. J. Am. Chem. Soc. 1988, 110, 6153.
 - Baker, T. J.; Tomioka, M.; Goodman, M.; Mergott, D. G.; Roush, W. R. Org. Synth. 2000, 78, 91.
 - (a) Obtained by reaction of PBr₃ on [82740-71-4].; (b) Ziessel, R.; Hissler, M.; Ulrich, G. Synthesis **1998**, 9, 1339; (c) Heck, R.; Dumarçay, F.; Marsura, R. Chem. Eur. J. **2002**, 8, 2438.
 - Pellet-Rostaing, S.; Regnouf-de-Vains, J.-B.; Lamartine, R. Tetrahedron Lett. 1996, 37, 5889.
 - 22. For example: Regnouf-de-Vains, J.-B.; Lamartine, R. *Helv. Chim. Acta* **1994**, 77, 1817. and references cieted therein.
 - (a) Jaime, C.; de Mendoza, J.; Prados, P.; Nieto, P. M.; Sanchez, C. J. Org. Chem. 1991, 56, 3372; (b) Magrans, J. O.; de Mendoza, J.; Pons, M.; Prados, P. J. Org. Chem. 1997, 62, 4518.
 - (a) Mourer, M.; Regnouf-de-Vains, J.-B. Tetrahedron Lett. 2006, 47, 1895; (b) Psychogios, N.; Regnouf-de-Vains, J.-B. Tetrahedron Lett. 2002, 43, 7691.
 - 25. Al-Damluji, S.; Kopin, I. J. Brit. J. Pharm. 1998, 124, 693.
 - 26. (a) Ghosh, S.; Davis, R. E. WO 9955321, 1999.; (b) Michel, R.; Truchot, R.; Gully-Martin, V. *Biochem. Pharm.* **1971**, *20*, 2587.
 - 27. Colca, J. R.; Larsen, S. D.; Meglasson, M. D.; Tanis, S. P. WO 9303714, 1993.
 - Goeres, E.; Schwartz, J.; Haeussler, R.; Petsch, G.; Wehl, A. Acta Biol. Med. Ger 1970, 24, 369.
 - National Committee for Clinical Laboratory Standards. 2001. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 5th ed. Approved standard. NCCLS document M7-A5. National Committee for Clinical Laboratory Standards. Wayne. PA. USA.
- 30. Mosmann, T. J. Immunol. Methods. 1983, 65, 55-63.