ACS Medicinal Chemistry Letters

Letter

Subscriber access provided by UB + Fachbibliothek Chemie | (FU-Bibliothekssystem)

Syntheses and Antibacterial Activity of N-acylated Ciprofloxacin Derivatives Based on the Trimethyl Lock

Marvin J. Miller, Cheng Ji, and Patricia A. Miller

ACS Med. Chem. Lett., Just Accepted Manuscript • Publication Date (Web): 11 May 2015 Downloaded from http://pubs.acs.org on May 12, 2015

Just Accepted

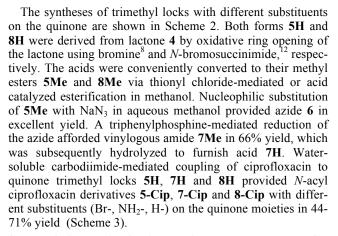
"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Medicinal Chemistry Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

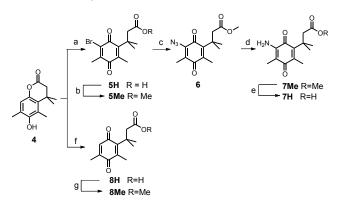
Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Syntheses and Antibacterial Activity of *N*-acylated Ciprofloxacin Derivatives Based on the Trimethyl Lock

Cheng Ji, Patricia. A. Miller, and Marvin J. Miller*


Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States

ABSTRACT: Several *N*-acyl ciprofloxacin quinone derivatives based on a trimethyl lock structure were synthesized and their *in vitro* antibacterial activity against a panel of clinically relevant bacteria was evaluated. A few new analogs displayed enhanced activity against Gram-positive species compared to the parent drug. Additionally, studies of **8-Cip**, which was the most potent compound tested, indicate that it may act through a dual-action mechanism.


Since their discovery in 1970s, fluoroquinolone antibiotics have played an important role in treatment of bacterial infections and have saved countless millions of lives. Targeting bacterial DNA gyrase and topoisomerase, fluoroquinolones exhibit their significant bactericidal activity by forming ternary complexes of enzyme-DNA-drug, and consequently blocking bacterial replication.^{1,2} Their notable antimicrobial activity, excellent pharmacokinetic properties and few side effects have led to the widespread use of fluoroquinolones and, unfortunately, thus also the development of bacterial resistance.³ Therefore, although many advances in the search for new fluoroquinolones have been already made, there is a sense of urgency for new and more effective derivatives.

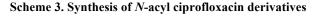
Recently, in our development of linkers to incorporate a drug release function in iron transport-mediated drug delivery. a series of carboxylic acids with a guinone "trimethyl lock" structure and their methyl esters were obtained as synthetic intermediates.^{4,5} The chemical nature of the trimethyl lock is an o-hydroxylcinnamic acid derivative.⁶ Reduction of the guinone trimethyl lock system generalized by structure 1 would lead to the corresponding hydroquinones 2 in which severe steric repulsion between three methyl groups promotes rapid lactonization with concomitant release of an alcohol or amine (Scheme 1).^{7,8} Several quinone trimethyl lock compounds have been investigated for reductase-activated prodrugs such as those based on mustard⁹ and oxindoles¹⁰ for anticancer therapy. In ciprofloxacin, one of the best known fluoroquinolones, it has been demonstrated that chemical modification of the secondary amine in the piperazinyl ring by acylation does not always alter the effect of these molecules towards their bacterial target.¹¹ With the aim of probing the effects of the quinone trimethyl lock on antibacterial activity of fluoroquinonlones, we herein describe the syntheses of several ciprofloxacin derivatives with quinone trimethyl lock precursors as N-acyl substituents and studies of their in vitro antibacterial activity.

Scheme 1. Reaction of a quinone trimethyl lock to form lactone via reduction

Scheme 2. Synthesis of quinone trimethyl locks 5H, 7H, 8H and their methyl esters^a

^aReagents and conditions: (a) Br_2 , AcOH, rt, 80% (b) SOCl₂, MeOH, reflux, 77%; (c) NaN₃, MeOH-H₂O, rt, 91%; (d) 1. PPh₃, CH₂Cl₂, rt; 2. AcOH, THF-H₂O, reflux, 66% for 2 steps; (e) Li-OH, MeOH-H₂O, rt, 91%; (f) NBS, CH₃CN-H₂O-acetone, rt, 79%; (g) H₂SO₄ (cat.), MeOH, reflux, 95%.

		5-Cip	5Me	7-Cip	7Me	8-Cip	8Me	Cip
1	B.subtilis ATCC 6633	35	0	36	0	39	0	20/24P ^b
2	S. aureus SG511	25	0	31	0	33	0	21 ^a
3	M. luteus ATCC10240	19	0	17V	0	28	0	0^{a}
4	M. vaccae IMET10670	37	0	24/30P	0	32/42P	0	23 ^a
5	A. baumannii ATCC17961	18/23P	0	24/30P	0	26/32P	0	18/21P ^a
6	P. aeruginosa K799/wt	29/35P	0	22/32P	0	41	0	15 ^b
7	P. aeruginosa K799/61	29/38P	0	31/35P	0	35/42P	0	19/24P ^b
8	E. coli X580	33/40P	0	31/37P	0	32/40P	0	23 ^c
9	E. coli DC0	17/21P	0	16/23P	0	21/29P	0	18 ^a
10	E. coli DC2	24	0	23	0	27	0	22 ^a


Table 1. Diameter of growth inhibition zones (mm) in the agar diffusion antibacterial susceptibility assay

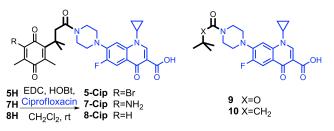
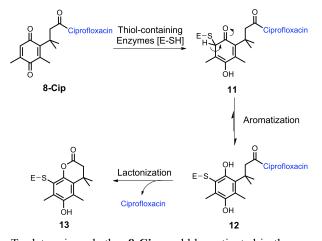

P, unclear inhibition zone/many colonies in the inhibition zone; V, very unclear inhibition zone. Exactly 50 μ L of a 0.1 mM solution of each compound dissolved in 1:9 DMSO/MeOH was added to 9 mm wells in agar media (Standard I Nutrient Agar, Serva or Mueller Hinton II Agar, Becton, Dickinson and Company). Inhibition zones were read after incubation at 37 °C for 24 h. *M. vaccae* was incubated 37°C for 44 h; ^{a,b,c}Ciprofloxacin was tested at (a) 5 μ g/mL, (b) 1.66 μ g/mL, (c) 0.33 μ g/mL in H₂O.

Table 2. MIC values of the N	V-acvl ciprofloxacin	derivatives against selected	bacterial strains

	5-Cip	7-Cip	8-Cip	9	10	8Me	Cip
B.subtilis ATCC 6633	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	50	0.03
S. aureus SG511	0.1	< 0.05	< 0.05	0.4	0.4	>100	0.47
M. luteus ATCC10240	1.56	12.5	0.2	>100	12.5	50	8 ^c
<i>M. vaccae</i> IMET10670	2	2	0.5	2	2	80	0.47
A. baumannii ATCC17961	0.78	0.6	0.39	>100	25	>100	0.24
P. aeruginosa K799/wt	5	2.5	1.25	>100	>100	>100	0.47
P. aeruginosa K799/61	2.5	5	2.5	>100	>100	>100	0.24
E. coli DC0	12.5	25	12.5	>100	>100	>100	0.47
E. coli DC2	8.33	12.5	6.25	>100	100	>100	0.24

^aMIC values (μ M) were determined using the broth microdilution method in Mueller-Hinton broth No.2 (MHII) with visual end point analysis according to the CLSI guidelines.¹⁴, ^bEach compound was tested in triplicate; ^cData from ref 13.

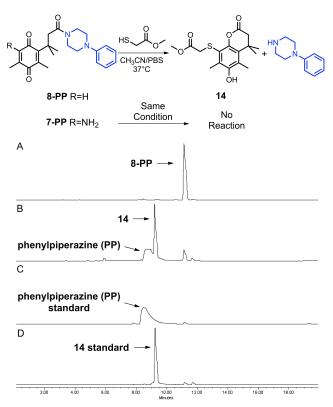

N-Acyl ciprofloxacin quinone derivatives **5**-Cip, **7**-Cip and **8**-Cip were initially screened for antibiotic activity against representative Gram-positive and Gram-negative bacteria as well as *Mycobacterium vaccae* using agar diffusion assays (Table 1). All three ciprofloxacin derivatives displayed strong antibacterial activities when tested at 0.1 mM, as indicated by the large zones of inhibition they induced. The trimethyl lock cores, as represented by methyl esters **5Me**, **7Me** and **8Me**, were generally inactive. Moreover, all three ciprofloxacin derivatives showed moderate to good activity against *Mycobacterium vaccae*, a non-pathogenic model organism for *Mycobacterium tuberculosis* that causes tuberculosis, suggesting their potential in anti-tuberculosis agent development.

All ciprofloxacin derivatives were subjected to further assays to determine their minimum inhibitory concentrations (MIC) (Table 2). Two additional N-acyl derivatives 9 and 10 that have similar trimethyl substituted side chain structures but without the quinone fragment were also synthesized and included in the assay. In general, the trimethyl lock ciprofloxacin quinone derivatives possessed equal or enhanced in vitro activity against Gram-positive species compared to the parent drug. Among the three derivatives, compound 8-Cip was the most active with MIC values less than 0.05 µM and 0.2 µM against S. aureus and M. luteus, respectively, against which ciprofloxacin is less active (MIC in 0.47 µM and 8 µM, respectively). On the other hand, 9 and 10 were less active than the trimethyl lock ciprofloxacin derivatives, indicating that the quinone structure plays a key role for the activity enhancement observed. In fact, trimethyl lock compound 8Me has very weak antibacterial activity (MIC=50-80 µM) against the Gram-positive species tested except S. aureus, suggesting that the trimethyl lock ciprofloxacin derivatives may be dualaction antibiotics.

The trimethyl lock ciprofloxacin derivatives displayed decreased activity (2-50 fold) against mycobacteria and Gramnegative bacteria compared to the parent drug, presumably because of the loss of zwitterionic structure of ciprofloxacin, which favors membrane penetration.¹⁵ However, **9** and **10** were virtually inactive (MIC>100 μ M) against Gram-negative bacteria, suggesting that the quinone fragment partially compensates for the loss of activity caused by the non-zwitterionic structure.

Based on results from antibacterial assays and the chemical nature of the trimethyl lock system, we have proposed modes of action of the trimethyl lock ciprofloxacin derivatives. While all three derivatives could serve as prodrugs which are activated by potential reductases as depicted in Scheme 1, compound 8-Cip may have an additional dual-action mechanism by serving as a prodrug and as a covalent enzyme inhibitor, which is consistent with its superior antibacterial activity. Conjugate addition of sulfur nucleophiles to quinones is well known and has been exploited in design of certain enzyme inhibitors.¹⁰ Similarly, the activation of compound 8-Cip could be initiated by the reductive alkylation with certain thiol-containing enzymes (Scheme 4). The resulting thiol-quinone adduct 11 would be expected to aromatize to the corresponding hydroquinone 12. The rapid lactonization of 12 induced by the trimethyl lock could release ciprofloxacin and meanwhile result in a covalent inactivated enzyme 13. In contrast, such a pathway with an aromatization step could not be established for compound 5-Cip and 7-Cip.

Scheme 4. Proposed modes of action of compound 8-Cip



To determine whether 8-Cip could be activated in the presence of thiol-containing enzymes as proposed, model reactions were examined for the reaction of thiols with N-acyl phenylpiperazine 8-PP, a more soluble alternative to 8-Cip, and the reaction was monitored by HPLC (Scheme 5). The thiol methyl mercaptoacetate was chosen for the model studies principally because its pKa (7.9) was similar to that of the thiol in cysteine (pKa = 8), which is ubiquitous in biological systems. We were pleased to find that in the presence of the thiol, 8-PP (retention time = 11.1 min) was largely converted to lactone 14 (retention time = 9.2 min) with concomitant release of the phenylpiperazine (retention time = 8.5 min) in buffered aqueous acetonitrile after 3 h. In sharp contrast, no reaction was observed for compound 7-PP, a representative system lacking the aromatization pathway, under the same conditions that led to rapid lactonization for 8-PP. These data provide evidence for 8-Cip being a dual-action prodrug that might utilize a unique thiol-activated pathway.

In summary, we have described the syntheses of a series of ciprofloxacin derivatives with a quinone trimethyl lock as the *N*-acyl substituent and their antibacterial activity. Among the derivatives, compound **8-Cip** displayed enhanced activity against several Gram-positive species compared to the parent

drug. The superior activity of **8-Cip** suggests that it may act through a dual-action mechanism by serving as a prodrug and as a covalent thiol-containing enzyme inhibitor. This dualaction mechanism also has great potential for use in enzymeactivated prodrug strategies for site-selective drug delivery. Future work will focus on syntheses of other drug derivatives based on **8H** and examine the release of drug in appropriate enzyme assays.

Scheme 5

Top: model reaction for enzyme activation of trimethyl lock derivatives; Bottom: HPLC studies of the activation of **8-PP**: panel A, **8-PP** standard; panel B, **8-PP** after treatment with methyl mercaptoacetate in CH₃CN/PBS solution at 37 °C for 3 h; panel C, phenylpiperazine (PP) standard; panel D, **14** standard.

ASSOCIATED CONTENT

Experimental procedures, copies of spectral data, and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

mmiller1@nd.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This research was supported by grant 2R01AI054193 from the National Institutes of Health (NIH). C. J. also acknowledges a fellowship from the Notre Dame CBBI training grant (NIH T32 GM075762). We gratefully acknowledge the use of the NMR facilities provided by the Lizzadro Magnetic Resonance Research Center at the University of Notre Dame (UND) under the direction of Dr. Jaroslav Zajicek and the mass spectrometry services provided by the UND Mass Spectrometry & Proteomics Facility

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 25

26 27

28

29

30

31 32 33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

(Mrs. N. Sevova, Dr. W. Boggess, and Dr. M. V. Joyce; supported by the National Science Foundation under CHE-0741793).

ABBREVIATIONS

1

2

3 4

5

6

7 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60 DNA, deoxyribonucleic acid; Cip, ciprofloxacin; MIC, minimum inhibitory concentration required to inhibit the growth of 90% of organisms; HPLC, high-performance liquid chromatography; PP, phenylpiperazine.

REFERENCES

1. Mitscher, L. A., Bacterial topolsomerase inhibitors: quinolone and pyridone antibacterial agents. *Chem. Rev.* **2005**, *105*, 559-592.

2. Drlica, K.; Hiasa, H.; Kerns, R.; Malik, M.; Mustaev, A.; Zhao, X. L., Quinolones: action and resistance updated. *Curr. Top. Med. Chem.* **2009**, *9*, 981-998.

3. Drlica, K.; Zhao, X.; Malik, M.; Salz, T.; Kerns, R., Fluoroquinolone resistance: mechanisms, restrictive dosing, and antimutant screening strategies for new compounds. *Antibiotic Discovery and Development* **2012**, 485-514.

4. Ji, C.; Miller, M. J., Chemical syntheses and in vitro antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers. *Bioorg. Med. Chem.* **2012**, *20*, 3828-3836.

5. Ji, C.; Miller, M. J., Siderophore-fluoroquinolone conjugates containing potential reduction-triggered linkers for drug release: synthesis and antibacterial activity. *Biometals*, **2015**, in press.

6. Levine, M. N.; Raines, R. T., Trimethyl lock: a trigger for molecular release in chemistry, biology, and pharmacology. *Chem. Sci.* **2012**, *3*, 2412-2420.

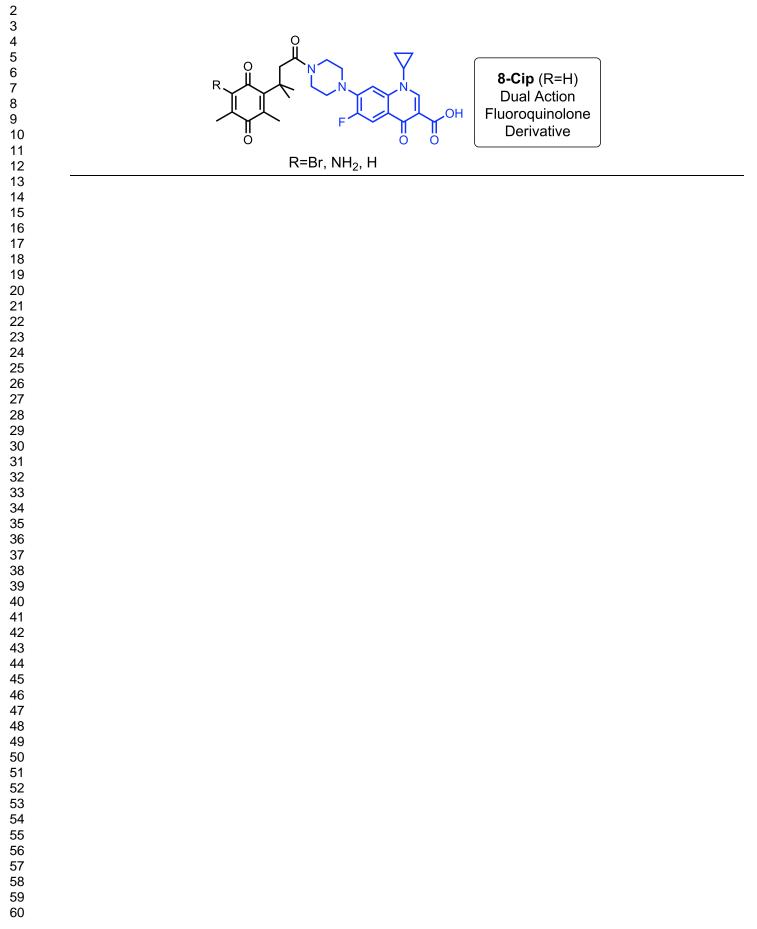
7. Wang, B. H.; Liu, S. M.; Borchardt, R. T., Development of a novel redox-sensitive protecting group for amines which utilizes a facilitated lactonization reaction. *J. Org. Chem.* **1995**, *60*, 539-543.

8. Carpino, L. A.; Triolo, S. A.; Berglund, R. A., Reductive lactonization of strategically methylated quinone propionic-acid esters and amides. *J. Org. Chem.* **1989**, *54*, 3303-3310.

9. Volpato, M.; Abou-Zeid, N.; Tanner, R. W.; Glassbrook, L. T.; Taylor, J.; Stratford, I.; Loadman, P. M.; Jaffar, M.; Phillips, R. M., Chemical synthesis and biological evaluation of a NAD(P)H: quinone oxidoreductase-1-targeted tripartite quinone drug delivery system. *Mol. Cancer Ther.* **2007**, *6*, 3122-3130.

10. Maskell, L.; Blanche, E. A.; Colucci, M. A.; Whatmore, J. L.; Moody, C. J., Synthesis and evaluation of prodrugs for antiangiogenic pyrrolylmethylidenyl oxindoles. *Bioorg. Med. Chem. Lett.* **2007**, *17*, 1575-1578.

11. Cormier, R.; Burda, W. N.; Harrington, L.; Edlinger, J.; Kodigepalli, K. M.; Thomas, J.; Kapolka, R.; Roma, G.; Anderson, B. E.; Turos, E.; Shaw, L. N., Studies on the antimicrobial properties of *N*-acylated ciprofloxacins. *Bioorg. Med. Chem. Lett.* **2012**, *22*, 6513-6520.


12. Zheng, A. L.; Shan, D. X.; Shi, X. L.; Wang, B. H., A novel resin linker for solid-phase peptide synthesis which call be cleaved using two sequential mild reactions. *J. Org. Chem.* **1999**, *64*, 7459-7466.

13. Wencewicz, T. A.; Yang, B.; Rudloff, J. R.; Oliver, A. G.; Miller, M. J., N-O chemistry for antibiotics: discovery of *N*-Alkyl-*N*-(pyridin-2-yl)hydroxylamine scaffolds as selective antibacterial agents using nitroso Diels-Alder and ene chemistry. *J. Med. Chem.* **2011**, *54*, 6843-6858.

14. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 8th Ed. (Villanova, PS, USA), Clinical And Laboratory Standards Institute (CLSI), **2009**, approved standard document M07-A7.

15. Cramariuc, O.; Rog, T.; Javanainen, M.; Monticelli, L.; Polishchuk, A. V.; Vattulainen, I. Mechanism for translocation of fluoroquinolones across lipid membranes. *Biochim. Biophys. Acta, Biomembr.* **2012**, *1818*, 2563-2571.

16. Vadnere, M. K.; Maggiora, L.; Mertes, M. P., Thiol addition to quinones-model reactions for the inactivation of thymidylate synthase by 5-para-benzoquinonyl-2'-deoxyuridine 5'-phosphate. *J. Med. Chem.* **1986**, *29*, 1714-1720. 1

