FERN CONSTITUENTS: TRITERPENOIDS ISOLATED FROM POLYPODIUM VULGARE, P. FAURIEI AND P. VIRGINIANUM

YŌKO ARAI, MOTOKO YAMAIDE, SACHIKO YAMAZAKI and HIROYUKI AGETA*

Showa College of Pharmaceutical Sciences, Machida, Tokyo 194, Japan

(Received 4 February 1991)

Key Word Index—Polypodium vulgare; P. fauriei; P. virginianum; Polypodiaceae; rhizomes; hop-22(29)-ene; isohop-22(29)-ene; fernenes; serrat-14-ene; dammaradienes; eupha-7,21-diene; cycloartanoid; cyclopodmenyl acetate.

Abstract—The fresh rhizomes of *Polypodium vulgare*, *P. fauriei* and *P. virginianum* collected in Japan gave, in addition to 30 known compounds, three new triterpenoids; dammara-17,21-diene, cyclopodmenyl acetate and 21α H-hopan-22-ol. The structures were elucidated by their physical data and chemical correlations.

INTRODUCTION

Common polypody, Polypodium vulgare L. (Ooezodenda in Japanese) is widely distributed in Europe, Asia and North America. Triterpenoid hydrocarbons [1], triterpenoid alcohols of the cycloartane group [2], ecdysones [3] and a sweet glycoside, osladin [4], have previously been reported from this fern of European origin. In Japan, Ooezo-denda is only found in Oki Island (Shimane prefecture) and at Hachinohe City (Aomori prefecture) as very small colonies.* This paper deals mainly with triterpenoid constituents which were isolated and identified from Polypodium vulgare and two other Japanese related ferns, P. fauriei Christ (Oshaguji-denda) and so-called P. virginianum L. (Ezo-denda in Japanese). Furthermore, the structures of a new dammarane-type hydrocarbon and a new cycloartane type triterpenoid having a C₃₃ skeleton were established by their physical data and chemical correlation to known compounds.

RESULTS AND DISCUSSION

The fresh rhizomes of *P. vulgare* (Pv), *P. fauriei* (Pf) and *P. virginianum* (Pi) collected in Japan were extracted with *n*-hexane as described in the Experimental, and extracts of 5.90 g (Pv), 2.41 g (Pf) and 3.54 g (Pi) were obtained. The TLC patterns of the three extracts closely resembled each other, including remarkable spots of triterpenoid hydrocarbons, esters and triacyl glyceride. Each extract was chromatographed through silica gel to give the following fractions: hydrocarbons from *n*-hexane eluates, fatty acid esters from *n*-hexane-benzene (9:1) eluates, acetates from *n*-hexane-benzene (1:1) eluates and triacyl glyceride from benzene eluates. All triterpenoids isolated or identified from the various fractions of each material are listed in Table 1 with their RR_t and yields.

Several peaks were detected in the GC of pentacyclic triterpenoid hydrocarbon fraction from each material. The hydrocarbon mixtures of the extracts were repeatedly purified through AgNO₃-silica gel chromatography. Six compounds were identified as hop-22(29)-ene (1) [5], isohop-22(29)-ene (2) [6], hop-17(21)-ene (3) [5], neohop-13(18)-ene (4) [5], fern-7-ene (5) [5], fern-8-ene (6) [5] and fern-9(11)-ene (7) [5], which belong to triterpenoid hydrocarbons of the hopane and migrated hopane groups except for 2 being a member of isohopane group. These compounds, except for 2, were characteristic triterpenoid hydrocarbons distributed widely in the ferns. In addition, serrat-14-ene (8) [7] was obtained from all of the three species and Polypodium polypodioides (L.) Watt. [8], but not from more than a hundred species of ferns, including Polypodium someyae Yatabe [9], P. niponicum Mett., P. formosanum Baker [5] and P. amamianum Tagawa [10]. All pentacyclic triterpenoid hydrocarbons were identified by comparison of their mp, IR and mass spectra with those of authentic samples.

Four compounds were obtained as oily substances from the fraction of the tetracyclic triterpenoid hydrocarbons. Three of them were identified as dammara-18(28),21-diene (9) [11], dammara-13(17),21diene (10) [12] and eupha-7,21-diene (11) [12] by comparison of their ¹H NMR and mass spectra with those of authentic samples.

Compound 12, mp 53-55°, RR_t 1.73, $[\alpha]_{D}^{23} + 25°$ (CHCl₃; c 0.5), isolated from Pf, was a triterpenoid hydrocarbon of molecular formula $C_{30}H_{50}$ (its high resolution MS, $[M]^+$ at m/z 410.3906). The mass spectrum of 12 gave main fragment peaks of m/z 395, 341, 218, 191 and 69, which resembled those of 10 [11] (Scheme 1). However, unlike compound 10, the fragment peaks of m/z 299 and 297 in the mass spectrum of 12 were not obvious. The ¹H NMR spectrum of 12 showed signals for eight methyl groups ($\delta 0.804 \times 2$, 0.848×2 , 0.974, 1.598, 1.666, 1.692) and one olefinic proton ($\delta 5.120$, br t, J = 7.0 Hz). The methyl proton signals of C-23, C-24 and C-25 were assigned by comparison with those of 9 and 10. Thus, it is

^{*}The dried rhizomes of *Polypodium vulgare* in Oki island has also been studied, and no other compounds than reported in this paper were obtained.

			Yield (% \times 10 ³)	
Compounds	RR,	P. vulgare	P. fauriei	P. virginianum
Hop-22(29)-ene (1)	2.61	3.5	13.0	2.9
21αH-Hop-22(29)-ene (2)	1.99	2.5		
Hop-17(21)-ene (3)	1.67	3.0	0.6	1.8
Neohop-13(18)-ene (4)	1.91	3.8		
Fern-7-ene (5)	2.26	3.0	6.1	+
Fern-8-ene (6)	1.91		0.6	+
Fern-9(11)-ene (7)	2.00	80.0	121.0	70.0
Serrat-14-ene (8)	2.34	17.5	7.3	0.9
Dammara-18(28),21-diene (9)	1.53	+	+	1.2
Dammara-13(17),21-diene (10)	1.20	+	10.9	+
Eupha-7,21-diene (11)	1.62	1.8	4.5	+
Dammara-17,21-diene (12)	1.73	+	19.7	+
α-Polypodatetraene (13)	1.12	+	10.6	+
Onoceranoxide (14)	2.22	0.5	3.0	+
31-Norcycloartanol (15)	2.37	+	+	+
Cycloartanol (16)	2.80	+	+	+
Cyclolaudenol (17)	3.54	+	+	+
Cycloartenol (18)	3.10	+	+	+
Cyclomargenol (19)	4.36	+	+	+
31-Norcycloartanyl acetate (20)	3.10	13.0	1.4	1.2
Cycloartanyl acetate (21)	3.74	34.0	3.6	4.0
Cyclolaudenyl acetate (22)	4.49	36.0	1.7	7.6
Cycloartenyl acetate (23)	4.03	3.0	0.3	0.9
Cyclomargemyl acetate (24)	5.63	1.0	0.3	0.4
Drvocrassyl acetate (25)	6.41	3.0	0.1	0.3
Cyclopodomenyl acetate (26)	7 10	+		0.0
Cycloartanone (27)	2.72	13	+	+
Cyclolaudenone (28)	3.30	+	+	4
Cycloartenone (29)	2.93	, +	+	, +
Cyclomargenone (30)	407	, +	+	, +
21αH-22-Hydroxyhopane (31)		, +	ĩ	10.0

Table 1. Triterpenoids isolated or identified from the rhizomes of Polypodium vulgare, P. fauriei and P. virginianum

Yield: +, Presence of the compound was confirmed, but its yield was unknown.

suggested that 12 has the same A, B and C ring system and terminal parts of the side chain as present in 10. The presence of one olefinic proton signal and three olefinic methyl proton signals suggested an extra tetrasubstituted double bond and a methyl group in the side chain of 12. The signals of two singlet methyl groups at $\delta 1.598$ and 1.666 were assigned as those of C-29 and C-30, respectively, having a double bond at C-17. This situation was only satisfied in the dammarane skeleton. The ¹³C NMR signals of 12 were assigned by comparison with those of polypodatetraene (13) [13] and 18-hydroxydammar-21ene (32) [11] (Table 2). The geometry of the side chain was confirmed by NOE difference spectrum measurement. The NOE enhancements which resulted from irradiation of methyl protons at C-26, C-28 and C-29 are shown in Scheme 1. In particular, the NOE enhancement between the H-12 β and C-28 methyl protons gave clear evidence of the 17E-structure in 12. Thus, 12 is (17E)-dammara-17,21-diene, and the structure was finally confirmed by comparison with the sample derived from 32 by dehydration with POCl₃.

α-Polypodatetraene (13) was detected as the most polar oily hydrocarbon, and was identified by comparison of its IR, ¹H NMR and mass spectra with those of an authentic sample from our laboratory [13].

Compound 14 was obtained as a trace component from *n*-hexane- C_6H_6 (7:3) eluates of Pv. It was identified as onoceranoxide by comparison of the ¹H NMR and mass spectra with those of an authentic sample isolated from *Lemmaphyllum microphyllum* [7].

The *n*-hexane to *n*-hexane-benzene (7:3) eluates contained the principal components of each plant extract. The oily fractions were found to contain a trace of less polar compound (ester I) on TLC. This waxy ester I was separated by repeated chromatography. The ¹H NMR spectrum of ester I showed proton signals of five methyls ($\delta 0.682$, 0.846, 0.894, 0.958, 1.100), aliphatic methylene ($\delta 1.258$) and one olefinic proton ($\delta 5.344$). Alcohol and acid components of ester I were identified by hydrolysis with 5% KOH to give sitosterol accompanied by a trace of campesterol and palmitic acid. Thus, ester I is phytosteryl palmitate mainly constituted by the sitosterol ester.

A principal component of these ferns was an oily ester (ester II), which gave the ¹H NMR signals of a cyclopropane (δ 0.140, 0.390; 0.328, 0.444), four methyl groups (δ 0.838, 0.890, 0.958, 1.638), an aliphatic methylene

Table 2. ¹³CNMR spectral data of dammara-17,21-diene (12) and related compounds (13 and 32)

с	12	13	32	С	12	13	32	с	12	13	32
1	40.7	39.1	40.6	11	21.5	23.8	21.3	21	124.7	124.4	124.7
2	18.8	19.4	18.9	12	27.2	29.7	25.3	22	131.0	131.1	131.3
3	42.2	42.3	42.1	13	47.1	125.1	42.1	23	33.4	33.6	33.4
4	33.4	33.6	33.3	14	49.7	134.8	50.0	24	21.5	21.7	21.5
5	57.1	55.6	56.9	15	30.3	39.8	31.0	25	15.7	14.5	15.6
6	18.6	24.5	18.6	16	28.8	26.8	27.5	26	16.4	106.1	16.4
7	35.6	38.4	35.2	17	125.8	124.3	49.6	27	16.5	16.0	16.1
8	40.1	148.4	40.6	18	136.6	134.8	75.7	28	17.6	16.0	23.6
9	50.7	56.2	50.7	19	37.4	39.8	41.8	29	17.6	17.1	17.6
10	37.2	39.6	37.4	20	26.1	26.8	22.3	30	25.7	25.7	25.7

Scheme 1.

 $(\delta 1.314)$, a terminal methylene ($\delta 4.654$) and an olefine ($\delta 5.342$) in its ¹H NMR spectrum. The molecular peaks in the mass spectrum of the ester II were found at m/z 702, 690, 688 and 676. The mixture was hydrolysed to give alcohols and an acid. The alcohol fraction contained three main peaks on GC, which were identified as 31-norcycloartanol (15) [14], cycloartanol (16) [15] and cyclolaudenol (17) [16] by GC-MS. Another two coeluting compounds were identified as cycloartenol (18) [15] and cyclomargenol (19) [16] by GC-MS. The acid fraction was identified as linoleic acid by the ¹H NMR and mass spectra comparing with those of the respective methyl ester. The compositions of the alcohols in each extract are shown in Table 3.

The GC patterns of the *n*-hexane-benzene (1:1) eluates of each extract resembled each other, composition ratios of the components and the main mass spectral fragments are listed in Tables 3 and 4. On the base of RR_t and the main fragment peaks, the compounds were identified as five cycloartanoid acetates: 31-norcycloartanyl acetate (20) [14], cycloartanyl acetate (21) [16], cyclolaudenyl acetate (22) [16], cycloartenyl acetate (23) [14], cyclomargenyl acetate (24) [16] and a pentacyclic triterpenoid acetate, dryocrassyl acetate (25) [17] of the hopane group, by comparison of its GC-MS with those of authentic samples.

A minor acetate (26), mp 116–118°, $[\alpha]_D^{23} + 52^\circ$ (CHCl₃; c 0.2), $v_{max}^{KBr} cm^{-1}$: 3080, 1020; 1630, 890; 1730, 1245, named cyclopodmenyl acetate, was isolated from

the acetate fraction of Pv by HPLC. This compound was suggested to have a cyclopropane ring, a terminal methylene and an acetate group in the molecule by its IR spectrum. The molecular formula was found to be $C_{35}H_{58}O_2$ by the high resolution mass spectrum $([M]^+$ as m/z510.4421). Comparison of its mass spectral fragmentation pattern with those of 22 and cyclobalanyl acetate (24,24dimethyl-cycloart-25-en-3 β -yl acetate) (33) [16] clearly indicated that these three compounds have the same structure in the cyclic part of the molecule and have a different side chain, namely C_9 , C_{10} and C_{11} (Table 4). Comparison of the ¹H NMR signals with those of 22, 24 and 26 also indicated that these three compounds have the same structure in the cyclic part. Compound 26 was found to have an ethyl group attached to the olefinic carbon, because the ethyl signals appeared at lower field. This was also confirmed by irradiation of the methylene signal at $\delta 1.990$ (br q, J = 7.4 Hz), which resulted in the signal of the C-33 methyl at $\delta 1.047$ (t, J = 7.4 Hz) being a singlet and also the proton signals at $\delta 4.762$ (br d) and $\delta 4.785$ (dt, C-26) being sharper doublets (Table 5). The remarkable differences in the values of C-25, C-27 and C-33 in the ¹³C chemical shifts of 26 and 33 also definitely indicated that 26 has an extra methyl (C-33) at C-27 (Table 6). From the coincidence of ¹H and ¹³C chemical shifts of 22 and 33, it was concluded that 26 has the same stereostructure as 33, including the configuration at C-20 [18]. Thus, cyclopodmenyl acetate is 24,24,27-trimethyl-9,19-cyclolanost-25-en-3 β -yl acetate.

	Fa	atty acid	i ester		Acetate	;		Fre	e alcoh	ol and k	etone			
	Pv	Pf	Pi	Pv	Pf	Pi	Pv	Pf	Pi		Pv	Pf	Pi	
31-Norcycloartanol (15)	19	24	18	13	19	8	33	43	28					
Cycloartanol (16)	45	39	35	34	47	28	8	9	13	(27)	29	+	20	
Cyclolaudenol (17)	27	23	36	36	23	52	4	2	6	(28)	51	+	57	
Cycloartenol (18)	5	9	9	3	3	6	48	46	53	(29)	9	+	15	
Cyclomargenol (19)	4	4	+	4	2	3	+			(30)	5	+	7	

Table 3. The composition ratio (%) of cycloartanoid homologues in esters, alcohols and ketones

Pv: Polypodium vulgare; Pf: P. fauriei; Pi: P. virginianum.

Cycloartanone (27) [14] from Pv was obtained by repeated purification with silica gel chromatography using *n*-hexane-benzene (1:1), and identified by comparison with the sample derived from cycloartanol [15] by mp, IR and mass spectra. Furthermore, it was supposed by GC-MS that cyclolaudenone (28) [16], cycloar-

tenone (29) [15] and cyclomargenone (30) [16] coexist with 27. The composition ratio and other physical data (MS) for three extracts are listed in Tables 3 and 4.

Triterpenoid alcohols in the three extracts were observed in small amount in the *n*-hexane-benzene (1:1) and benzene eluates, and the GC patterns of these

20
ž
2
E
R
_
P
<u>o</u>
8
5
at
ö
5
2
~
5
÷
11
E
ġ.
3
9
ğ
بلسي
q
. <u>e</u>
E.
8
E.
ä
<u> </u>
3
÷.
8
<u>e</u>
v 0
S
la
Ξ
E
E.
ų
4
<u></u>
4
e
ā
, ci

ues

			$[M-H_2O]^+$								
Compounds	+[W]	[M-Me] ⁺	[M-HOAc] ⁺	8	4	J	-P	e	f	50	h
31-Norcycloartanol (15)	414	399	396		288	283	241 ²	229	215	203	175
31-Norcycloartanyl acetate (20)	456	441	396	341	288	2831	241 ¹	229	215	203	175
Cycloartanyl acetate (21)	470	455	410	341	288	2971	2551	229	215	203	175
Cycloartanone (27)	426	411		341	288	313 ³				203	175
Cycloartanol (16)	428	413	410	341	288	2972	2552	229	215	203	175
Cycloartenyl acetate (23)	468	453	408	339	286	2971	2551	229	215	203	175
Cycloartenone (29)	424	409		339	286	313 ³		229	215	203	175
Cycloartenol (18)	426	411	408	339	286	2972	2552	229		203	175
Cyclolaudenyl acetate (22)	482	467	422	353	300	2971	2551	229	215	203	175
Cyclolaudenone (28)	438	423		353	300	313 ³		229	215	203	175
Cyclolaudenol (17)	4 0	425	422	353	300	297^{2}	2552	229	215	203	175
Cyclomargenyl acetate (24)	496	481	436	367	314	2971	2551	229	215	203	175
Cyclomargenone (31)	452	437			314	313 ³		229	215	203	175
Cyclomargenol (19)	454	439	436	367	314	2972	2552	229	215	203	175
Cyclopodmenyl acetate (26)	510	495	450	381	328	2971	2551	229	215	203	175

fractions were very similar. The components were identified as 31-norcycloartanol (15) [14], cycloartanol (16) [15], cyclolaudenol (18) [16] and cyclomargenol (19) [16] by GC-MS. The composition ratios are also listed in Table 3.

As reported earlier, observation of the main mass spectral fragments and RR_i of cycloartanoid homologues is very useful for their structural identification. Characteristic fragments due to opening of the 9,19-cyclopropane ring and loss of the side chain and two protons from the molecule [16] were observed at m/z 297, 283; 286, 288, 300, 314 and 328 giving important data for structural elucidation (Table 4).

Compound 31, mp 225–226°, $[\alpha]_{D}^{23} + 21.3°$ (CHCl₃; c 0.4), IR ν_{max}^{KBr} cm⁻¹: 3480, 1135, $[M]^+$ at m/z 428.4015 (C₃₀H₅₂O), EIMS m/z 428 (10), 410 (16), 395 (24), 367 (4), 207 (20), 203 (22), 191 (100), 189 (87), was obtained from Pv. Compound 31 was identified as 22-hydroxyisohopane by comparison of its ¹H NMR and mass spectra with those of the authentic synthetic sample [19]. This is the first example of the occurrence of 31 from a natural source.

Another major oily substance, IR v_{max}^{film} cm⁻¹: 1708, was isolated from benzene eluates of the extracts of fresh materials. The molecular peak was found at m/z 882 in the FD-MS, and this substance was established to be the glyceride of unsaturated fatty acids by ¹H and ¹³C NMR data as follows. The ¹H NMR spectrum showed some characteristic proton signals of a methyl group ($\delta 0.882, t$). aliphatic methylene (δ 1.270), methylenes adjacent to a double bond, a carbonyl and two double bonds ($\delta 2.019$, 2.350, 2.769, respectively). Further signals of olefinic protons (δ 5.346, m), and protons of the glycerol part (δ 4.189 and 4.240) were also recorded. The ¹³C NMR spectrum showed characteristic carbon signals due to the carbons adjacent to oxygen (δ 62.1, 69.0), olefinic carbon $(\delta 127.9, 128.1, 130.0, 130.2)$ and carbonyl carbon $(\delta 172.8, \delta 127.9, \delta 128.1, \delta 128.1)$ 173.2). Three signals of the glycerol part were confirmed for C-1 (δ 62.1), C-2 (δ 69.1) and C-3 (δ 62.1) by comparison with those of commercial butylin. The fatty acid moieties were considered to be linoleic acid from the FD-MS. The chemical shifts of proton and carbon were assigned by comparison with those of linoleic and oleic acid standards. Distinction between linoleic acid and oleic acid, which are expected to coexist, was achieved by identification of two signals; $\delta 25.7$ at C-11 of linoleic acid and δ 129.7 at C-9 of oleic acid. As a result, the triacyl glyceride of each extract was identified as trilinoleyl glyceride containing a trace of olevl residue, but further details of the structure were not studied.

The chemotaxonomical features of the three Japanese *Polypodium* species reported in this paper can be concluded to be closely related: (i) very similar patterns of triterpenoid hydrocarbons were observed. (ii) In particu-

 c^{1} : $c - HOAc - H_{2}$; c^{2} : $c - H_{2}O - H_{2}$; d^{1} : d - HOAc; d^{2} : $d - H_{2}O$.

Н	26	22	33	Н	26	22	33
30	0.885	0.887	0.887	28/29	1.019	0.997 d	1.016
31	0.845	0.845	0.845			(6.7)	1.016
19	0.333 d	0.336 d	0.335 d	26	4.762 d	4.665 m	4.659 br d
	(4.1)	(4.1)	(4.1)		(1.2)	$(W_{2/H} = 2.5)$	(2.0)
	0.570 d	0.571 d	0.572 d		4.785 dt		4.722 br q
	(4.1)	(4.1)	(4.1)		(1.2, 1.0)		(1.0, 2.0)
32	0.885	0.887	0.887	27	1.990 bq	1.639	1.685 d
18	0.943	0.952	0.948		(7.4)		(1.0)
21	0.841 d	0.845 d	0.854 d	33	1.047 t		
	(6.3)	(6.3)	(6.3)		(7.4)		
	. ,			3α	4.564 dd	4.562 dd	4.563 dd
					(10.4, 5.0)	(10.5, 5.2)	(10.6, 5.2)

Table 5. ¹H NMR chemical shifts of cyclopodmenyl acetate (26) and related compounds

J (in Hz) in parentheses.

Table 6. ¹³CNMR spectral data of cyclopodmenyl acetate (26) and the related compound 33

С	26	33	С	26	33	С	26	33
1	31.9	31.9	13	45.3	45.3	25	157.8	152.4
2	26.9	26.8	14	48.9	48.8	26	106.5	109.3
3	80.7	80.7	15	32.9	32.9	27	23.4	19.4
4	39.5	39.5	16	26.6	26.6	28	27.8	27.5
5	47.3	47.2	17	52.2	52.2	29	27.5	27.3
6	21.0	20.9	18	17.9	17.9	30	25.5	25.4
7	28.1	28.1	19	29.8	29.8	31	15.2	15.2
8	47.9	47.8	20	36.7	36.6	32	19.3	19.3
9	20.2	20.2	21	18.5	18.5	33	13.1	
10	25.9	25.8	22	30.9	30.8	Acetyl	170.9	171.0
11	26.1	26.0	23	37.7	37.4	-	21.3	21.3
12	35.6	35.6	24	39.2	38.8			

Table 7. ¹H and ¹³C NMR chemical shifts of trilinoleyl glyceride

H, C	1H	¹³ C	H, C	Н	¹³ C
α	4.142 dd (11.9, 5.8)	62.1	8	2.019 m	27.2
	4.298 dd (11.9, 4.2)		9	5.350 m	130.0
β	5.266 m	69.0	10	5.350 m	128.1
ά	4.142 dd (11.9, 5.8)	62.1	11	2.769	25.7
	4.298 dd (11.9, 4.2)		12	5.350 m	127.9
1		173.2 ‡	13	5.350 m	130.2
2	2.350 t (7.0)	34.0	14	2.019 m	27.2
3	*	24.9	15	†	29.2
4	*	29.2	16	*	31.9
5	*	29.1	17	*	22.6
6	*	29.1	18	0.889 t (6.6)	14.1
7	+	29.7			

*, † Proton signals were observed at 1.30-1.31 and 1.25-1.27, respectively.

 \pm^{13} C signal of C-1 attached to C- β was observed at 172.8.

lar serratene was found in the three species together with tetracyclic and pentacyclic triterpenoid hydrocarbons. (iii) The composition ratios of triterpenoid alcohol constituting the long chain fatty acid esters and acetates were almost the same. (iv) Trilinoleyl glyceride was obtained in a remarkable amount.

It is noteworthy that the triterpenoid constituents of *Polypodium vulgare* and its related species (this paper,

genuine Polypodium sensu stricto) and the other group such as P. niponicum and P. formosanum (Polypodiodes niponica Ching and P. formosana Ching) [5, 16] were quite different from the biogenetic point of view. The chemotaxonomical studies on these ferns will be published elsewhere.

EXPERIMENTAL

General. Mps: uncorr. $[\alpha]_{DS}$ were observed in CDCl₃ soln $(c\,0.2-0.5)$ at 23°. IR spectra were recorded for KBr pellets. ¹H and ¹³C NMR spectra were taken in 270 MHz (400 MHz for NOE) 68 MHz in CDCl₃ soln. TMS was used as an int. standard and chemical shifts are given as δ -values (ppm). MS were recorded by direct inlet at 70 eV unless otherwise stated, and the relative intensities of peaks are reported with reference to the most intense peak higher than m/z 100. TLC was carried out on silica gel (Merck 5721) with n-C₆H₁₄-EtOAc solvent system, the spray reagent was H₂SO₄. GC was performed on a 1 m glass column containing Chromosolve G HP with 1.4% SE-30 at 260°. Cholestane was used as an int. reference and its R_r was set at 3.0 min. HPLC was performed on a C-18 reverse phase column (detected by RI) with CHCl₃-MeOH-H₂O (38:7:5) as the eluent

Plant material. Polypodium vulgare (Pv) was collected at Hachinohe City, Aomori Prefecture, in Oct. 1984 (841003); P. fauriei (Pi) at 2 Gome of Mt. Fuji, Yamanashi prefecture, in Oct. 1982 (821004); P. virginianum (Pi) on the shore of Kussyaro lake, Hokkaido, in July 1984 (840701). The voucher specimens are deposited in the Herbarium of Showa College of Pharmaceutical Sciences, Tokyo. Polypodium virginianum of the type locality was found to be a tetraploid (2n = 148) and the so-called P. virginianum of Hokkaido was a diploid (2n = 74). Thus, the name P. virginianum for the material used may not be correct. Professor C. Haufler of Kansas University suggested to us the designation P. sibiricum Siplivinskij for the material, but we reserve this name until completing the chemical studies of P. sibiricum of Baical origin.

Extraction and separation. Cut material of the fresh rhizomes [400 g (Pv), 330 g (Pf) and 170 g (Pi)] was extracted with *n*-hexane to give extracts of 5.90 g (Pv), 2.41 g (Pf) and 3.54 g (Pi) being removed azeotropic H_2O , 295, 266 and 107 ml, respectively. The extracts were chromatographed on silica gel to give the following frs.

Fern-7-ene (5). Plates (20 mg) (Me₂CO) from Pf. Mp 211–212°, IR v_{max}^{KBr} cm⁻¹: 3050, 1661, 828, 819; EIMS m/z (rel. int.): 410 [M]⁺ (29), 395 (81), 271 (14), 257 (22), 243 (100), 231 (19), 205 (11), 203 (9), 191 (11), 189 (9), 12 mg from Pv.

Serrat-14-ene (8). Plates (70 mg) (Me₂CO) from Pv. Mp 240-241°, IR v_{max}^{KBr} cm⁻¹: 3030, 1655, 790; EIMS m/z (rel. int.): 410 [M]⁺ (31), 395 (16), 218 (80), 204 (49), 203 (35), 191 (100), 24 mg from Pf and 5 mg from Pi.

Hop-17(21)-*ene* (3). Plates (12 mg) (Me₂CO) from Pv. Mp 183–185°, IR $v_{\text{MB}}^{\text{KB}}$ cm⁻¹: 851; EIMS *m/z* (rel. int.) 410 [M]⁺ (45), 395 (31), 367 (100), 231 (76), 203 (13), 191 (76), 189 (51), 2 mg from Pf and 3 mg from Pi.

 $21\alpha H$ -Hop-22(29)-ene (2). Needles (10 mg) (Me₂CO) from Pv. Mp 212–214°, IR v^{KBr}_{max} cm⁻¹: 3049, 1643, 882; EIMS m/z (rel. int.): 410 [M]⁺ (31), 395 (15), 191 (1), 189 (82).

Hop-22(29)-*ene* (1). Plates (43 mg) (Me₂CO) from Pf. Mp 210–211°, IR $v_{\text{MBr}}^{\text{KBr}}$ cm⁻¹: 3055, 1647, 1629, 887; EIMS *m/z* (rel. int.): 410 [M]⁺ (19), 395 (10), 191 (100), 189 (94), 14 mg from Pv and 5 mg from Pi.

Eupha-7,21-diene (11). Oil (15 mg) from Pf, EIMS m/z (rel. int.): 410 [M]⁺ (26), 395 (100), 297 (8), 257 (10), 243 (12), 203 (10), 191 (12), 189 (10), 69 (78). ¹H NMR (CDCl₃): $\delta 0.845$ (H-23), 0.882 (H-24), 0.745 (H-25), 0.987 (H-26), 0.818 (H-27), 0.850 (H-28), 1.603 (H-29), 1.684 (H-30), 5.239 (ddd, J = 3.0, 3.0, 3.7 Hz, H-7), 5.100 (br t, J = 7.0 Hz, H-21), 7 mg from Pv and a trace from Pi.

Dammara-13(17),21-dtene (10). Oil (36 mg) from Pf. EIMS m/z(rel. int.): 410 [M]⁺ (56), 395 (18), 299 (29), 297 (30), 218 (15), 205 (49), 191 (100), 69 (73); ¹H NMR (CDC1₃): δ 0.848 (H-23), 0.801 (H-24), 0.848 (H-25), 0.848 (H-26), 1.071 (H-27), 0.919 (H-28), 1.590 (H-29), 1.686 (H-30), 5.100 (br t, J = 7.0 Hz, H-21).

Dammara-17,21-diene (12). Plates (65 mg) (Me₂CO) from Pf. A trace from Pi.

Dammara-18(28),21-diene (9). Oil (65 mg) from Pi. IR v_{max}^{film} cm⁻¹: 3080, 1642, 886; EIMS m/z (rel. int.): 410 [M]⁺ (23), 395 (3), 341 (3), 301 (4), 299 (7), 218 (18), 204 (30), 191 (100), 189 (34); ¹H NMR (CDCl₃): $\delta 0.848$ (H-23), 0.806 (H-24), 0.848 (H-25), 0.973 (H-26), 0.875 (H-27), 4.708, 4.728 (H-28), 1.612 (H-29), 1.686 (H-30), 5.130 (br dd, J = 7.1, 7.1 Hz, H-21).

Dehydration of compound 32. A mixt. of pyridine (20 ml), compound 32 (320 mg) obtained from Dammar [9] and POCl₃ (4 ml) was left to stand for 3 hr at room temp., and then treated in the usual manner to give a solid (270 mg). The reaction products showed 4 main peaks [RR_r : 1.53 (38%), 1.60 (20%), 1.73 (19%),

Fr.	Solvent	Pv	Pf	Pi	Main contents
1	$n-C_6H_{14}$	0.58 g	0.76 g	0.15 g	Hydrocarbons
2	$n - C_6 H_{14} - C_6 H_6 (9:1)$	1.94 g	0.53 g	1.13 g	Esters
3	$n-C_6H_{14}-C_6H_6(1:1)$	0.39 g	0.06 g	0.11 g	Acetates
4	C ₆ H ₆	1.65 g	0.62 g	1.78 g	Triacyl glyceride
5	Et ₂ O	0.71 g	0.35 g	0.24 g	Others

Triterpenoid hydrocarbons. Fr. 1 was chromatographed repeatedly on 20% AgNO₃-silica gel to give the following triterpenoid hydrocarbons in order of elution in the $n-C_6H_{14}$ eluates.

Neohop-13(18)-ene (4). Plates (15 mg) (Me₂CO) from Pv. Mp 192–194°, IR v_{max}^{KDr} cm⁻¹: 852, 845; EIMS *m/z* (rel. int.): 410 [M]⁺ (20), 395 (4). 367 (3), 229 (23), 218 (58), 206 (27), 205 (61), 204 (36).

Fern-8-ene (6). Plates (2 mg) (Me₂CO) from Pf. Mp 190–191°, IR $\nu_{\text{Max}}^{\text{KBz}}$ cm⁻¹: 862, 857; EIMS *m/z* (rel. int.): 410 [M]⁺ (31), 395 (95), 257 (17), 243 (100), 231 (17).

Fern-9(11)-*ene* (7). Plates (320 mg) (Me₂CO) from Pv. Mp 170–171°, IR $\nu_{\text{KBr}}^{\text{KBr}}$ cm⁻¹: 811, 799; EIMS *m/z* (rel. int.): 410 [M]⁺ (32), 395 (86), 271 (4), 257 (20), 243 (100), 231 (16), 205 (8), 203 (7), 191 (9). 400 mg from Pf, 119 mg from Pi.

2.46 (23%)] in its GC, one (RR_t 1.73) of which was repeatedly purified by AgNO₃-silica gel and HPLC [MeOH-CHCl₃, 4:1], and identified as **12** by ¹H NMR: $\delta 0.848$ (C-23), 0.806 (C-24), 0.848 (C-25), 0.975 (C-26), 0.806 (C-27), 1.692 (C-28), 1.598 (C-29), 1.660 (C-30).

 α -Polypodatetraene (13). Oil (35 mg) from Pf. IR $\nu_{\text{max}}^{\text{Nujol}}$ cm⁻¹: 3080, 1643, 887; EIMS m/z (rel. int.): 410 [M]⁺ (31), 395 (32), 341 (6), 273 (12), 205 (17), 204 (15), 191 (38), 137 (100), 69 (> 100); ¹H NMR (CDCl₃): δ 0.862 (H-23), 0.798 (H-24), 0.664 (H-25), 4.540, 4.882 (H-26), 1.568 (H-27), 1.606 (H-28), 1.606 (H-29), 1.684 (H-30), 5.10-5.12 (br t, J = 6.3 Hz, H-13, H-17, H-21), a trace from Pv and Pi.

Onoceranoxide (14). Plates (2 mg) (Me₂CO) from n-C₆H₁₄-C₆H₆ (7:3) of Pv, mp 226-227°, EIMS m/z (rel. int.): 413 $[M-Me]^+$ (2), 410 (8), 395 (6), 218 (15), 204 (40), 191 (100); ¹H NMR (CDCl₃): $\delta 0.845$ (C-23), 0.740 (C-24), 0.767 (H-25), 1.255 (H-26), 1.255 (H-27), 0.767 (H-28), 0.740 (H-29), 0.845 (H-30), 10 mg from Pf and a trace from Pi.

Isolation of ester I and ester II. Each ester fr. was chromatographed through silica gel to give ester I (35, 10 and 16 mg) from the $n-C_6H_{14}-C_6H_6$ (9:1) eluate and ester II (300, 400 and 443 mg) from $n-C_6H_{14}-C_6H_6$ (7:3) eluate of Pv, Pf and Pi respectively.

Alkaline treatments of ester I and II. A small amount of ester I and ester II from each sample was hydrolysed with 5% KOH by the usual method, and the resulting alcohols were purified through silica gel chromatography to give the compounds in the C₆H₆ eluate. Free acids from the H₂O layer were esterified with CH₂N₂ in the usual manner, and chromatographed through silica gel to give the Me-ester from $n-C_6H_{14}-C_6H_6$ (9:1) eluates. Sitosterol. RR₁: 2.83, EIMS m/z: 414 [M]⁺. Contaminated peak: RR_t : 2.33; EIMS m/z: 400 [M]⁺. Methyl palmitate, EIMS m/z(rel. int.): 270 [M] + (100), 241 (25), 239 (37), 227 (81), 213 (13), 199 (25), 185 (50). 15. RR_t : 2.37; EIMS m/z (rel. int.): 414 [M]⁺ (7), 399 (54), 396 (54), 381 (100), 288 (28), 283 (51). Compound 16 RR_i: 2.80; EIMS m/z (rel. int.): 428 [M]⁺ (4), 413 (14), 410 (21), 395 (100), 341 (14), 367 (14), 288 (29). Compound 17 RR_t: 3.54; EIMS m/z (rel. int.): 440 [M] + (12), 425 (10), 422 (39), 407 (100), 379 (96), 353 (27), 300 (39), 297 (33). Compound 18 RR_t: 3.10; EIMS m/z (rel. int.): 426 [M]⁺ (10), 411 (69), 408 (50), 393 (100), 297 (10). Compound 19 RR₁: 4.36; EIMS m/z (rel. int.): 454 [M]⁺ (2), 439 (30), 436 (26), 421 (100), 367 (14), 314 (10), 297 (80). Methyl linoleate, EIMS m/z (rel. int.): 294 [M]+ (100), 270 (9), 263 (34), 262 (40), 220 (19), 182 (11), 178 (27), 164 (54), 150 (55).

Acetates. n-Hexane- C_6H_6 (1:1) eluates of each material were purified repeatedly by silica gel chromatography to give acetate mixts, 350 mg (Pv), 55 mg (Pf) and 100 mg (Pi). Compound **20** RR_i : 3.10; EIMS m/z (rel. int.): 456 [M]⁺ (9), 441 (9), 396 (100), 381 (76), 341 (15), 288 (21), 283 (31). Compound **21** RR_i : 3.74; EIMS m/z (rel. int.): 470 [M]⁺ (17), 455 (13), 410 (100), 395 (45), 367 (27), 341 (28), 297 (39), 288 (65). Compound **22** RR_i : 4.49; EIMS m/z (rel. int.): 482 [M]⁺ (21), 467 (11), 422 (100), 407 (49), 379 (29), 300 (47), 297 (27). Compound **23** RR_i : 4.03; EIMS m/z(rel. int.): 468 [M]⁺ (47), 453 (56), 408 (100), 393 (100), 297 (71), 286 (16). Compound **24** RR_i : 5.63; EIMS m/z (rel. int.): 496 [M]⁺ (17), 481 (11), 436 (100), 421 (50), 367 (19), 314 (39), 297 (29). Compound **25** RR_i : 6.41; EIMS m/z (rel. int.): 470 [M]⁺ (16), 455 (12), 410 (2), 191 (100), 189 (68).

Isolation of cyclopodmenyl acetate (26). Acetate mixts of Pv were chromatographed through AgNO₃-silica gel to give a main fr. of 26 from the n-C₆H₁₄-C₆H₆ (7:3) eluate, and followed by HPLC.

Cycloartanone (27). Plates (5 mg) from Pv. Mp 105–106°, *RR*,: 2.76; IR v_{max}^{KBr} cm⁻¹: 1743; EIMS *m/z* (rel. int.): 426 [M]⁺ (61), 411 (34), 313 (100), 295 (12), 288 (27).

Synthesis of compound 27. Compound 16 (5 mg) was oxidized to give 27 (3 mg) with CrO_3 -pyridine complex by a usual method. Compound 27 EIMS m/z (rel. int.): 426 [M]⁺ (61), 411 (35), 313 (100), 295 (10), 288 (38).

Cycloartanoid ketones. $n-C_6H_{14}-C_6H_6$ (1:1) eluates of Pi were repeatedly purified on silica gel to give an oily material (5 mg) from the C_6H_6 eluates, 3 mg from Pv. Compound 27 RR_i : 2.72; EIMS m/z (rel. int.): 426 [M]⁺ (51), 411 (34), 397 (7), 313 (100), 295 (12), 288 (27). Compound 28 RR_i : 3.30; 438 [M]⁺ (100), 423 (45), 340 (41), 313 (91), 300 (50). Compound 29 RR_i : 2.93; EIMS m/z (rel. int.); 424 [M]⁺ (100), 409 (57), 313 (43), 286 (33). Compound 30 RR_i : 4.07; EIMS m/z (rel. int.): 452 [M]⁺ (67), 437 (39), 314 (61), 340 (22), 313 (100).

Cycloartanoid alcohols. C₆H₆ eluates of Pf were chromato-

graphed on silica gel to give an oily alcohol mixt. (10 mg) from C_6H_6 . Traces from PV and Pi. Compound **15** RR_i : 2.37; EIMS m/z (rel. int.): 414 [M]⁺ (19), 399 (57), 396 (91), 381 (100), 341 (20), 288 (37), 283 (38). Compound **16** RR_i : 2.80; EIMS m/z (rel. int.): 428 [M]⁺ (22), 413 (41), 410 (81), 395 (100), 367 (31), 341 (38), 297 (52), 288 (53). Compound **17** RR_i : 3.54; EIMS m/z (rel. int.): 440 [M]⁺ (33), 425 (44), 407 (100), 379 (37), 353 (26), 300 (63), 297 (30). Compound **19** RR_i : 4.36; EIMS m/z (rel. int.): 454 [M]⁺ (27), 439 (38), 436 (73), 421 (100), 393 (43), 367 (38), 314 (50), 297 (31).

 $21\alpha H$ -22-hydroxyhopane (31). The Et₂O eluates of Pi were repeatedly purified on silica gel to give 31, 17 mg needles (Me₂CO) from the *n*-C₆H₁₄-C₆H₆ (9:1) eluate. Mp 232-233°, IR ν_{max}^{KBr} cm⁻¹: 3330; EIMS *m/z* (rel. int.): 428 [M]⁺ (10), 410 (16), 395 (24), 367 (4), 207 (20), 203 (22), 191 (100), 189 (87). ¹H NMR (CDCl₃): $\delta 0.847$ (C-23), 0.793 (C-24), 0.819 (C-25), 0.997 (C-26), 0.947 (C-27), 0.629 (*d*, *J* = 1.0 Hz, C-28), 1.118, 1.188 (C-29, C-30), a trace from Pv.

Synthesis of compound 31. To the Et₂O soln of isoadiantone (35) [19] (500 mg) was added Grignard reagent prepared from Mg (1.9 g) and CH₃I (4 ml) in Et₂O. The reaction mixt. was treated by the usual methods to give a product, which was purified on an Al₂O₃ column. Elution with n-C₆H₁₄-C₆H₆ (1:1) gave a solid (470 mg), which was recrystallized from n-C₆H₁₄ to give 31 as needles, mp 230–233°.

Acknowledgements—We are grateful to Prof. C. Kaufler (Kansas University) and Prof. S. Kurita (Chiba University) for their kind suggestion about *Polypodium virginianum*, and also to Prof. Y. Saiki (Kobe Gakuin University) Mr H. Ootsuka and Mrs M. Ageta for aid in collecting the plant materials. Thanks are due to Mr Y. Takase of this college for recording NMR and mass spectra.

REFERENCES

- 1. Berti, G., Bottari, F., Marsili, A., Morelli, I. and Mandelbaum, A. (1967) J. Chem. Soc., Chem. Commun. 507.
- Berti, G., Bottari, F., Macchia, B., Mardili, A., Ourisson, G. and Piotrowska, H. (1967) Bull. Soc. Chim. Fr. 9, 2359.
- 3. Heinrich, G. and Hoffmeister, H. (1968) Tetrahedron Letters 6063.
- Havel, M. and Cerny, V. (1975) Coll. Czech. Chem. Commun. 1579.
- 5. Ageta, H. and Arai, Y. (1983) Phytochemistry 22, 1801.
- 6. Shiojima, K. and Ageta, H. (1990) Chem. Pharm. Bull. 38, 347.
- Masuda, K., Shiojima, K. and Ageta, H. (1982) Chem. Pharm. Bull. 30, 2272.
- 8. Ageta, H. and Arai, Y. (1990) J. Nat. Prod. 53, 325.
- 9. Arai, Y., Masuda, K. and Ageta, H. (1984) Syoyakugaku Zasshi 38, 53.
- 10. Ageta, H. and Arai, Y. (1984) Syoyakugaku Zasshi 38, 46.
- 11. Masuda, K., Shiojima, K. and Ageta, H. (1983) Chem. Pharm. Bull. 31, 2530.
- Arai, Y., Masuda, K. and Ageta, H. (1982) Chem. Pharm. Bull. 30, 4219.
- 13. Shiojima, K., Arai, Y., Masuda, K., Kamada, T. and Ageta, H. (1983) Tetrahedron Letters 24, 5733.
- 14. Berti, G., Bottari, F., Marsilli, I. and Polvani, H. (1967) Tetrahedron Letters 125.
- Audier, H. E., Bengelmans, R. and Das, B. C. (1966) Tetrahedron Letters 4341.
- 16. Ageta, H. and Arai, Y. (1984) Phytochemistry 23, 2875.
- Ageta, H., Shiojima, K., Arai, Y., Kasama, T. and Kajii, K. (1975) Tetrahedron Letters 3297.
- Arai, Y., Hirohara, M. and Ageta, H. (1990) Tetrahedron Letters 30, 7209.
- 19. Ageta, H., Iwata, K., Arai, Y., Tsuda, Y., Isobe, K. and Fukushima, S. (1966) Tetrahedron Letters 5679.