This article was downloaded by: [Oakland University] On: 25 November 2014, At: 12:31 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Bioscience, Biotechnology, and Biochemistry Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/tbbb20</u>

Syntheses of (+)- and (-)-Dihydropinidine and (+)and (-)-Epidihydropinidine by Using Yeast Reduction of Methyl (2-oxocyclohexyl)acetate

Satoshi YAMAUCHI^a, Shunji MORI^a, Yoshio HIRAI^a & Yoshiro KINOSHITA^a

^a Faculty of Agriculture, Ehime University Published online: 22 May 2014.

To cite this article: Satoshi YAMAUCHI, Shunji MORI, Yoshio HIRAI & Yoshiro KINOSHITA (2004) Syntheses of (+)- and (-)-Dihydropinidine and (+)- and (-)-Epidihydropinidine by Using Yeast Reduction of Methyl (2-oxocyclohexyl)acetate, Bioscience, Biotechnology, and Biochemistry, 68:3, 676-684, DOI: <u>10.1271/bbb.68.676</u>

To link to this article: <u>http://dx.doi.org/10.1271/bbb.68.676</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Syntheses of (+)- and (-)-Dihydropinidine and (+)- and (-)-Epidihydropinidine by Using Yeast Reduction of Methyl (2-oxocyclohexyl)acetate

Satoshi YAMAUCHI,[†] Shunji MORI, Yoshio HIRAI, and Yoshiro KINOSHITA

Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan

Received October 16, 2003; Accepted November 20, 2003

(+) and (-)-Dihydropinidine and (+)- and (-)epidihydropinidine were synthesized from hydroxy esters 1 and 2 which had been prepared by yeast reduction of methyl (2-oxocyclohexyl)acetate. The enantiomeric excess at the C-1 positions of 1 and 2 were both determined as more than 99% ee.

Key words: dihydropinidine; epidihydropinidine; yeast reduction

Yeast reduction of methyl (2-oxocyclohexyl)acetate, which gives hydroxy ester 1 (98% ee) and 2 (97%ee), has been previously reported (Fig. 1).¹⁾ The purpose of this work is to recheck the enantiomeric excess at the C-1 positions of 1 and 2 and to apply these yeast-mediated reduction products to the syntheses of natural products. Ring opening of 1 and 2 would give useful chiral synthons.

(+)- and (-)-Dihydropinidine (3) and (+)- and (-)epidihydropinidine (4) were selected as the target compounds. Dihydropinidine was isolated from the Mexican bean beetle, Epilachna varivestis,²⁾ and epidihydropinidine was isolated from Pinus engelmannii.³⁾ Many reports of syntheses of (+)- and (-)-dihydropinidine have been published, due to biological activity (necrotoxic, hemolytic, phytotoxic, insecticidal, antibacterial, and antifungal)⁴⁾ of 2,6-disubstituted piperidine. Two of these employed the enzymatic pathway.^{5,6)} T. Momose et al. have obtained enantiomerically pure starting materials to (+)- and (-)-dihydropinidine.⁵⁾ R. Chênevert et al. have obtained only (+)-dihydropinidine from the enantiomerically pure starting material.⁶⁾ In both these reports, lipase has been employed to produce enantiomerically pure material. In the case of epidihydropinidine, only two synthetic pathways to (+)-epidihydropinidine have been reported.^{7,8)} However, these seems to have been no synthetic research of (-)epidihydropinidine. This article describes the syntheses of (+)- and (-)-dihydropinidine and (+)- and (-)epidihydropinidine by using yeast reduction of methyl (2-oxocyclohexyl)acetate. This is a first approach to get both the (+) and (-) isomers of dihydropinidine and epidihydropinidine from one racemic compound by employing baker's yeast. This is also the first synthetic report on (-)-epidihydropinidine.

The synthetic plan is shown in Scheme 1. The piperidine ring of (-)-3 and (+)-4 would be formed by S_N ² cyclization of **5** and **7**, respectively. Compounds **6** and 8 could be respectively transformed to 5 and 7 via stereoselective α -hydroxylation followed by S_N2 conversion to an amino group. Both compounds 6 and 8 would be obtained from lactone 9 by ring opening and C-C bond elongation. Lactone 9 could be obtained from yeast-mediated reduction product 1, and (+)-dihydropinidine (3) and (-)-epidihydropinidine (4) could be synthesized from yeast-mediated reductive product 2. The C-1 positions of 1 and 2 would be respectively converted to the C-6 positions of 3 and 4. This means that the values for the enantiomeric excess at the C-6 positions of 3 and 4 would depend on that at the C-1 positions of 1 and 2. The chiral center at the C-2 positions of 3 and 4 would be introduced by using Evans's chiral auxiliaries.9)

Results and Discussion

Hydroxy ester **1** was subjected to LiAlH₄ reduction followed by protection of the resulting primary hydroxy

[†] To whom correspondence should be addressed. Fax: +81-89-977-4364; E-mail: syamauch@agr.ehime-u.ac.jp

Scheme 1. Retrosynthetic Analyses of Optically Active Dihydropinidine and Epidihydropinidine.

group as a TBDPS ether by using TBDPSCl and imidazole (53% yield, 2 steps). After PCC oxidation of cyclohexanol derivative **10** (95% yield), resulting ketone **11** was converted to lactone **12** by Baeyer-Villiger oxidation, employing MCPBA in a phosphate buffer at pH 8 and CHCl₃,¹⁰ in 98% yield.

The enantiomeric excess was determined after methanolysis of this lactone 12. (*R*)-Hydroxy ester 13 was reacted with (–)-menthyl chloroformate, and the product was determined as being of more than 99% de by an HPLC analysis. On the other hand, corresponding (*S*)hydroxy ester 13, which had been transformed from yeast-mediated reduction product 2 by the same process, was also determined as being of more than 99% de. It became clear that the enantiomeric excess at the C-1 positions of yeast-mediated reduction products 1 and 2 were more than 99% ee, and that Baeyer-Villiger oxidation had proceeded with complete retention of the configuration.

After protecting of the secondary hydroxy group as an MOM ether by using MOMCl and *N*,*N*-diisopropylethylamine in 95% yield, the silyl group was removed by $(n-Bu)_4NF$ to give alcohol **15** in 94% yield. After conversion to a tosylate (95% yield), C–C bond elongation was accomplished by employing Me₂CuLi, giving **16** in 78% yield. Hydrolysis of **16** (98% yield) followed by introduction of the *S* or *R* Evans's chiral auxiliary¹¹⁾ gave **18** in 93% yield and **25** in 97% yield, respectively. The α -hydroxylation of **18** and **25** by using MoOPH¹²⁾ stereoselectively proceeded to give **19** (43% yield, 17% recovered) and **26** (45% yield, 18% recovered), respectively. In both reactions, **18** and **25** were recovered. The auxiliaries were reductively removed by using LiBH₄ to give glycols **20** (79% yield) and 27 (84% yield), respectively. These glycols were converted to monotosylates by using TsCl and pyridine, which were subsequently treated with LiAlH₄ to give 21 (66% yield, 2 steps) and 28 (73% yield, 2 steps), respectively. After the secondary hydroxy groups had been converted to mesylates by using MsCl and Et₃N, the resulting mesylates were treated with NaN₃ to give azides 22 (85% yield, 2 steps) and 29 (91% yield, 2 steps), respectively. To remove the MOM ethers, 22 and 29 were each treated with a diluted aqueous HCl solution, giving alcohol 23 (95% yield) and 30 (95% yield), respectively. After their conversion to mesylates, S_N2 cyclization was performed by treatment with Ph₃P in heated aqueous THF. The crude products were respectively transformed to Cbz-form 24 (42% yield, 3 steps) and **31** (44% yield, 3 steps) by using CbzCl in an aqueous K₂CO₃ solution and THF for purification. Finally, removal of the Cbz groups by H_2 and $Pd(OH)_2/$ C followed by treatment with an aqueous HCl solution gave (-)-3 (78% yield) and (+)-4 (98% yield), respectively. By the same synthetic process, (+)-3 and (-)-4 were respectively synthesized from yeast-mediated reduction product 2 (Scheme 2).

The enantiomeric excess at the C-1 positions of yeastmediated reduction products 1 and 2 were determined as more than 99% ee. (+)- and (-)-Dihydropinidine (3) and (+)- and (-)-epidihydropinidine (4) were synthesized from 1 and 2, (-)-epidihydropinidine being synthesized for the first time. It was found that all four optically active compounds (+)-3, (-)-3, (+)-4 and (-)- S. YAMAUCHI et al.

Scheme 2. Syntheses of (-)-3 and (+)-4.

(a) (1) LiAlH₄, ether, 0°C, 1 h; (2) TBDPSCl, imidazole, r.t., 2 h (53%, 2 steps). (b) PCC, MS 4A, CH₂Cl₂, r.t., 15 h (95%). (c) MCPBA, phosphate buffer pH 8, CHCl₃, r.t., 14 h (98%). (d) K₂CO₃, MeOH, r.t., 1 h (98%). (e) MOMCl, *N*,*N*-(*iso*-Pr)₂NEt, CH₂Cl₂, r.t., 15 h (95%). (f) (*n*-Bu)₄NF, THF, r.t., 2 h (94%). (g) (1) *p*-TsCl, pyridine, CH₂Cl₂, r.t., 12 h (95%); (2) Me₂CuLi, ether, -40°C, 2.5 h (78%). (h) 6 M aq. KOH, EtOH, r.t., 2 h (98%). (i) Et₃N, PivCl, lithium salt of (*S*)-4-benzyl-2-oxazolidinone, 0°C, 30 min (93%). (j) Et₃N, PivCl, lithium salt of (*S*)-4-benzyl-2-oxazolidinone, 0°C, 30 min (93%). (i) LiBH₄, MeOH, THF, 0°C, 2 h (20: 79%, 27: 84%). (m) (1) *p*-TsCl, pyridine, CH₂Cl₂, 0°C, 5 h; (2) LiAlH₄, THF, r.t., 2 h (21: 66%, 2 steps, 28: 73%, 2 steps). (n) (1) MsCl, Et₃N, CH₂Cl₂, r.t., 1.5 h; (2) NaN₃, DMF, 100°C, 1 h (22: 85%, 2 steps, 29: 91%, 2 steps). (o) 6 M aq. HCl solution, THF, r.t., 2 h (23: 95%, 30: 95%). (p) (1) MsCl, Et₃N, CH₂Cl₂, r.t., 1.5 h; (2) Ph₃P, aq. THF, 50°C, 60 h, and then 1 M aq. HCl solution; (3) CbzCl, 2 M aq. K₂CO₃ solution, THF, r.t., 15 h (24: 42%, 3 steps, 31: 44%, 3 steps). (q) H₂, 20% Pd(OH)₂/C, EtOAc, ambient temperature, 1.5 h, and then 1 M aq. HCl solution ((–)-3: 78%, (+)-4: 98%).

4 could be synthesized from one racemic methyl (2oxocyclohexyl)acetate by using yeast reduction. The utilization of yeast-mediated reduction products **1** and **2** is shown for the first time.

Experimental

Melting point (mp) data are uncorrected. NMR data were measured by a JNM-EX400 spectrometer, IR spectra were determined with a Shimadzu FTIR-8100 spectrophotometer, FABMS data were measured with a JMS-MS700V spectrometer, and optical rotation values were evaluated with a HORIBA SEPA-200 instrument. The silica gel used was Wakogel C-300 (Wako, 200– 300 mesh). HPLC analyses were performed with Shimadzu LC-6AD and SPD-6AV instruments.

(1S, 2R)-2-[2-(tert-Butyldiphenylsilyloxy)ethyl]cyclohexanol (10). To an ice-cooled suspension of LiAlH₄ (2.04 g, 0.054 mol) in ether (20 ml) was added a solution of trans-hydroxy ester 1 (10.1 g, 0.059 mol) in ether (50 ml). After stirring at 0°C for 1 h, sat. aq. MgSO₄ solution and K₂CO₃ were added. The mixture was stirred for 30 min before filtration. The filtrate was concentrated to give crude diol. A reaction solution of crude diol, tert-butyldiphenylsilyl chloride (15.3 ml, 0.059 mol) and imidazole (8.01 g, 0.12 mol) in DMF (2 ml) was stirred at room temperature for 2 h before additions of sat. aq. NaHCO₃ solution and ethyl acetate. The organic solution was separated, washed with brine, and dried (Na₂SO₄). After the organic solution was concentrated, the residue was applied to silica gel column chromatography (5% EtOAc in hexane) to give silyl ether 10 (11.7 g, 0.031 mol, 53%) as a colorless oil, $[\alpha]^{20}_{D} = +21$ (c 0.5, CHCl₃); ν_{max} (CHCl₃)/cm⁻¹ 3388, 2932, 1429, 1113, 1078, 1009; $\delta_{\rm H}$ (CDCl₃) 0.90– 1.06 (2H, m), 1.06 (9H, s, tert-Bu), 1.10-1.28 (3H, m), 1.35 (1H, m), 1.50 (1H, m), 1.55-1.67 (1H, m), 1.70-1.84 (2H, m), 2.01 (1H, m), 3.26 (1H, m, 1-H), 3.45 (1H, s, OH), 3.68-3.79 (2H, m, CH₂OTBDPS), 7.37-7.45 (6H, m, ArH), 7.67–7.69 (4H, m, ArH); $\delta_{\rm C}$ (CDCl₃) 19.1, 24.9, 25.7, 26.8, 32.2, 35.1, 37.3, 44.3, 63.3, 74.7, 127.7, 129.7, 133.2, 135.6. Anal. Found: C, 75.09; H, 9.05. Calcd. for C₂₄H₃₄O₂Si: C, 75.34; H, 8.96%.

(1S,2S)-2-[2-(tert-Butyldiphenylsilyloxy)ethyl]cyclohexanol (1S,2S)-(10). By the same method as thatdescribed for the preparation of (1S,2R)-10, the title compound was obtained from *cis*-hydroxy ester **2** as a colorless oil in 80% yield. $[\alpha]^{20}{}_{\rm D} = +6.1$ (*c* 1.6, CHCl₃). IR $\nu_{\rm max}$ (CHCl₃): 3400, 2934, 1429, 1111, 1075, 909, 824 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 1.05 (9H, s, *tert*-Bu), 1.20–1.30 (1H, m), 1.32–1.47 (3H, m), 1.48–1.57 (2H, m), 1.58–1.74 (4H, m), 1.75–1.82 (1H, m), 2.21 (1H, s, OH), 3.68 (1H, m, CHHOTBDPS), 3.74 (1H, m, CHHOTBDPS), 3.89 (1H, m, 1-H), 7.37–7.45 (6H, m, ArH), 7.66–7.68 (4H, m, ArH). NMR $\delta_{\rm C}$ (CDCl₃): 19.1, 20.7, 25.1, 26.8, 27.1, 32.7, 34.8, 39.0, 62.4, 69.1, 127.7, 129.7, 133.5, 133.6, 135.56, 135.59. *Anal.* Found C, 75.13; H, 9.26. Calcd. for C₂₄H₃₄O₂Si: C, 75.34; H, 8.96%.

(R)-2-[2-(tert-Butyldiphenylsilyloxy)ethyl]cyclohexanone (11). A reaction mixture of alcohol 10 (23.5 g, 0.061 mol), PCC (14.6 g, 0.068 mol), and MS 4A (0.5 g) in CH₂Cl₂ (300 ml) was stirred at room temperature for 15 h before addition of ether. After filtration, the filtrate was concentrated. The residue was applied to silica gel column chromatography (2% EtOAc in hexane) to give cyclohexanone derivative 11 (22.1 g, 0.058 mol, 95%) as a colorless oil, $[\alpha]_{D}^{20} = +1.0$ (c 1.0, CHCl₃). IR ν_{max} (CHCl₃): 3021, 2934, 1705, 1429, 1217, 1113 cm^{-1} . NMR $\delta_{\rm H}$ (CDCl₃): 1.04 (9H, s, *tert*-Bu), 1.25–1.43 (2H, m), 1.60-1.68 (2H, m), 1.81 (1H, m), 1.98-2.10 (2H, m), 2.14 (1H, m), 2.26 (1H, m, 6-HH), 2.36 (1H, m, 6-HH), 2.52 (1H, m, 2-H), 3.70 (2H, t, J 6.1, Hz, CH₂OTBDPS), 7.35-7.43 (6H, m, ArH), 7.63-7.66 (4H, m, ArH). NMR δ_C (CDCl₃): 19.2, 25.1, 26.9, 28.1, 32.1, 34.0, 42.1, 47.1, 61.7, 127.6, 129.6, 133.9, 134.0, 135.5, 213.1. Anal. Found: C, 75.71; H, 8.84. Calcd. for $C_{24}H_{32}O_2Si:$ C, 75.74; H, 8.48%. (S)-11, $[\alpha]^{20}{}_{\rm D} = -0.9$ (c 3.3, CHCl₃).

(R)-8-(tert-Butyldiphenylsilyloxy)octan-6-olide (12). A reaction mixture of (R)-ketone 11 (20.4 g, 0.054 mol) and MCPBA (16.4 g, 70%, 0.067 mol) in CHCl₃ (200 ml) and phosphate buffer pH 8 (200 ml) was stirred at room temperature for 14 h. After filtration, the filtrate was washed with sat. aq. sodium thiosulfate solution, sat. aq. NaHCO3 solution, and brine, and dried (Na₂SO₄). The organic solution was evaporated, and then the residue was applied to silica gel column chromatography (5% EtOAc/hexane) to give lactone 12 (21.0 g, 0.053 mol, 98%) as colorless crystals, mp 60-61°C (petroleum ether), $[\alpha]^{20}{}_{\rm D} = -40$ (*c* 0.9, CHCl₃). IR v_{max} (CHCl₃): 3000, 2934, 1721, 1429, 1329, 1287, 1258, 1177, 1148, 1113, 1082, 1014 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 1.05 (9H, s, tert-Bu), 1.52–1.68 (3H, m), 1.77 (1H, m), 1.87-1.98 (4H, m), 2.54 (1H, m, 2-HH), 2.65 (1H, m, 2-HH), 3.75 (1H, ddd, J 10.5, 4.9, 4.9 Hz, 8-HH), 3.87 (1H, ddd, J 10.5, 8.6, 4.4 Hz, 8-HH), 4.54 (1H, m, 6-H), 7.36–7.44 (6H, m, ArH), 7.63–7.65 (4H, m, ArH). NMR δ_C (CDCl₃): 19.2, 23.0, 26.9, 28.3, 34.5, 34.8, 39.0, 59.8, 77.0, 127.69, 127.72, 129.7, 133.5, 133.7, 135.5, 175.6. Anal. Found C, 73.02; H, 8.29. Calcd. for C₂₄H₃₂O₃Si: C, 72.68; H, 8.13%. (S)-(12), $[\alpha]^{20}{}_{\rm D} = +40 \ (c \ 1.1, \ \text{CHCl}_3).$

(R)-Methyl 8-tert-butyldiphenylsilyloxy-6-hydroxyoctanoate (13). A reaction mixture of (R)-lactone 12 (22.7 g, 0.057 mol) and K₂CO₃ (7.91 g, 0.057 mol) in MeOH (150 ml) was stirred at room temperature for 1 h before concentration. The residue was dissolved in EtOAc and H₂O. The organic solution was separated, washed with brine, and dried (Na₂SO₄). After the organic solution was evaporated, the residue was applied to silica gel column chromatography (EtOAc/hexane =1/5) to give (R)-methyl ester **13** (23.8 g, 0.056 mol, 98%) as a colorless oil, $[\alpha]^{20}{}_{D} = +7.2$ (*c* 2.3, CHCl₃). IR v_{max} (CHCl₃): 3500, 2934. 1732, 1429, 1113, 1078 cm^{-1} . NMR δ_{H} (CDCl₃): 1.05 (9H, s, *tert*-Bu), 1.34-1.55 (4H, m), 1.60-1.75 (4H, m), 2.33 (2H, t, J 7.6 Hz, 2-H₂), 3.26 (1H, s, OH), 3.66 (3H, s, OCH₃), 3.80-3.92 (3H, m, 6-H, 8-H₂), 7.38-7.46 (6H, m, ArH), 7.66–7.68 (4H, m, ArH). NMR $\delta_{\rm C}$ (CDCl₃): 19.0, 25.0, 25.2, 26.8, 34.1, 37.1, 38.3, 51.5, 63.6, 71.6, 127.8, 129.8, 132.9, 133.0, 135.5, 135.6, 174.2. Anal. Found: C, 70.28; H, 8.76. Calcd. for C₂₅H₃₆O₄Si: C, 70.05; H, 8.47%. (S)-13, $[\alpha]^{20}_{D} = -7.2$ (c 1.8, CHCl₃).

Determination of the optical purity of the (R)- and (S)-methyl esters (13). To an ice-cooled solution of (R)-13 (28 mg, 0.065 mmol) in pyridine (50 μ l) was added (-)-menthyl chloroformate (20.9 μ l, 0.098 mmol). After the reaction mixture was stirred at room temperature for 1 h, H₂O and EtOAc were added. The organic solution was separated, washed with 0.5 M aq. HCl solution and sat. aq. NaHCO₃ solution, and brine, and dried (Na₂SO₄). The organic solution was concentrated. The residue was applied to HPLC (Merck, LiChrospher Si 60, 2% EtOAc in hexane, 2.0 ml/min, detected at 270 nm), retention time: 22 min, more than 99% de. Reaction product of (S)-13 with (-)-menthyl chloroformate: 19 min, more than 99% de.

8-tert-butyldiphenylsilyloxy-6-methoxy-(R)-Methyl methoxyoctanoate (14). A reaction mixture of (R)alcohol 13 (23.8 g, 0.056 mol), (iso-Pr)₂EtN (38.7 ml, 0.22 mol), and MOMCl (8.43 ml, 0.11 mol) in CH₂Cl₂ (50 ml) was stirred at room temperature for 15 h before additions of MeOH and H_2O . The organic solution was separated, washed with 1 M aq. HCl solution, sat. aq. NaHCO₃ solution, and brine, and dried (Na₂SO₄). The organic solution was evaporated, and then the residue was applied to silica gel column chromatography (EtOAc/hexane = 1/7) to give (R)-MOM ether 14 (25.1 g, 0.053 mol, 95%) as a colorless oil, $[\alpha]^{20}{}_{\rm D} =$ +1.7 (c 1.2, CHCl₃). IR v_{max} (CHCl₃): 3021, 1732, 1429, 1217, 1111, 1036 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 1.05 (9H, s, tert-Bu), 1.29-1.42 (2H, m), 1.48-1.53 (2H, m), 1.55-1.66 (2H, m), 1.70-1.75 (2H, m), 2.30 (2H, t, J 7.6 Hz, 2-H₂), 3.31 (3H, s, OCH₃), 3.66 (3H, s, OCH₃), 3.71–3.79 (3H, m, 6-H, 8-H₂), 4.58 (1H, d, J 6.8 Hz, OCHHOCH₃), 4.61 (1H, d, J 6.8 Hz, OCHHOCH₃), 7.36-7.44 (6H, m, ArH), 7.64-7.67 (4H, m, ArH). NMR δ_C (CDCl₃): 19.2, 24.8, 25.1, 26.9, 34.0, 34.4, 37.3, 51.4, 55.5, 60.6, 74.7, 95.7, 127.6, 129.6, 133.9, 135.6, 174.1. Anal. Found: C, 68.62; H, 8.42. Calcd. for $C_{27}H_{40}O_5Si$: C, 68.61; H, 8.53%. (S)-**14**, $[\alpha]^{20}{}_{D} = -1.6$ (c 2.0, CHCl₃).

8-hydroxy-6-methoxymethoxyoctanoate (R)-Methyl (15). To an ice-cooled solution of silvl ether 14 (24.0 g, 0.051 mol) in THF (150 ml) was added (n-Bu)₄NF (0.056 ml, 1 M in THF, 0.056 mol). The reaction solution was stirred at room temperature for 2 h before additions of sat. aq. NH₄Cl solution and EtOAc. The organic solution was separated, washed with brine, and dried (Na_2SO_4) . After the mixture was concentrated, the residue was applied to silica gel column chromatography (10% EtOAc in hexane) to give alcohol 15 (11.3 g, 0.048 mol, 94%) as a colorless oil; $[\alpha]^{20}{}_{\rm D} = -50 \ (c \ 1.6,$ CHCl₃). IR v_{max} (CHCl₃): 3500, 2950, 1732, 1439, 1208, 1150, 1100, 1071, 1032 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 1.31-1.41 (2H, m), 1.49-1.72 (4H, m), 1.65-1.74 (2H, m), 2.32 (2H, t, J 7.3 Hz, 2-H₂), 2.43 (1H, br. s, OH), 3.40 (3H, s, OCH₃), 3.67 (3H, s, OCH₃), 3.71–3.79 (3H, m, 6-H, 8-H₂), 4.65 (1H, d, J 6.8 Hz, OCHHOCH₃), 4.68 (1H, d, J 6.8 Hz, OCHHOCH₃). NMR $\delta_{\rm C}$ (CDCl₃): 24.7, 25.0, 33.9, 34.3, 36.6, 51.5, 55.7, 59.8, 76.2, 95.9, 174.0. Anal. Found: C, 56.06; H, 9.47. Calcd. for $C_{11}H_{22}O_5$: C, 56.39; H, 9.46%. (S)-**15**, $[\alpha]^{20}_{D} = +50$ (c 2.6, CHCl₃).

(S)-Methyl 6-methoxymethoxynonanoate (16). A reaction mixture of (R)-alcohol 15 (4.55 g, 0.019 mol), p-TsCl (3.70 g, 0.019 mol) and pyridine (3.14 ml, 0.039 mol) in CH_2Cl_2 (8 ml) was stirred at room temperature for 12h before additions of H₂O and CH₂Cl₂. The organic solution was separated, washed with 1 M aq. HCl solution, sat. aq. NaHCO₃ solution, and brine, and dried (Na₂SO₄). The organic solution was evaporated, and then the residue was applied to silica gel column chromatography (10% EtOAc in hexane) to give unstable tosylate (7.15 g, 0.018 mol, 95%) as a colorless oil. To a suspension of CuI (14.0 g, 0.074 mol) in ether (15 ml) was added MeLi (66.9 ml, 2.2 M in ether, 0.15 mol) at -40° C. After the mixture was stirred at -40° C for 2 h, tosylate (7.15 g, 0.018 mol) in ether (20 ml) was added. The reaction mixture was stirred at -40° C for 2.5 h, and then sat. aq. NH₄Cl solution and ether were added. The organic solution was separated, washed with brine, and dried (Na₂SO₄). After concentration, the residue was purified with silica gel column chromatography (10% EtOAc in hexane) to recover tosylate (1.56 g, 0.0040 mol, 22%) and give (S)-16 (3.21 g, 0.014 mol, 78%) as a colorless oil; $[\alpha]_{D}^{20} =$ -4.9 (c 1.0, CHCl₃). IR ν_{max} (CHCl₃): 2936, 1732, 1466, 1458, 1439, 1213, 1169, 1148, 1100, 1038. NMR δ_H (CDCl₃): 0.92 (3H, t, J 7.1 Hz, 9-H₃), 1.30–1.53 (8H, m), 1.60–1.68 (2H, m), 2.32 (2H, t, J 7.3 Hz, 2-H₂), 3.37 (3H, s, OCH₃), 3.53 (1H, m, 6-H), 3.67 (3H, s, OCH₃), 4.64 (2H, s, OCH₂OCH₃). NMR δ_C (CDCl₃): 14.2, 18.5, 24.8, 25.1, 33.9, 34.0, 36.5, 51.4, 55.5, 77.1, 95.4, 174.1. *Anal.* Found: C, 61.80; H, 10.47. Calcd. for $C_{12}H_{24}O_4$: C, 62.04; H, 10.41%. (*R*)-**16**, $[\alpha]^{20}{}_D = +4.9$ (*c* 1.6, CHCl₃).

(S)-6-Methoxymethoxynonanoic acid (17). A reaction solution of (S)-ester 16 (10.1 g, 0.043 mol) in 6 M aq. KOH solution (100 ml) and EtOH (100 ml) was stirred at room temperature for 2 h before additions of CHCl₃ and 6м aq. HCl solution. The organic solution was separated, washed with brine, and dried (Na₂SO₄). After the organic solution was evaporated, the residue was applied to silica gel column chromatography (EtOAc/hexane = 1/2) to give carboxylic acid **17** (9.17 g, 0.042 mol, 98%) as a colorless oil; $[\alpha]^{20}_{D} = -3.9$ (c 1.0, CHCl₃). IR ν_{max} (CHCl₃): 3613, 2936, 1709, 1146, 1100, 1038. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, J 7.3 Hz, 9-H₃), 1.35-1.54 (8H, m), 1.61–1.69 (2H, m), 2.36 (2H, t, J 7.3 Hz, 2-H₂), 3.38 (3H, s, OCH₃), 3.54 (1H, m, 6-H), 4.65 (2H, s, OCH₂OCH₃). NMR δ_C (CDCl₃): 14.2, 18.5, 24.7, 24.8, 33.9, 36.5, 55.5, 77.1, 95.4, 179.4. FABMS m/z: 217 (M⁺-1, 10), 157 (100), 137 (70). HRMS (FAB) m/z (M⁺-1): Calcd. for C₁₁H₂₁O₄, 217.1439; found, 217.1441. (*R*)-**17**, $[\alpha]^{20}_{D} = +3.8$ (*c* 1.9, CHCl₃).

(4S)-4-Benzyl-3-[(S)-6-methoxymethoxynonanoyl]-2oxazolidinone (18). To a solution of (S)-carboxylic acid 17 (6.57 g, 0.030 mol) and Et₃N (4.41 ml, 0.032 mol) in THF (150 ml) was added PivCl (3.89 ml, 0.032 mol) at -70° C. The mixture was stirred at 0° C for 1 h before cooling to -70° C. To this mixture was added lithium salt of (S)-4-benzyl-2-oxazolidinone, which was prepared with (S)-4-benzyl-2-oxazolidinone (5.60 g, 0.032 mol) and n-BuLi (20.1 ml, 1.6 M in hexane, 0.032 mol) in THF (150 ml) at -70° C for 30 min. After the resulting reaction mixture was stirred at 0°C for 30 min, sat. aq. NH₄Cl solution was added. The organic solution was separated, washed with brine, and dried (Na₂SO₄). The organic solution was evaporated, and then the residue was applied to silica gel column chromatography (10% EtOAc in hexane) to give acyl oxazolidinone 18 (10.7 g, 0.028 mol, 93%) as colorless crystals, mp 60-61°C (iso-Pr₂O); $[α]^{20}_{D} = +35$ (*c* 1.0, CHCl₃). IR $ν_{max}$ (CHCl₃): 2934, 1782, 1700, 1385, 1352, 1210, 1200, 1150, 1098, 1038 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, s, J 7.1 Hz, CH₃), 1.30–1.58 (8H, m), 1.62–1.74 (2H, m), 2.77 (1H, dd, J 13.4, 9.5 Hz, PhCHH), 2.85-3.00 (2H, m, O=CCH₂), 3.34 (1H, dd, J 13.4, 3.1 Hz, PhCHH), 3.38 (3H, s, OCH₃), 3.55 (1H, m, CHOMOM), 4.16 (1H, dd, J 8.8, 3.4 Hz, 5-HH), 4.20 (1H, dd, J 8.8, 8.8 Hz, 5-HH), 4.65 (2H, s, OCH₂OCH₃), 4.64–4.70 (1H, m, 4-H), 7.20-7.21 (2H, m, ArH), 7.27-7.29 (1H, m, ArH), 7.31-7.35 (2H, m, ArH). NMR δ_{C} (CDCl₃): 14.3, 18.5, 24.4, 24.8, 34.1, 35.5, 36.6, 37.9, 55.5, 66.2, 77.1, 77.2, 95.4, 127.3, 128.9, 129.4, 135.3, 153.4, 173.2. Anal. Found: C, 66.75; H, 8.19; N, 3.44. Calcd. for C₂₁H₃₁O₅N: C, 66.82; H, 8.28; N, 3.71%. (4*R*)-[(*R*)]-(**18**), $[\alpha]^{20}{}_{\rm D} = -35$ (c 1.9, CHCl₃).

(4S)-4-Benzyl-3-[(2S,6S)-2-hydroxy-6-methoxymethoxynonanoyl]-2-oxazolidinone (19). To a solution of (4S)-[(S)]-18 (10.7 g, 0.028 mol) in THF (300 ml) was added KHMDS (84.9 ml, 0.5 M in toluene, 0.042 mol) at -70° C. After stirring at -70° C for 30 min, MoOPH (18.5 g, 0.043 mol) was added. The reaction mixture was stirred at -70° C for 2 h, and then sat. aq. Na₂SO₃ solution was added. The organic solution was separated, washed with 1 M aq. HCl solution, sat. aq. NaHCO₃ solution, and brine, and dried (Na_2SO_4) . After evaporation, the residue was applied to silica gel column chromatography (10% EtOAc in hexane) to give (4S)-[(2S,6S)]-19 (4.72 g, 0.012 mol, 43%) as a colorless oil; $[\alpha]^{20}_{D} = +32$ (c 1.1, CHCl₃). IR ν_{max} (CHCl₃)/cm⁻¹ 3500, 2934, 1788, 1694, 1385, 1352, 1298, 1213, 1198, 1150, 1111, 1098, 1038, 912 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, J 7.3 Hz, CH₃), 1.30–1.70 (9H, m), 1.82 (1H, m), 2.84 (1H, dd, J 13.7, 9.3 Hz, PhCHH), 3.31 (1H, dd, J 13.7, 3.2 Hz, PhCHH), 3.38 (3H, s, OCH₃), 3.47 (1H, d, J 8.3 Hz, OH), 3.55 (1H, m, CHOMOM), 4.25 (1H, dd, J 9.3, 2.9 Hz, 5-HH), 4.28 (1H, dd, J 9.3, 9.3 Hz, 5-HH), 4.65 (2H, s, OCH₂OCH₃), 4.65–4.69 (1H, m, 4-H), 5.00 (1H, m, O=CCHOH), 7.20-7.22 (2H, m, ArH), 7.29-7.31 (1H, m, ArH), 7.33-7.36 (2H, m, ArH). NMR δ_C (CDCl₃): 14.2, 18.5, 21.1, 33.9, 34.3, 36.6, 37.5, 55.5, 66.9, 70.6, 70.8, 77.2, 95.5, 127.5, 129.0, 129.4, 134.8, 153.2, 174.9. Anal. Found: C, 64.04; H, 7.91; N, 3.63. Calcd. for C₂₁H₃₁O₆N: C 64.10; H, 7.94; N, 3.56%. (4*R*)-[(2R,6R)]-**19**, $[\alpha]^{20}_{D}$ = -32 (c 1.5, CHCl₃).

(2S,6S)-6-Methoxymethoxynonane-1,2-diol (20). To an ice-cooled solution of (4S)-[(2S,6S)]-acyl oxazolidinone 19 (3.01 g, 7.65 mmol) and MeOH (1.24 ml, 30.6 mmol) in THF (80 ml) was added LiBH₄ (0.83 g, 38.1 mmol). The resulting mixture was stirred at 0°C for 2h before addition of sat. aq. NH₄Cl solution. The organic solution was separated, washed with brine, and dried (Na₂SO₄). After concentration of the solvent, the residue was applied to silica gel column chromatography (EtOAc/toluene = 1/4) to give (2S,6S)-glycol 20 (1.34) g, 6.08 mmol, 79%) as a colorless oil; $[\alpha]^{20}{}_{\rm D} = +6.8$ (*c* 1.1, CHCl₃). IR v_{max} (CHCl₃): 3500, 2936, 1460, 1148, 1134, 1096, 1038 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, J 7.3 Hz, 9-H₃), 1.25-1.56 (10H, m), 2.36 (1H, br. s, OH), 2.49 (1H, br. s, OH), 3.38 (3H, s, OCH₃), 3.44 (1H, dd, J 10.7, 7.3 Hz, 1-HH), 3.55 (1H, m, 6-H), 3.65 (1H, dd, J 10.7, 2.9 Hz, 1-HH), 3.70 (1H, m, 2-H), 4.65 (2H, s, OCH₂OCH₃). NMR δ_C (CDCl₃): 14.2, 18.5, 21.1, 33.2, 34.2, 36.6, 55.5, 66.7, 72.1, 95.5. Anal. Found: C, 59.69; H, 11.01. Calcd. for C₁₁H₂₄O₄: C, 59.97; H, 10.98%. (2R,6R)-**20**, $[\alpha]^{20}_{D} = -6.9$ (*c* 1.9, CHCl₃).

(2R,6S)-6-Methoxymethoxy-2-nonanol (21). To an ice-cooled solution of (2S,6S)-glycol 20 (1.34 g, 6.08 mmol) and pyridine (0.98 ml, 12.1 mmol) in CH₂Cl₂ (1 ml) was added *p*-TsCl (1.16 g, 6.08 mmol). The reaction mixture was stirred at 0°C for 5 h before

additions of H₂O and CH₂Cl₂. The organic solution was separated, washed with 1 M aq. HCl solution, sat. aq. NaHCO₃ solution, and brine, and dried (Na₂SO₄). After evaporation, the residue was applied to silica gel column chromatography (5% EtOAc in toluene) to give unstable tosylate (1.62 g, 4.33 mmol, 71%) as a colorless oil. To an ice-cooled suspension of LiAlH₄ (0.32 g, 8.43 mmol) in THF (10 ml) was added tosylate (1.60 g, 4.27 mmol) in THF (20 ml). The reaction mixture was stirred at room temperature for 2h before additions of sat. aq. MgSO₄ and K₂CO₃. After filtration, the filtrate was concentrated. The residue was applied to silica gel column chromatography (10% EtOAc in hexane) to give (2R,6S)-21 (0.81 g, 3.96 mmol, 93%) as a colorless oil; $[\alpha]^{20}_{D} = -8.1$ (c 0.7, CHCl₃). IR ν_{max} (CHCl₃): 3500, 2936, 1458, 1379, 1142, 1098, 1038. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, J 7.3 Hz, 9-H₃), 1.19 (3H, d, J 5.9 Hz, 1-H₃), 1.26-1.56 (10H, m), 1.60-1.79 (1H, br., OH), 3.38 (3H, s, OCH₃), 3.55 (1H, m, 6-H), 3.81 (1H, m, 2-H), 4.65 (2H, s, OCH₂OCH₃). NMR δ_{C} (CDCl₃): 14.2, 18.5, 21.3, 23.5, 34.2, 36.5, 39.4, 55.5, 68.0, 77.3, 95.4. FABMS m/z: 205 (M⁺+1, 100), 198 (50). HRMS (FAB) m/z (M⁺+1): Calcd. for C₁₁H₂₅O₃, 205.1804; found, 205.1801. (2*S*,6*R*)-**21**, $[\alpha]^{20}{}_{\rm D} = +8.0$ (*c* 1.4, CHCl₃).

(2S,6S)-2-Azido-6-methoxymethoxynonane (22). To a solution of (2R,6S)-alcohol 21 (0.81 g, 3.96 mmol) and Et₃N (0.61 ml, 4.38 mmol) in CH₂Cl₂ (5 ml) was added MsCl (0.34 ml, 4.39 mmol). The reaction mixture was stirred at room temperature for 1.5 h before additions of H_2O and CH_2Cl_2 . The organic solution was separated, washed with brine, and dried (Na₂SO₄). After concentration, the residue was purified with silica gel column chromatography (EtOAc/hexane = 1/4) to give unstable mesylate (1.00 g, 3.54 mmol, 89%) as a colorless oil. A reaction solution of mesylate (1.00 g, 3.54 mmol) and NaN₃ (0.46 g, 7.08 mmol) in DMF (1 ml) was stirred at 100°C for 1 h before additions of H₂O and EtOAc. The organic solution was separated, washed with brine, and dried (Na₂SO₄). The solvent was evaporated. The residue was applied to silica gel column chromatography (5% EtOAc in hexane) to give (2S,6S)-azide 22 (0.78 g, 3.40 mmol, 96%) as a colorless oil; $[\alpha]^{20}{}_{\rm D} = +30 (c \ 1.0,$ CHCl₃). IR v_{max} (CHCl₃): 2936, 2103, 1458, 1381, 1262, 1238, 1144, 1096, 1038 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, J 6.8 Hz, 9-H₃), 1.25 (3H, d, J 6.3 Hz, 1-H₃), 1.26-1.60 (10H, m), 3.38 (3H, s, OCH₃), 3.42 (1H, m, 2-H), 3.52 (1H, m, 6-H), 4.65 (2H, s, OCH₂OCH₃). NMR δ_C (CDCl₃): 14.2, 18.5, 19.4, 21.9, 34.1, 36.4, 36.6, 55.5, 58.0, 77.1, 95.5. Anal. Found: C, 57.65; H, 10.12; N, 18.21. Calcd. for C₁₁H₂₃O₂N₃: C, 57.61; H, 10.11; N, 18.32%. (2*R*,6*R*)-**22**, $[\alpha]^{20}{}_{\rm D} = -30$ (*c* 1.7, CHCl₃).

(4S,8S)-8-Azido-4-nonanol (23). To a solution of (2S,6S)-22 (0.78 g, 3.40 mmol) in THF (17 ml) was added 6 M aq. HCl solution (17 ml). The reaction solution was stirred at room temperature for 2 h before

additions of H₂O and EtOAc. The organic solution was separated, washed with NaHCO₃ and brine, and dried (Na₂SO₄). After the solvent was concentrated, the residue was purified with silica gel column chromatography (5% EtOAc in hexane) to give (4*S*,8*S*)-alcohol **23** (0.60 g, 3.24 mmol, 95%) as a colorless oil; $[\alpha]^{20}_{D} = +39 (c 0.8, CHCl_3)$. IR ν_{max} (CHCl₃): 3125, 2934, 2105, 1458, 1381, 1329, 1262, 1238, 1119, 1021 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.93 (3H, t, *J* 7.1 Hz, 1-H₃), 1.26 (3H, d, *J* 6.4 Hz, 9-H₃), 1.30–1.58 (10H, m), 1.60 (1H, s, OH), 3.44 (1H, m, 8-H), 3.61 (1H, m, 4-H). NMR $\delta_{\rm C}$ (CDCl₃): 14.1, 18.8, 19.4, 22.3, 36.2, 37.1, 39.7, 58.0, 71.5. *Anal.* Found: C, 58.30; H, 10.40; N, 22.58. Calcd. for C₉H₁₉ON₃: C, 58.35; H, 10.34; N, 22.68%. (4*R*,8*R*)-**23**, $[\alpha]^{20}_{\rm D} = -39 (c 1.7, CHCl_3).$

(2S, 6R)-1-Benzyloxycarbonyl-2-methyl-6-propylpiperidine (24). To an ice-cooled solution of (4S,8S)-alcohol 23 (0.60 g, 3.24 mmol) and Et₃N (0.50 ml, 3.59 mmol) in CH_2Cl_2 (2 ml) was added MsCl (0.28 ml, 3.62 mmol). After the reaction mixture was stirred at room temperature for 1.5 h, H₂O and CH₂Cl₂ were added. The organic solution was separated, washed with brine, and dried (Na_2SO_4). After concentration, the residue was applied to silica gel column chromatography (EtOAc/ hexane = 1/7) to give unstable mesylate (0.82 g, 3.11 mmol, 96%) as a colorless oil. A reaction solution of mesylate (0.82 g, 3.11 mmol), Ph₃P (0.90 g. 3.43 mmol), and H_2O (0.4 ml) in THF (40 ml) was stirred at 50°C for 60 h before additions of 1 M aq. HCl solution and ether. To the aqueous solution was added 3 м aq. NaOH solution. The resulting alkaline aqueous solution was extracted with ether, and then the ether solution was treated with 1 M aq. HCl solution. The acidic aqueous solution was concentrated. To an icecooled mixture of the residue in THF (5 ml) and 2 M aq. K_2CO_3 solution (4 ml) was added CbzCl (0.57 ml, 3.99 mmol). The reaction mixture was stirred at room temperature for 15 h before additions of 10% aq. NaHSO₄ solution and EtOAc. The organic solution was separated, washed with sat. aq. NaHCO₃ solution and brine, and dried (Na₂SO₄). After concentration, the residue was purified with silica gel column chromatography (2% EtOAc in hexane) to give (2S,6R)-24 (0.38 g, 1.38 mmol, 44% yield from mesylate) as a colorless oil; $[\alpha]^{20}_{D} = +11$ (c 0.1, CHCl₃). IR ν_{max} (CHCl₃): 2941, 1678, 1416, 1343, 1314, 1275, 1103, 909 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.89 (3H, t, J 7.3 Hz, (CH₂)₂CH₃), 1.20 (3H, d, J 6.8 Hz, CH₃), 1.20–1.38 (3H, m), 1.40–1.75 (7H, m), 4.16 (1H, m, 2-H), 4.39 (1H, m, 6-H), 5.13 (2H, s, PhCH₂O), 7.29–7.36 (5H, m, ArH). NMR δ_{C} (CDCl₃): 14.1, 20.6, 27.4, 30.3, 37.3, 46.1, 50.5, 66.8, 127.8, 128.4, 137.2, 155.9. FABMS m/z: 276 (M⁺+1, 100), 232 (50). HRMS (FAB) m/z (M⁺+1): Calcd. for C₁₇H₂₆O₂N, 276.1962; found, 276.1964. (2R,6S)-24, $[\alpha]^{20}{}_{\rm D} = -11 \ (c \ 1.5, \ \text{CHCl}_3).$

(2S,6R)-Dihydropinidine hydrochloride (3). A reac-

tion mixture of (2S,6R)-**24** (0.34 g, 1.23 mmol) and 20% Pd(OH)₂/C (350 mg) in EtOAc (10 ml) was stirred under H₂ gas at the ambient temperature for 1.5 h before filtration. To the filtrate was added 1 M aq. HCl solution and ether. The acidic aqueous solution was separated and concentrated to give (2*S*,6*R*)-**3** (0.17 g, 0.96 mmol, 78%) as colorless crystals, mp 239–240°C (EtOH-EtOAc); $[\alpha]^{20}{}_{\rm D} = -13$ (*c* 0.075, EtOH), lit,¹³⁾ mp 245°C, $[\alpha]^{20}{}_{\rm D} = -12.71$ (*c* 1.14, EtOH). NMR data was agreed with that of literature. (2*R*,6*S*)-**3**, $[\alpha]^{20}{}_{\rm D} = +13$ (*c* 1.12, EtOH) [lit,⁹⁾ $[\alpha]^{20}{}_{\rm D} = +14.2$ (*c* 1.05, EtOH)].

(R)-4-Benzyl-3-[(S)-6-methoxymethoxynonanoyl]-2oxazolidinone (25). 97% yield. $[\alpha]^{20}{}_{\rm D} = -49$ (c 1.5, CHCl₃). IR v_{max} (CHCl₃): 2905, 1782, 1701, 1385, 1352, 1233, 1198, 1098, 1038 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, J 7.1 Hz, CH₃), 1.31-1.58 (8H, m), 1.68-1.76 (2H, m), 2.77 (1H, dd, J 13.2, 9.5 Hz, PhCHH), 2.91 (1H, ddd, J 16.6, 8.3, 6.4 Hz, O=CCHH), 2.99 (1H, ddd, J 16.6, 8.3, 6.4 Hz, O=CCHH), 3.30 (1H, dd, J 13.2, 3.4 Hz, PhCHH), 3.38 (3H, s, OCH₃), 3.56 (1H, m, CHOMOM), 4.16 (1H, dd, J 9.3, 2.9 Hz, 5-HH), 4.20 (1H, dd, J 9.3, 9.3 Hz, 5-HH), 4.65 (2H, s, OCH₂OCH₃), 4.64-4.70 (1H, m, 4-H), 7.20-7.21 (2H, m, ArH), 7.25-7.29 (1H, m, ArH), 7.32–7.35 (2H, m, ArH). NMR $\delta_{\rm C}$ (CDCl₃) 14.2, 18.5, 24.4, 24.8, 34.1, 35.5, 36.6, 37.9, 55.1, 55.5, 66.1, 77.1, 95.4, 127.3, 128.9, 129.4, 135.3, 153.4, 173.2. Anal. Found: C, 66.91; H, 8.12; N, 3.66. Calcd. for C₂₁H₃₁O₅N: C, 66.82; H, 8.28; N, 3.71%. (S)-[(R)]-25, $[\alpha]^{20}_{D} = +49$ (*c* 1.2, CHCl₃).

(R)-4-Benzyl-3-[(2R,6S)-2-hydroxy-6-methoxymethoxynonanoyl]-2-oxazolidinone (26). 45% vield. $[\alpha]_{D}^{20} = -40$ (c 1.1, CHCl₃). IR ν_{max} (CHCl₃): 3546, 2947, 1788, 1696, 1387, 1352, 1111, 1038, 909 cm^{-1} . NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, J 7.1 Hz, CH₃), 1.30– 1.65 (9H, m), 1.81 (1H, m), 2.84 (1H, dd, J 13.7, 9.3 Hz, PhCHH), 3.31 (1H, dd, J 13.7, 3.2 Hz, PhCHH), 3.38 (3H, s, OCH₃), 3.48 (1H, d, J 7.8 Hz, OH), 3.55 (1H, m, CHOMOM), 4.25 (1H, dd, J 9.3, 2.9 Hz, 5-HH), 4.28 (1H, dd, J 9.3, 9.3 Hz, 5-HH), 4.65 (2H, s, OCH₂OCH₃), 4.60-4.69 (1H, m, 4-H), 4.99 (1H, m, CHOH), 7.20-7.22 (2H, m, ArH), 7.28-7.29 (1H, m, ArH), 7.31-7.36 (2H, m, ArH). NMR δ_C (CDCl₃): 14.2, 18.5, 21.0, 33.8, 34.2, 36.6, 37.5, 55.47, 55.50, 66.9, 70.7, 77.1, 95.4, 127.5, 129.0, 129.4, 134.8, 153.2, 174.9. Anal. Found: C, 63.92; H, 8.23; N, 3.40. Calcd. for C₂₁H₃₁O₆N: C, 64.10; H, 7.94; N, 3.56%. (S)-[(2S,6R)]-26, $[\alpha]^{20}_{D} =$ $+40 (c 1.6, CHCl_3).$

(2R,6S)-6-Methoxymethoxynonane-1,2-diol (27). 84% yield. $[\alpha]^{20}_{D} = +4.8$ (c 1.7, CHCl₃). IR ν_{max} (CHCl₃): 3450, 2936, 1462, 1238, 1150, 1096, 1038, 911 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, J 7.1 Hz, CH₃), 1.30– 1.57 (10H, m), 2.62 (1H, br. s, OH), 2.77 (1H, br. s, OH), 3.38 (3H, s, OCH₃), 3.43 (1H, dd, J 11.2, 7.8 Hz, 1-HH), 3.54 (1H, m, 6-H), 3.63 (1H, dd, J 11.2, 2.9 Hz, 1-H*H*), 3.70 (1H, m, 2-H), 4.65 (2H, s, OCH₂OCH₃). NMR $\delta_{\rm C}$ (CDCl₃): 14.2, 18.5, 21.2, 33.1, 34.2, 36.6, 55.5, 66.7, 72.0, 77.3, 95.4. FABMS *m*/*z*: 221 (M⁺+1, 13), 207 (15), 189 (13), 171 (12), 159 (23), 147 (38). HRMS (FAB) *m*/*z* (M⁺+1): Calcd. for C₁₁H₂₅O₄, 221.1752; found, 221.1749. (2*S*,6*R*)-**27**, [*α*]²⁰_D = -4.7 (*c* 1.7, CHCl₃)

(2*S*,6*S*)-6-Methoxymethoxy-2-nonanol (28). 73% yield (2 steps). $[\alpha]^{20}_{D} = +5.9$ (*c* 1.0, CHCl₃). IR ν_{max} (CHCl₃): 3500, 2949, 1460, 1379, 1240, 1144, 1096, 1038, 912 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, *J* 6.8 Hz, 9-CH₃), 1.19 (3H, d, *J* 5.9 Hz, 1-CH₃), 1.28–1.58 (10H, m), 3.38 (3H, s, OCH₃), 3.54 (1H, m, 6-H), 3.80 (1H, m, 2-H), 4.65 (2H, s, OCH₂OCH₃). NMR $\delta_{\rm C}$ (CDCl₃): 14.2, 18.5, 21.5, 23.5, 34.2, 36.6, 39.4, 55.5, 67.9, 77.2, 95.4. FABMS *m/z*: 205 (M⁺+1, 35), 154 (98), 143 (95), 136 (100). HRMS (FAB) *m/z* (M⁺+1): Calcd. for C₁₁H₂₅O₃, 205.1804; found, 205.1807. (2*R*,6*R*)-**28**, $[\alpha]^{20}_{\rm D} = -5.8$ (*c* 1.6, CHCl₃).

(2*R*,6*S*)-2-*Azido*-6-methoxymethoxynonane (**29**). 91% yield (2 steps). $[\alpha]^{20}_{D} = -27$ (*c* 1.4, CHCl₃). IR ν_{max} (CHCl₃): 2936, 2103, 1466, 1381, 1242, 1144, 1096, 1038, 912 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.92 (3H, t, *J* 7.1 Hz, 9-CH₃), 1.25 (3H, d, *J* 6.3 Hz, 1-CH₃), 1.32–1.56 (10H, m), 3.38 (3H, s, OCH₃), 3.44 (1H, m, 2-H), 3.54 (1H, m, 6-H), 4.65 (2H, m, OCH₂OCH₃). NMR $\delta_{\rm C}$ (CDCl₃) 14.2, 18.5, 19.4, 21.8, 34.0, 36.3, 36.5, 55.5, 57.9, 77.1, 95.4. *Anal.* Found: C, 57.62; H,9.77; N, 18.40. Calcd. for C₁₁H₂₃O₂N₃: C, 57.61; H, 10.11; N, 18.32%. (2*S*,6*R*)-**29**, $[\alpha]^{20}_{\rm D} = +27$ (*c* 1.6, CHCl₃)

(4*S*,8*R*)-8-Azido-4-nonanol (**30**). 95% yield. $[\alpha]^{20}_{\rm D} = -30 \ (c \ 1.1, \rm CHCl_3)$. IR $\nu_{\rm max}$ (CHCl_3): 3500, 2934, 2105, 1458, 1381, 1244 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl_3): 0.93 (3H, t, *J* 6.8 Hz, 1-CH₃), 1.26 (3H, d, *J* 6.8 Hz, 9-CH₃), 1.30–1.64 (10H, m), 3.44 (1H, m, 8-H), 3.61 (1H, m, 4-H). NMR $\delta_{\rm C}$ (CDCl₃): 14.1, 18.8, 19.4, 22.2, 36.2, 37.1, 39.7, 57.9, 71.4. Anal. Found: C, 58.24; H, 10.47; N, 22.69. Calcd. for C₉H₁₉ON₃: C, 58.35; H, 10.34; N, 22.68%. (4*R*,8*S*)-**30**, $[\alpha]^{20}_{\rm D} = +30 \ (c \ 1.5, \rm CHCl_3).$

(2*R*,6*R*)-1-Benzyloxycarbonyl-2-methyl-6-propylpiperidine (31). 44% yield (3 steps). $[\alpha]^{20}{}_{\rm D} = -34$ (c 1.3, CHCl₃). IR $\nu_{\rm max}$ (CHCl₃): 2959, 1680, 1412, 1320, 1100 cm⁻¹. NMR $\delta_{\rm H}$ (CDCl₃): 0.89 (3H, t, *J* 7.3 Hz, (CH₂)₂CH₃), 1.27 (3H, d, *J* 6.8 Hz, CH₃), 1.30–1.37 (1H, m), 1.43–1.57 (3H, m), 1.60–1.69 (4H, m), 1.76– 1.90 (2H, m), 3.90 (1H, m, 2-H), 3.98 (1H, m, 6-H), 5.10 (1H, d, *J* 12.5 Hz, PhCHH), 5.16 (1H, d, *J* 12.5 Hz, PhCHH), 7.29–7.36 (5H, m, ArH). NMR $\delta_{\rm C}$ (CDCl₃): 13.9, 14.0, 20.1, 20.8, 23.4, 27.0, 36.3, 47.4, 51.9, 66.5, 127.7, 127.8, 128.4, 137.2, 155.8. FABMS *m/z*: 276 (M⁺+1, 63), 91 (100). HRMS (FAB) *m/z* (M⁺+1): Calcd. for C₁₇H₂₆O₂N, 276.1964; found: 276.1965. (2*S*,6S)-**31**, $[\alpha]^{20}{}_{\rm D}$ = +34 (*c* 1.8, CHCl₃). (2*R*,6*R*)-*Epidihydropinidine* (4). 98% yield, mp 162– 163°C (2-propanol-EtOAc); $[\alpha]^{20}{}_{\rm D} = +5.1$ (*c* 0.4, EtOH), lit⁷) mp 164.5–165.5°C, $[\alpha]^{20}{}_{\rm D} = +4.7$ (EtOH). The NMR data agreed with those of the literature. (2*S*,6*S*)-4, $[\alpha]^{20}{}_{\rm D} = -5.1$ (*c* 1.14, EtOH).

Acknowledgment

We measured the 400 MHz NMR data at INCS, Ehime University. We thank the staff of this center for the FAB measurements. We are grateful to Marutomo Co. for financial support.

References

- Ganaha, M., Funabiki, Y., Motoki, M., Yamauchi, S., and Kinoshita, Y., Reduction of alkyl (2-oxocyclohexyl)acetates by baker's yeast. *Biosci. Biotechnol. Biochem.*, **62**, 181–184 (1998).
- Attygalle, A. B., Xu, S. C., McCormick, K. D., Meinwald, J., Blankespoor, C. L., and Eisner, T., Alkaloids of the Mexican bean beetle, Epilachna varivestis (Coccinellidae). *Tetrahedron*, **49**, 9333–9342 (1993).
- Schneider, M. J., Montali, J. A., Hazen, D., and Stanton, C. E., Alkaloids of *Pidea*. J. Nat. Prod., 54, 905–909 (1991).
- Numata, A., and Ibuka, I., Alkaloids from ants and other insects. In "The Alkaloids" Vol. 43, ed. Brossi, A., Academic Press, New York, pp. 185–298 (1993).
- 5) Momose, T., Toyooka, N., and Jin, M., Asymmetric twin-ring differentiation by lipase-catalyzed enantiotoposelective reaction of the ring-crossed *meso* glycol: asymmetric synthesis of a highly functionalized piperidine from the conjoined twin piperidine system. *Tetrahedron Lett.*, 33, 5389–5390 (1992).
- Chênevert, R., and Dickman, M., Enzymatic route to chiral, nonracemic *cis*-2,6- and *cis*, *cis*-2,4,6-substituted piperidines. Synthesis of (+)-dihydropinidine and dendrobate alkaloid (+)-241D. J. Org. Chem., 61, 3332– 3341 (1996).
- Takahata, H., Kubota, M., Takahashi, S., and Momose, T., A new asymmetric entry to 2-substituted piperidines. A concise synthesis of (+)-coniine, (-)-pelletierine, (+)-δ-coniceine, and (+)-epidihydropinidine. *Tetrahedron: Asymmetry*, **7**, 3047–3054 (1996).
- Takahata, H., Yotsui, Y., and Momose, T., A general asymmetric route to *trans-* or *cis-2*,6-disubstituted piperidine. First total synthesis of (+)-9-epi-6-epipinidinol and (-)-pinidinol. *Tetrahedron*, **54**, 13505–13516 (1998).
- Gage, J. R., and Evans, D. A., (S)-4-(Phenylmethyl)-2oxazolodinone. Org. Synth. Coll. Vol. VIII, 528–531 (1993).
- 10) Delay, F., and Ohloff, G., Synthesis of (*R*)- and (*S*)-*p*-mentha-1,8-dien-4-ols from (*R*)-limonene. *Helv. Chim. Acta*, **62**, 2168–2173 (1979).
- Evans, D. A., Morrisey, M. M., and Dorow, R. L., Asymmetric oxygenation of chiral imide enolates. A general approach to the synthesis of enantiomerically pure α-hydroxy carboxylic acid synthons. *J. Am. Chem. Soc.*, **107**, 4346–4348 (1985).

684

- 12) Vedejs, E., and Larsen, S., Hydroxylation of enolates with oxodiperoxymolybdenum(pyridine)(hexamethylphosphoric triamide), MoO₅·Py·HMPA (MoOPH): 3hydroxy-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one. *Org. Synth. Coll. Vol. VII*, 277–282 (1990).
- 13) Yamauchi, T., Fujikura, H., Higashiyama, K., Takahashi,

H., and Ohmiya, S., Asymmetric synthesis of (+)- and (-)-dihydropinidines: diastereoselective addition to chiral imine or 1,3-oxazolidine derived from (*R*)-phenylglycinol as a single starting material with organometallic reagents. *J. Chem. Soc. Perkin Trans. I*, 2791–2794 (1999).