INTERMEDIATES IN THE PALLADIUM-CATALYSED REACTIONS OF 1,3-DIENES

IV *. THE REACTIONS OF η^1, η^3 -OCTADIENEDIYL-PALLADIUM COMPLEXES WITH ALKYNES AND ACTIVATED ALKENES

R. BENN, G. GABOR, P.W. JOLLY*, R. MYNOTT and B. RASPEL **

Max-Planck-Institut für Kohlenforschung, D-4330 Mülheim a. d. Ruhr (F.R.G.)

(Received June 6th, 1985)

Summary

The reactions of $[Pd(PR_3)(\eta^1, \eta^3-C_8H_{12})]$ complexes with the dimethyl ester of acetylene dicarboxylic acid involves an unusual 1,3-addition of the alkyne to an allyl fragment to give cyclopentene-substituted η^3 -allylpalladium complexes. p-Benzoquinone and 5-hydroxynaphthoquinone react similarly.

Introduction

Ten years ago its was reported that palladium-bonded p-benzoquinone undergoes a stoichiometric reaction with butadiene to give a complex containing the tricyclic system 1 (eq. 1). [2]. We report here results which suggest that this unusual reaction proceeds by attack of the quinone on an η^1 , η^3 -octadienediylpalladium species.

$$\begin{array}{c|c} L & Pd - \begin{array}{c} O & O \\ \hline \end{array} & \begin{array}{c} O & O \\ \hline$$

Results

This work originated in investigations of the role played by η^1 - η^3 -octadienediyl-palladium-ligand complexes (2) in the palladium catalysed transformations of 1,3-dienes [1]. The extension to reactions with alkynes was expected to lead to complexes

^{*} For part III see ref. 1.

^{**} Part of the doctoral thesis, Ruhr-Universität Bochum (1984).

similar to **3** as the result of insertion into the Pd- η^3 -allyl bond (eq. 2), related behaviour having previously been observed in the reaction of [Ni(PPh₃)(η^3, η^3 - C_8H_{32})] with alkynes [3].

$$+ R'C \equiv CR'$$

$$R_3 P$$

Complex 2 (R = Me, NMe_3 , Ph) reacts readily with the dimethyl ester of acetylenedicarboxylic acid at $-30^{\circ}C$ to give pale yellow compounds stable at room temperature. The absence of signals in the olefinic region of the ¹H NMR spectrum rules out structures related to 3, and this and the ¹³C NMR spectrum indicate that an unusual 1.3-addition of the alkyne to an allyl fragment has occurred, to give 4. Confirmation of the structure comes from the further reaction of 4 (R = Me) with HCl (or DCl), from which the evelopentene derivative 5 could be isolated (eq. 3).

$$R_3 P = CO_2 Me$$

$$+ 2H(0)CL = \frac{R = Ve}{-[PaCL_2 L]_2}$$

$$+ CO_2 Me$$

$$+ CO_2$$

No complexes—could be isolated from reactions with other alkynes: alkyl-substituted alkynes failed to react below the decomposition point of **2**, and a multi-component mixture, which was not investigated—further, was obtained from the reaction with phenylacetylene.

Related complexes (6. 7) were obtained by treating $2 (R = NMe_2)$ with 5-hydroxynaphthoquinone and 2 (R = Me) with p-benzoquinone. Clearly reductive coupling of the Pd-bonded organic moiety in 7 will lead to 1, suggesting the

intermediacy of **2** in its formation. Attempts to turn this into a catalytic process in the presence of butadiene have so far been unsuccessful.

The mechanism of these reactions remains open, but one can suppose that the 1.3-dipolar addition is preceded by complexation of the alkyne or alkene to a fifth coordination position at the palladium atom in 2.

 $[Pd(PMe_3)(\eta^1 - \dot{C}HCH_2C(CO_3Me) = C(CO_3Me)\dot{C}H(CH_3), -\eta^3 - C_3H_4)]$ (4, R = Me)

Acetylenedicarboxylic acid dimethyl ester (0.5 ml, 4.07 mmol) was added to a solution of $2 \text{ (R = Me)} (0.76 \text{ g}, 2.57 \text{ mmol)} [4] \text{ in THF (30 ml) at } -78^{\circ}\text{C}$. The yellow solution became orange and was stirred at -30°C for 3 h then cooled to -78°C , and the resultant white precipitate was filtered off, washed with cold pentane, and dried at 0°C under high vacuum. Yield 0.74 g (81% theory).

Found: C, 47.05; H, 6.19; P, 7.13; Pd, 24.35. $C_{17}H_{27}O_4$ PPd (432.8) calcd.: C, 47.18; H, 6.29; P, 7.16; Pd, 24.59%. IR (KBr): ν_{allyl} 1511, ν (C=C) 1630, ν (C=O) 1702, 1729 cm⁻¹. ³¹P NMR (32.4 MHz, THF- d_8 , -30° C): δ -18.3 ppm. ¹³C NMR (75.5 MHz, toluene- d_8 , -30° C) (a): δ (C-1), 55.81, δ (C-2) 118.13 (J(P, C) 2.0), δ (C-3) 77.06 (J(P, C) 30.5), δ (C-4) 29.84, δ (C-5) 37.51, δ (C-6) 51.28, δ (C-7) 32.06 (J(P, C) 10.2), δ (C-8) 41.01, δ (C-9) 139.46, δ (C-10) 151.16, δ (C-11/13) 168.02, 167.02, δ (C-12/14) 51.44, 51.28, δ (C-15) 17.01 ppm (J(P, C) 23.4 Hz). ¹H NMR (400 MHz, toluene- d_8 , -30° C) (b) δ (H-1) 4.74 (m, $J_{1,2}$ 7.5, $J_{1,4}$ 13.1, $J_{1,5}$ 11.7), δ (H-2) 3.23 (d), δ (H-4) 2.40 (d), δ (H-5) 2.68 (m), δ (H-6) 1.55 (m), δ (H-7) 1.37 (m), δ (H-8) 2.91 (m), δ (H-9) 2.41 (m, $J_{9,11}$ 2.2), δ (H-10) 2.41 (m), δ (H-11) 3.10 (m, $J_{11,12}$ -6.8, $J_{11,13}$ 12.1, $J_{11,P}$ \sim 0.8), δ (H-12) 2.91 (m, $J_{12,13}$ 7.7), δ (H-13) 2.41 (m), δ (H-14) 0.78 (d, $J_{14,P}$ 8.0 Hz), δ (H-15/16) 3.44, 3.55 ppm.

$$R_{3}P \xrightarrow{Pd} \overbrace{\begin{array}{c} 1 \\ 6 \\ 7 \\ 8 \end{array}} \xrightarrow{\begin{array}{c} 1 \\ 6 \\ 7 \\ 10 \\ CO_{2}Me \\ 13 \\ 14 \end{array}$$

 $[Pd(P(NMe_2)_3)(\eta^3 - CHCH_2C(CO_2Me) = C(CO_2Me)CH(CH_2)_2 - \eta^3 - C_3H_4)]$ (4, $R = NMe_2$)

Complex 4 ($R = NMe_2$) was prepared similarly as a yellow solid from 2 ($R = NMe_2$) [4] in 55% yield.

Found: C, 46.32; H, 6.97; N, 7.98; P, 5.79; Pd, 20.35. $C_{20}H_{36}N_3O_4PPd$ (519.9) calcd.: C, 46.21; H, 6.98; N, 8.08; P, 5.96; Pd, 20.47%. ³¹P NMR (32.4 MHz, THF- d_8), -30° C): δ 132.7 ppm. ¹³C NMR (75.5 MHz, toluene- d_8 , -10° C) (a): δ ((C-1) 56.45, δ (C-2) 118.56 (J(P, C) 4.1), δ (C-3) 79.33 (J(P, C) 38.7), δ (C-4) 23.40, δ (C-5) 40.73, δ (C-6) 49.84, δ (C-7) 30.57 (J(P, C) 11.2), δ (C-8) 44.41, δ (C-9) 140.69, δ (C-10) 148.27, δ (C-11/13) 167.74, 166.61, δ (C-12/14) 51.31, 51.15, δ (C-15) 38.09 ppm (J(P, C) 10.2 Hz). ¹H NMR (80 MHz, toluene- d_8 , -30° C) (b): δ (H-1) 4.60 (m, $J_{1.2}$ 7.6, $J_{1.4}$ 13.4, $J_{1.5}$ 12.0), δ (H-2) 3.72 (d), δ (H-4) 2.32 (d), δ (H-5) 2.88 (m, $J_{5.P}$ 10.8), δ (H-12) 3.15 (m), δ (H-13) 3.02 (m, $J_{13.P}$ 13.8 Hz), δ (H-14) 2.30, δ (H-15/16) 3.55, 3.46 ppm.

 $[Pd(PPh_3)(\eta' - \dot{C}HCH_2C(CO_2Me) = C(CO_2Me)\dot{C}H(CH_2)_2 - \eta^3 - C_3H_4)]$ (4, R = Ph) Complex 4 (R = Ph) was prepared similarly as a yellow solid from 2 (R = Ph) [4] in 55% yield.

Found: C. 61.89; H. 5.41; P. 4.88; Pd. 17.36. $C_{32}H_{33}O_4$ PPd (618.9) calcd.: C. 62.09; H. 5.37; P. 5.00; Pd. 17.19%. ³¹P NMR (32.4 MHz. toluene- d_8 . -30° C): δ 32.3 ppm. ¹H NMR (80 MHz, toluene- d_8 , -30° C) (**b**): δ (H-1) 4.84 (m), δ (H-2) 3.62 (m), δ (H-4) 2.42 (m), δ (H-15/16) 3.44, 3.35 ppm.

$[Pd(P(NMe_2)_3)(\eta^{1},\eta^{3}-C_{10}H_{6}O_{3}C_{8}H_{12})]$ (6)

Complex 2 (R = NMe₂) (0.658 g. 1.74 mmol) and 5-hydroxynaphthoquinone (0.304 g, 1.74 mmol) were dissolved in THF (30 ml) at -40° C. The red solution was stirred for 4 h at -20° C, concentrated and treated with cold pentane (10 ml). The orange precipitate was filtered off, washed with pentane, and dried at -30° C under high vacuum. Yield 0.4 g (42% theory).

Found: *C*, 52.2; H, 6.4; N, 8.1; P, 5.7; Pd, 19.3, $C_{24}H_{36}N_3O_3$ PPd (551.6) caled.: C, 52.2; H, 6.5; N, 7.6; P, 5.6; Pd, 19.3%. IR (KBr): ν (C=O) 1640, 1680, ν_{alis1} 1515 cm⁻¹, ³¹P NMR (32.4 MHz, THF- d_8 , -30° C): δ 129.9 ppm. ¹H NMR (200 MHz, THF- d_8 , -30° C) (c): δ (H-1) 4.86 (m, $J_{1,2}$ 7.6, $J_{1,4}$ = 13.6, $J_{1,5}$ = 11.4), δ (H-2) 3.64 (d), δ (H-7) 7.18, δ (H-8) 7.67, δ (H-9) 7.49, δ (H-10) 2.41 (J_{1649} 9.7), δ (H-15) 3.14 (m, $J_{14,15}$ = 2.8, $J_{15,16}$ = 7.8), δ (H-16) 3.46 ppm (m, $J_{14,16}$ = 3.6, $J_{15,16}$ = 10.2 Hz).

$/Pd(PMe_{\beta})(\eta^{T},\eta^{S}-C_{B}H_{A}O_{\beta}C_{S}H_{A\beta})/(7)$

Complex 2 (R = Me) (0.67 g, 2.3 mmol) and p-benzoquinone (0.25 g, 2.3 mmol) were dissolved in ether (30 ml) at -40° C, and the solution was stirred for 5 h. The yellow precipitate was filtered off, washed with cold pentane, and dried under high vacuum. Yield 0.42 g (43% theory).

Found: *C*, 51.4; H, 6.3; P. 7.9; Pd, 26.5. $C_{17}H_{28}O_2$ PPd (398.5) calcd.: *C*, 51.2; H, 6.3; P. 7.8; Pd, 26.7%. IR (KBr): ν (C=C) 1610, ν (C=O) 1604, 1670 cm $^{-1}$, ^{31}P NMR (32.4 MHz, toluene- d_8 , -30° C): δ -19.5 ppm. ^{1}H NMR (200 MHz, toluene- d_8 , -30° C) (**d**): δ (H-1) 4.75, δ (H-2) 3.21, δ (H-9) 6.25, δ (H-10) 0.81, δ (H-15) 2.65, δ (H-16) 2.98 ppm.

Reaction of 4 (R = Me) with DCl

A solution of 4 (R = Me) (0.33 g) in ether (10 ml) was treated with 0.2 ml of a 37% solution of DCl in D₂O then stirred for 4 h at room temperature. The orange precipitate was filtered off and the pale-yellow filtrate was distilled to remove excess DCl and solvent, and the presence of 5 confirmed by NMR spectroscopy. Analogous results were obtained from the reaction of 4 (R = Me) with HCl.

¹H NMR (400 MHz, toluene- d_8) (e): δ(H-1) 5.67 (m, $J_{1,2}$ 10.2, $J_{1,4}$ 17.1, $J_{1,4}$ 6.6), δ(H-2) 4.92 (m, $J_{2,3}$ 2.1, $J_{2,4}$ – 1.3), δ(H-3) 4.95 (m, $J_{3,4}$ – 1.6), δ(H-4) 1.86 (m), δ(H-10) 2.89 (m, $J_{10,12}$ 2.1), δ(H-11) 2.54 (m, $J_{11,12}$ 17.0), δ(H-12) 2.35 (m, $J_{12,13}$ 9.2 Hz), δ(H-13) 1.74 (m), δ(H-15) 3.50 (s), δ(H-16) 3.60 (s) ppm. ¹³C NMR

(75.5 MHz, toluene- d_8) (f): δ (C-1) 114.8, δ (C-2) 139.3, δ (C-3) 34.2 ($J_{C,D}$ 18.8), δ (C-4) 27.2, δ (C-5) 33.5, δ (C-6) 48.6, δ (C-7) 146.4, δ (C-8) 137.7, δ (C-9) 33.1, δ (C-10) 29.1 ($J_{C,D}$ 19.9), δ (C-11/12) 166.7, 165.4, δ (C-13/14) 51.63, 51.60 ppm.

References

- 1 For Part III see P.W. Jolly, R. Mynott, B. Raspel and K.-P. Schick, Organometallics, in press.
- 2 H. Minematsu, S. Takahashi and N. Hagihara, Chem. Commun., (1975) 466.
- 3 B. Büssemeier, P.W. Jolly and G. Wilke, J. Am. Chem. Soc., 96 (1974) 4726.
- 4 R. Benn, P.W. Jolly, R. Mynott, B. Raspel, G. Schenker, K.-P. Schick and G. Schroth, Organometallics, in press.