View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Nakamura, T. Furukawa, T. Hatanaka and Y. Funahashi, *Chem. Commun.*, 2018, DOI: 10.1039/C8CC00594J.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the **author guidelines**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the ethical guidelines, outlined in our <u>author and reviewer resource centre</u>, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

rsc.li/chemcomm

Published on 09 February 2018. Downloaded by Universiteit Utrecht on 10/02/2018 05:25:59

RSCPublishing

Journal Name

COMMUNICATION

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x www.rsc.org/

Enantioselective Aza-Friedel-Crafts Reaction of Cyclic Ketimines with Indoles Using Chiral Imidazoline-Phosphoric Acid Catalysts

Shuichi Nakamura*^{,a,b}, Takashi Furukawa,^a Tsubasa Hatanaka,^c Yasuhiro Funahashi ^c

The enantioselective aza-Friedel Crafts reaction of cyclic 4aryl-3-oxo-1,2,5-thiadiazol-1,1-oxides as cyclic ketimines with indoles was developed. High enantioselectivities were observed for the reaction of various cyclic ketimines and indoles using chiral imidazoline-phosphoric acid catalysts. The obtained products can be converted to chiral α -amino amide and hydantoin.

The aza-Friedel-Crafts reaction of ketimines with arene compounds is recognized as one of the most powerful and an atom-economical synthetic methods for chiral amines having a tetra-substituted chiral carbon centre. Especially, the enantioselective aza-Friedel-Crafts reaction of α -iminoesters with arene compounds gives optically active α, α -diaryl- α -amino acids, therefore the development of this type of reaction is highly However, the enantioselective aza-Friedel-Crafts desired. reaction of a-iminoesters with arene compounds is rare. The first report for this type of reaction was reported by Bolm and coworkers where, the enantioselective aza-Friedel-Crafts reaction of a ketimine derived from trifluoropyruvate with various indoles gave products in high yield with high enantioselectivities.¹ Piersanti and co-workers examined the reaction using enamines derived from α -ketoesters with indoles to give products with moderate enantioselectivities (up to 66% ee).² Furthermore, enantioselective aza-Friedel-Crafts reaction using ketimines derived from isatins,³ cyclic α -ketoacid derivatives,⁴ or other ketimines,⁵ as well as an intramolecular aza-Friedel-Crafts reaction,⁶ have been reported. However, these methods have some problems related to substrate limitation and difficulty in converting simple α -amino acid derivatives. On the other hand, the enantioselective reaction of 4-aryl-3-oxo-1,2,5-thiadiazol-1,1-oxides as cyclic ketimines is an attractive synthetic method for chiral simple α -amino acid derivatives, because the reaction affords sulfahydantoin compounds, which can be easily converted to a amino acids having tetra-substituted stereogenic carbon centre. Furthermore, sulfahydantoins are also important structures for biologically active compounds.⁷ However, there are only two reports on the enantioselective C-C bond formation 4-aryl-3-oxo-1,2,5-thiadiazol-1,1-oxides.8 reaction of Nishimura and Hayashi reported a pioneering result for the enantioselective reaction of 4-aryl-3-oxo-1,2,5-thiadiazol-1,1oxides with *p*-tolylboroxine using chiral rhodium/diene catalyst to give a product with good enantioselectivity (79% ee).⁹ More recently, Xu and co-workers reported the highly enantioselective

arylation of 4-aryl-3-oxo-1,2,5-thiadiazol 1,1-oxides using rhodium/phosphite-olefin catalysts.¹⁰ On the other hand, we recently reported the highly enantioselective aza-Friedel-Crafts reaction of 2-substituted-3H-indol-3-one derivatives with pyrroles using novel chiral imidazoline-phosphoric acid catalysts^{11,12,13} and enantioselective reactions of ketimines with various nucleophiles.¹⁴ Herein our ongoing interest was extended to the catalytic aza-Friedel-Crafts reaction of 4-aryl-3-oxo-1,2,5-thiadiazol-1,1-oxides with indoles (Fig.1).

Fig. 1 Enantioselective aza-Friedel-Crafts reaction of 4-aryl-3-oxo-1,2,5-thiadiazol 1,1-oxides with indoles.

First, we examined the reaction of N-alkyl-4-aryl-3-oxo-1,2,5thiadiazol 1,1-oxides 1a-c (1.0 equiv.) with indole 2a using 10 mol% of various chiral imidazoline-phosphoric acid catalysts **3a-g** in toluene (Table 1). The reaction of *N*-methyl and *N*benzyl ketimines **1a**,**b** with indole **2a** using catalyst **3a** afforded products **4a**,**b** in good yield but with low enantioselectivities (entries 1 and 2). On the other hand, the reaction of Ndiphenylmethyl ketimine 1c gave product 4c with moderate enantioselectivity (entry 3). Encouraged by these results, we next examined the reaction of 1c with 2a using various chiral imidazoline-phosphoric acid catalysts **3b-g** (entries 4-9). Although the reaction using chiral bis(imidazoline)-phosphoric acid catalyst **3b** having a *p*-toluenesulfonyl group on imidazoline nitrogen showed low enantioselectivity, the reaction using 3c-e having alkanesulfonyl groups gave product **4c** in high yield with high enantioselectivities (entries The 4-7). best enantioselectivity was obtained in the reaction using 3e to give product 4c in 99% yield with 90% ee (entry 7). On the other hand, 3,5-trifluoromethylphenyl-substituted chiral phosphoric acid catalyst 3f and VAPOL-phosphoric acid 3g afforded product 4c with lower enantioselectivity than that from the reaction using catalyst 3e (entries 8 and 9). When the reaction was carried out at a lower temperature (-10 °C), enantioselectivity improved (entry 10). Good enantioselectivity (97% ee) was still observed, even when catalyst loading of 3e was reduced to 5 or 2 mol% (entries 11 and 12). After the reaction, most of catalyst 3e could be recovered by column

ChemComm Accepted Manuscri

chromatography, and reused in the reaction of **1c** and **2a** giving **4c** in 97% yield with 99% ee.

 Table 1 Enantioselective aza-Friedel-Crafts reaction of 1 with indole 2 using various organocatalysts 3a-g.^a

Entry	1	3	Temp.	Time	Yield	Ee
			(°C)	(h)	(%)	(%) ^b
1	1 a	3a	rt	72	76	5
2	1b	3a	rt	72	71	5
3	1c	3a	rt	72	64	53°
4	1c	3b	rt	72	86	2
5	1c	3c	rt	18	96	78
6	1c	3d	rt	18	97	86
7	1c	3e	rt	18	99	90
8	1c	3f	rt	72	68	23°
9	1c	3g	rt	72	61	16
10	1c	3e	-10	40	98	99
11 ^d	1c	3e	-10	72	97	97
12 ^e	1c	3e	-10	168	85	97

^aReaction conditions: **1** (0.05 mmol), **2** (1.5 equiv.), and **3** (10 mol%) in toluene (0.2 M). ^bEnantiomeric excess was determined by HPLC analysis using a chiral column. ^cOpposite enantiomer was obtained. ^d5 mol% of **3e** was used. ^e2 mol% of **3e** was used.

With optimized reaction conditions for the reaction of imine 1c with indole 2a, we next examined the scope of imines for this reaction (Table 2). The reaction of electron-rich imine 1d-f having a methyl or methoxy group in the para or meta position using catalyst 3e gave corresponding products 4d-f in high yield with high enantioselectivities (entries 2-4). The reaction of imine 1g-l bearing electron-withdrawing groups, such as a fluoro,

chloro, bromo or trifluoromethyl group, was also acceptable, to afford products **4g-l** in good yield with good enantioselectivities (entries 5-10). 2-Naphthyl imine **1m** reacted with **2a** to give product **4m** in good yield with high enantioselectivity (77%, 91% ee, entry 11). The reaction of 3-thienyl imine **1n** also afforded product **4n** in 91% yield with 97% ee (entry 12). The X-ray crystallographic analysis product **4f** clearly showed their absolute configuration as (R), and the configuration of other products was tentatively assumed by analogy.

Table 2 Enantioselective aza-Friedel-Crafts reaction ofvarious substituted ketimines 1c-n with indole 2a using 3e.ª

Ph ₂ CH 0 0 N 5 Ar 1c-n		2a (1.5 equiv)	Catalyst 3e (10 mol%) Toluene, -10 °C, Time 2a (1.5 equiv)		Ph ₂ CH 0 N-S O Ar 4 c-n	
Entry	1	Ar	4	Time	Yield	Ee
				(h)	(%)	(%) ^b
1	1c	Ph	4c	40	98	99
2	1d	$4-CH_3C_6H_4$	4d	72	93	98
3	1e	$3-CH_3C_6H_4$	4e	120	97	95
4	1f	$4-CH_3OC_6H_4$	4f	96	87	98
5	1g	$4-FC_6H_4$	4g	72	95	96
6	1h	3-FC ₆ H ₄	4h	96	98	91
7	1i	$4-ClC_6H_4$	4i	72	95	95
8	1j	3-ClC ₆ H ₄	4j	120	85	92
9	1k	4-BrC ₆ H ₄	4k	72	94	96
10	11	$4-CF_3C_6H_4$	41	40	98	96
11 ^{c,d}	1m	2-Naphthyl	4m	120	77	91
12 ^e	1n	3-Thienyl	4n	120	91	97

^aReaction conditions: The reaction was carried out using **1** (0.05 mmol), **2a** (1.5 equiv.), and **3e** (10 mol%) in toluene (0.2 M) at -10 °C. ^bEnantiomeric excess was determined by HPLC analysis. ^cAt rt. ^d20 mol% of **3e** was used. ^eAt 0 °C.

We next examined the enantioselective reaction of 1c with various substituted indoles 2b-i using catalyst 3e (Table 3). The reaction of indoles 2b-e having electron-donating groups such as a methyl or methoxy group in the 5-, 6- or 7-position gave corresponding products 5-8 in high yield with high enantioselectivities (entries 1-4, 97-99% yield, 93-98% ee). The reaction of indoles 2f-h bearing electron-withdrawing groups such as a fluoro, chloro, or bromo group also afforded products 9-11 in high yield with high enantioselectivities (entries 5-7, 80-90% yield, 93-95% ee). On the other hand, the reaction of 1c with *N*-methylindole 2i did not give any product 12 (entry 8).

The gram-scale synthesis of sulfahydantoin **4c** via the reaction of 1.0 g of **1c** with **2a** using 5 mol% of catalyst **3e** successively proceeded to give 1.29 g of product **4c** (Scheme 1).

We next examined the transformation of product 4c obtained (Scheme 2). Removal of the sulfonyl group in 4c using LiAlH₄ in THF gave α -amino amide 13 in 89% yield without the loss of enantiopurity. Furthermore, the reaction of 13 with triphosgene afforded 14, and the removal of diphenylmethyl group in 14 using 1 atm of H₂ in the presence of 20 wt% of Pd/C in THF/methanol gave hydantoin 15 (Scheme 2a). In addition, the reaction of 4c with H₂ and Pd/C in THF/methanol proceeded to Page 3 of 5

remove the diphenylmethyl group on nitrogen in 4c (Scheme 2b).¹⁵

 Table 3 Enantioselective aza-Friedel-Crafts reaction of 1c with various substituted indoles 2b-i using 3e.^{a,b}

^aReaction conditions: The reaction was carried out using **1c** (0.05 mmol), **2** (1.5 equiv.), and **3e** (10 mol%) in toluene (0.2 M) at -10 °C. ^bEnantiomeric excess was determined by HPLC analysis. ^cAt -20

°C. dAt 0 °C. eIndole (2.0 equiv.) was used.

Scheme 1 Gram-scale synthesis of sulfahydantoin 4c by the reaction of 1c with 2a using catalyst 3e.

Scheme 2 Transformation of 4c to chiral α -amino amide 13 and sulfahydantoin 14.

The reaction of *N*-methylindole drastically decreased the reactivity in comparison with the reaction of the unprotected indole (Table 2, entry 1 vs. Table 3, entry 8). These results suggest that hydrogen bonding between N-H in indole and the imidazoline nitrogen or phosphonyl oxygen plays an important role in enhancing reactivity. Therefore, the assumed catalytic cycle for the reaction of 2a with 1c using catalyst 3 is shown in Figure 2. First, the phosphoric acid moiety in

catalyst **3** activates the cyclic ketimine **1c** to form complex **A**. Then, the imidazoline group in catalyst **3** enhances the reactivity of indole by hydrogen bonding (complex **B**), and the nucleophilic reaction between indole **2a** and activated ketimine **1c** gives a product.

Fig. 2 Assumed reaction cycle for the reaction of indole 2a with ketimine 1c using catalyst 3.

The assumed transition state for the enantioselective reaction of ketimine 1c with indole 2a using catalyst 3e is shown in Figure 3. Catalyst 3e could enhance the electrophilicity of ketimine 1a and nucleophilicity of indole by hydrogen bonding. Namely, chiral imidazoline-phosphoric acid 3e acts as a dual activating organocatalyst. Indole 2a approaches from the *Re*-face of ketimine avoiding steric repulsion between the phenyl group on imidazoline to afford the (*R*)-isomer of the product with high enantioselectivity.

Fig. 3 Assumed transition state for the reaction of 1c with 2a using catalyst 3e. H atoms have been omitted for clarity.

In conclusion, we developed efficient access to a series of optically active sulfahydantoin derivatives having a tetrasubstituted stereogenic centre by the aza-Friedel-Crafts reaction of cyclic *N*-sulfonylketimines using chiral imidazolinephosphoric acid catalysts. The reaction was applicable to various cyclic ketimines and indoles. The obtained products can be converted to chiral α -amino amide and hydantoin without the loss of enantiopurity.

This work was partly supported by a Grant-in-Aid for Scientific Research from the MEXT (Japan) and Tatematsu foundation.

COMMUNICATION

Published on 09 February 2018. Downloaded by Universiteit Utrecht on 10/02/2018 05:25:59

Notes and references

^aDepartment of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555 (Japan). E-mail: snakamur@nitech.ac.jp

^bFrontier Research Institute for Material Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555 (Japan)

^eDepartment of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

Electronic Supplementary Information (ESI) available: See DOI: 10.1039/c000000x/

- R. Husmann, E. Sugiono, S. Mersmann, G. Raabe, M. Rueping, C. Bolm, Org. Lett. 2011, 13, 1044.
- M. Righi, F. Bartoccini, S. Lucarini, G. Piersanti, *Tetrahedron* 2011, 67, 7923.
- (a) S. Duce, F. Pesciaioli, L. Gramigna, L. Bernardi, A. Mazzanti, A. Ricci, G. Bartoli, G. Bencivenni, Adv. Synth. Catal. 2011, 353, 860;
 (b) J. J. Badillo, A. Silva-García, B. H. Shupe, J. C. Fettinger, A. K. Franz, Tetrahedron Lett. 2011, 52, 5550; (c) J. Feng, W. Yan, D. Wang, P. Li, Q. Sun, R. Wang, Chem. Commun. 2012, 48, 8003; (d) M. Montesinos-Magraner, C. Vila, R. Cantón, G. Blay, I. Fernández, M. C. Muñoz, J. R. Pedro, Angew. Chem. Int. Ed. 2015, 54, 6320; (e) P. Kumari, S. Barik, N. H. Khan, B. Ganguly, R. I. Kureshy, S. H. R. Abdi, H. C. Bajaj, RSC Adv. 2015, 5, 69493; (f) M. Montesinos-Magraner, C. Vila, A. Rendón-Patiño, G. Blay, I. Fernández, M. C. Muñoz, J. R. Pedro, ACS Catal. 2016, 6, 2689; (g) X. Zhang, J. Zhang, L. Lin, H. Zheng, W. Wu, X. Liu, X. Feng, Adv. Synth. Catal. 2016, 358, 3021.
- 4 (a) T. Kano, R. Takechi, R. Kobayashi, K. Maruoka, Org. Biomol. Chem. 2014, 12, 724; (b) L. Wu, R.-R. Liu, G. Zhang, D.-J. Wang, H. Wu, J. Gao, Y.-X. Jia, Adv. Synth. Catal. 2015, 357, 709; (c) A. Kondoh, Y. Ota, T. Komuro, F. Egawa, K. Kanomata, M. Terada, Chem. Sci. 2016, 7, 1057; (d) H. Lou, Y. Wang, E. Jin, X. Lin, J. Org. Chem. 2016, 81, 2019; (e) Y. Zhao, L. Wang, J. Zhao, Tetrahedron Lett. 2017, 58, 213; (f) L. Wang, A. Rahman, X. Lin, Org. Biomol. Chem. 2017, 15, 6033.
- 5 For the enantioselective aza-Friedel-Crafts reactions of various other ketimines, see: (a) Y.-X. Jia, J. Zhong, S.-F. Zhu, C.-M. Zhang, Q.-L. Zhou, *Angew. Chem. Int. Ed.* 2007, 46, 5565; (b) M. Rueping, S. Raja, A. Núñnez, *Adv. Synth. Catal.* 2011, 353, 563; (c) X. Yu, Y. Wang, G. Wu, H. Song, Z. Zhou, C. Tang, *Eur. J. Org. Chem.* 2011, 3060; (d) E. Aranzamendi, N. Sotomayor, E. Lete, *J. Org. Chem.* 2012, 77, 2986; (e) K.-F. Zhang, J. Nie, R. Guo, Y. Zheng, J.-A. Ma, *Adv. Synth. Catal.* 2013, 355, 3497; (f) X. Li, D. Chen, H. Gu, X. Lin, *Chem. Commun.* 2014, 50, 7538; (g) E. Xie, A. Rahman, X. Lin, *Org. Chem. Front.* 2017, 4, 1407; (h) D. Glavač, C. Zheng, I. Dokli, S.-L. You, M. Gredičak, *J. Org. Chem.* 2017, 15, 6033; (j) M. Hatano, T. Mochizuki, K. Nishikawa, K. Ishihara, *ACS Catal.* 2018, 8, 349.
- 6 (a) Y.-S. Fan, Y.-J. Jiang, D. An, D. Sha, J. C. Antilla, S. Zhang, Org. Lett. 2014, 16, 6112; (b) X. Shen, Y. Wang, T. Wu, Z. Mao, X. Lin, Chem. Eur. J. 2015, 21, 9039.
- 7 (a) W. C. Groutas, R. Kuang, R. Venkataraman, J. B. Epp, S. Ruan, O. Prakash, *Biochemistry* 1997, **36**, 4739; (b) Y. Li, D. Dou, G. He, G. H. Lushington, W. C. Groutas, *Bioorg. Med. Chem.* 2009, **17**, 3536; (c) D. Dou, G. He, R. Kuang, Q. Fu, R. Venkataraman, W. C. Groutas, *Bioorg. Med. Chem.* 2010, **18**, 6646.

- 8 For enantioselective reduction of 4-aryl-3-oxo-1,2,5-thiadiazol-1,1oxides, see: Z.-H. Zhu, M.-L. Chen, G.-F. Jiang, *Org. Biomol. Chem.* 2017, **15**, 1325.
- 9 T. Nishimura, Y. Ebe, H. Fujimoto, T. Hayashi, *Chem. Commun.* 2013, 49, 5504.
- 10 Y. Li, Y.-N. Yu, M.-H. Xu, ACS Catal. 2016, 6, 661.
- (a) S. Nakamura, N. Matsuda, M. Ohara, *Chem. Eur. J.* 2016, 22, 9478. See also for the enantioselective reaction using imidazoline phosphoric acid catalysts; (b) S. Nakamura, M. Ohara, M. Koyari, M. Hayashi, K. Hyodo, N. R. Nabisaheb, Y. Funahashi, *Org. Lett.* 2014, 16, 4452.
- 12 We recently developed various enantioselective reaction using chiral imidazoline catalysts, see: (a) S. Nakamura, K. Hyodo, Y. Nakamura, N. Shibata, T. Toru, Adv. Synth. Catal. 2008, 350, 1443; (b) S. Nakamura, M. Ohara, Y. Nakamura, N. Shibata, T. Toru, Chem. Eur. J. 2010, 16, 2360; (c) M. Ohara, S. Nakamura, N. Shibata, Adv. Synth. Catal. 2011, 353, 3285; (d) K. Hyodo, S. Nakamura, K. Tsuji, T. Ogawa, Y. Funahashi, N. Shibata, Adv. Synth. Catal. 2011, 353, 3385; (e) K. Hyodo, S. Nakamura, N. Shibata, Angew. Chem. Int. Ed. 2012, 51, 10337; (f) K. Hyodo, M. Kondo, Y. Funahashi, S. Nakamura, Chem. Eur. J. 2013, 19, 4128; (g) S. Nakamura, K. Hyodo, M. Nakamura, D. Nakane, H. Masuda, Chem. Eur. J. 2013, 19, 7304; (h) M. Ohara, Y. Hara, T. Ohnuki, S. Nakamura, Chem. Eur. J. 2014, 20, 8848; (i) M. Kondo, N. Kobayashi, T. Hatanaka, Y. Funahashi, S. Nakamura, Chem. Eur. J. 2015, 21, 9066; (j) M. Kondo, T. Nishi, T. Hatanaka, Y. Funahashi, S. Nakamura, Angew. Chem. Int. Ed. 2015, 54, 8198; (k) S. Nakamura, J. Synth. Org. Chem. Jpn. 2015, 73, 1062; (1) M. Kondo, M. Sugimoto, S. Nakamura, Chem. Commun. 2016, 52, 13604; (m) M. Kondo, M. Omori, T. Hatanaka, Y. Funahashi, S. Nakamura, Angew. Chem. Int. Ed. 2017, 56, 8677; (n) S. Nakamura, D. Hayama, Angew. Chem. Int. Ed. 2017, 56, 8785; (o) M. Kondo, H. Saito, S. Nakamura, Chem. Commun. 2017, 53, 6776.
- 13 For chiral phosphoric acids, see (a) T. Akiyama, J. Itoh, K. Yokota, K. Fuchibe, *Angew. Chem. Int. Ed.* 2004, **43**, 1566; (b) D. Uraguchi, M. Terada, *J. Am. Chem. Soc.* 2004, **126**, 5356; (c) T. Akiyama, *Chem. Rev.* 2007, **107**, 5744; (d) M. Terada, *Synthesis* 2010, 1929; (e) D. Parmar, E. Sugiono, S. Raja, M. Rueping, *Chem. Rev.* 2014, **114**, 9047; (f) D. Parmar, E. Sugiono, S. Raja, M. Rueping, *Chem. Rev.* 2017, **117**, 10608. (f) J. Merad, C. Lalli, G. Bernadat, J. Maury, G. Masson, *Chem. Eur. J.* 2018. DOI: 10.1002/chem.201703556.
- (a) S. Nakamura, M. Hayashi, Y. Hiramatsu, N. Shibata, Y. Funahashi, T. Toru, J. Am. Chem. Soc. 2009, 131, 18240; (b) N. Hara, R. Tamura, Y. Funahashi, S. Nakamura, Org. Lett. 2011, 13, 1662; (c) N. Hara, S. Nakamura, M. Sano, R. Tamura, Y. Funahashi, N. Shibata, Chem. Eur. J. 2012, 18, 9276; (d) M. Hayashi, M. Sano, Y. Funahashi, S. Nakamura, Angew. Chem. Int. Ed. 2013, 52, 5557; (e) M. Hayashi, M. Iwanaga, N. Shiomi, D. Nakane, H. Masuda, S. Nakamura, Angew. Chem. Int. Ed. 2014, 53, 8411; (f) S. Nakamura, S. Takahashi, D. Nakane, H. Masuda, Org. Lett. 2015, 17, 106; (g) S. Nakamura, M. Sano, A. Toda, D. Nakane, H. Masuda, Chem. Eur. J. 2015, 21, 3929; (h) S. Nakamura, R. Yamaji, M. Hayashi, Chem. Eur. J. 2015, 21, 9615; (i) S. Nakamura, S. Takahashi, Org. Lett. 2015, 17, 2590; (j) S. Nakamura, R. Yamaji, M. Iwanaga, Chem. Commun, 2016, 52, 7462; (k) S. Nakamura, D. Hayama, M. Miura, T. Hatanaka, Y. Funahashi, Org. Lett. 2018, asap, doi: 10.1021/acs.orglett.7b04022
- 15 L. Konnert, F. Lamaty, J. Martinez, E. Colacino, *Chem. Rev.* 2017, 117, 13757.

Published on 09 February 2018. Downloaded by Universiteit Utrecht on 10/02/2018 05:25:59.

The highly enantioselective aza-Friedel Crafts reaction of cyclic 4-aryl-3-oxo-1,2,5-thiadiazol-1,1-oxides as cyclic ketimines with indoles was developed.

