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Three new chiral urea-type anion receptors were synthesized from aromatic diamines and 1-amino-1-
deoxyglucose. The anion binding properties of these receptors were studied using chiral carboxylates
derived from mandelic acid and three a-amino acids. We found that the size of the anion binding pocket
played an important role in chiral recognition processes. The best results were obtained for 1,8-diamino-
anthracene and a-amino acid anions.
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Since most compounds found in Nature are chiral (e.g., amino
acids, peptides, terpenoids, sugars, etc.), it is essential to under-
stand the interactions responsible for chiral differentiation in bio-
logical processes. In principle, chiral recognition is based on
differences in the stability of diastereomeric host/guest com-
plexes.1 As many of these species exist at physiological pH as an-
ions, we decided to investigate their chiral recognition using
neutral synthetic receptors.

Among the common anion binding motifs typical for ligands of-
ten used in supramolecular chemistry (such as amide,2 pyrrole,3

indole,4 and carbazole5), those with incorporated urea functional-
ity6 seemed to be the most promising building blocks for the syn-
thesis of neutral receptors for anions. On the one hand, this is
because a urea moiety can be readily incorporated into a wide
range of anion binding receptors,7 while on the other it is due to
the specific geometry of hydrogen bond donors, which allows
selective binding of carboxylates. For our chiral recognition studies
we considered, as models, the three types of known receptors 1–3
shown in Figure 1.

In 2005, Gale and co-workers8 reported the carboxylate binding
properties of bis-urea anion receptor 1 (Fig. 1) with 1,2-diamino-
benzene as an aromatic platform. This work showed that receptor
1 was selective for acetate and benzoate anions in DMSO + 0.5%
H2O. The Nam9 and Tarr10 groups, in turn, have studied a series
of naphthalene urea anion receptors of type 2. They examined
the influence of the electronic effect of para substituents located
on the phenyl ring of ligands 2 on the anion binding. Finally, Kim
and Yoon11 described fluorescent sensors for fluoride and pyro-
phosphate anions in which urea moieties were attached to anthra-
cene at positions 1 and 8 (compounds of type 3).

Based on these considerations, we resolved to design and syn-
thesize three new chiral receptors 4–6, using 2,3,4,6-tetra-O-acet-
yl-b-D-glucopyranosyl isocyanate12 and three different aromatic
platforms: commercially available 1,2-diaminobenzene and 1,8-
diaminonaphthalene, as well as 1,8-diaminoanthracene, which is
known from the literature13 (Scheme 1).14 The receptors 4,15 5,16

and 617 (Fig. 2) were obtained in acceptable yields of 80%, 43%,
and 55%, respectively.

The use of different aromatic platforms enabled us to construct
receptors with binding pockets of varying size: the smallest for
naphthalene, medium-size for benzene, and the largest for anthra-
cene. We then investigated the influence of the size and shape of
the anion binding site on the chiral recognition ability of the anion
receptors 4–6 (Fig. 2).

In the first part of our investigation using chiral receptors, we
examined achiral acetate and benzoate anions as guests. Anion
binding studies were conducted applying 1H NMR titration tech-
niques in DMSO-d6 + 0.5% H2O at a constant concentration of
receptor (c = �1 � 10�2 M) and each titration was repeated twice.
The results are collected in Table 1. Binding affinities were mea-
sured in terms of the anion complexation-induced resonance shift
change of the urea NH protons. Binding constants were obtained
using nonlinear regression of experimental data using the program
HypNMR.18 In line with previous findings for these anion binding
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Figure 1. Structures of anion urea-based receptors 1–3.

Table 2
Association constants (Ka) of hosts 4–6 with chiral guests in DMSO-d6 + 0.5% H2O

Entry Host Guesta Ka
b (M�1) KD/KL

c dmax NHa
d dmax NHb

d

1 4 R-PhCH(OH)COO� 40 1.05 9.36 8.29
2 4 S-PhCH(OH)COO� 38 9.43 8.24
3 4 D-TrpCOO� 125 0.88 9.65 8.32

4 4 L-TrpCOO� 141 9.67 8.28

5 5 R-PhCH(OH)COO� 16 1.07 10.25 8.24
6 5 S-PhCH(OH)COO� 15 10.21 8.17
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Figure 2. Structures of urea anion receptors 4–6.
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Scheme 1. The general route to the chiral receptors.
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platforms, our experimental data fitted well into a 1:1 host/guest
stoichiometry.

For each receptor we noted higher association constants (Ka) for
the smaller acetate anion (Table 1, entries 1, 3, and 5). The best re-
sults were obtained with compound 6, which had the most spa-
cious anion binding site (entries 5 and 6), while receptor 5, with
the smallest anion binding pocket, was characterized by the lowest
association constants Ka (entries 3 and 4).

We next used receptors 4–6 to explore chiral carboxylic anions.
We selected tetrabutylammonium salts19 of mandelic acid and
Boc-N-amino acids, such as tryptophan (Trp), phenylalanine
(Phe), and valine (Val). The results obtained for both enantiomers
of each chiral guest are presented in Table 2.

The association constants obtained in all complexations of chi-
ral guests by chiral receptors were lower than for pairs of chiral
receptors and achiral guests (cf. Table 1). However, the values
Table 1
Association constants (Ka) of hosts 4–6 with achiral guests in DMSO-d6 + 0.5% H2O

Entry Host Guesta Ka
b (M�1) dmax NHa

c dmax NHb
c

1 4 AcO� 1283 9.62 8.48
2 4 PhCOO� 444 9.73 8.53
3 5 AcO� 954 10.75 8.50
4 5 PhCOO� 212 10.95 8.81
5 6 AcO� 7907 10.36 8.69
6 6 PhCOO� 780 10.64 8.45

a Added as the tetrabutylammonium salt.
b Estimated error less than 10%.
c Asymptotic change in the chemical shift obtained by nonlinear curve fitting.
obtained for chiral partners were high enough to be applied for
our studies. Both receptors 4 and 5, possessing smaller binding
pockets, were not satisfactory for chiral recognition of two of our
model chiral guests (mandelic acid and tryptophan), affording
low KD/KL values (entries 1–4 and 5–8, respectively). The relatively
7 5 D-TrpCOO� 60 1.12 10.31 8.46

8 5 L-TrpCOO� 51 10.49 8.36

9 6 R-PhCH(OH)COO� 70 1.25 10.10 8.38
10 6 S-PhCH(OH)COO� 56 10.15 8.47
11 6 D-TrpCOO� 343 1.81 10.62 8.30

12 6 L-TrpCOO� 190 10.41 8.45

13 6 D-PheCOO� 483 2.07 10.47 8.28

14 6 L-PheCOO� 233 10.33 8.37

15 6 D-ValCOO� 644 2.42 10.51 8.29

16 6 L-ValCOO� 266 10.35 8.44

a Added as the tetrabutylammonium salt.
b Estimated error less than 10%.
c For mandelate anions KR/KS was calculated instead of KD/KL.
d Asymptotic change in the chemical shift obtained by nonlinear curve fitting.
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Figure 3. Comparison of the chemical shift changes for the urea NHa proton of the ligand 6 upon addition of anions, R/S mandelates and L/D-tryptophan (left) and L/D-
phenylalanine and L/D-valine (right). Points show experimental data; the black line is the fitted chemical shift data.

Figure 4. Excerpts of the stacked spectra from the 1H NMR titrations of receptor 6 with tetrabutylammonium salts of Boc-L-tryptophan (left) and Boc-D-tryptophan (right)
showing chemical shift changes of the acetyl groups.
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good results for anthracene receptor 6 with mandelic acid (entries
9 and 10), encouraged us to investigate three representative amino
acids as guests (entries 11–16), for which we obtained satisfactory
results, with the best being for valine (KD/KL = 2.42). Figure 3 illus-
trates the relationship between the chemical shift changes for
receptor 6 during titration with pairs of anions whose chirality
was recognized and without chiral recognition (left), and between
different pairs of anions with good chiral recognition (right).

Moreover, in the case of anions with chirality recognized by
receptor 6, noticeable chemical shift changes of the acetyl groups
were observed. This behavior of the acetyl groups provided evi-
dence that the sugar moieties in receptor 6 interact effectively with
guest molecules. The chemical shift changes of the anion receptor 6
acetyl groups during titration with enantiomeric tryptophan an-
ions are depicted in Figure 4. In each diastereomeric complex,
the acetyl groups behaved differently. Such behavior was not seen
for receptors 4 and 5, which do not possess noticeable chiral recog-
nition ability.

In conclusion, we have shown that the correct geometry of the
anion binding pocket is required to make sugar-urea receptors
effective in chiral recognition. Among three similar anion receptors
4–6, only 6 showed noticeable chiral recognition for mandelic acid
and amino acid anions. It appears that the optimum-sized anion
binding pocket can pre-organize sugar moieties to interact effec-
tively with guest molecules. This modulation of steric hindrance
demonstrates itself in terms of the relative ratio of binding con-
stants for small acetate and more sterically demanding benzoate
(Table 1). This ratio was highest for receptor 6, which possesses
the most pronounced chiral recognition ability.
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