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Electro-oxidative C–H Alkylation of Quinoxalin-2(1H)-ones with 
Organoboron Compounds
Kaikai Niu, a Yanke Hao, a Lingyun Song, a Yuxiu Liu a and Qingmin Wang*a,b

Dedicated to the 100th anniversary of chemistry at Nankai University.

Radical cleavage of C–B bonds to accomplish C–H functionalization is 
synthetically appealing but practically challenging. We report herein a mild 
electro-oxidative method for efficient C–H alkylation of quinoxalin-2(1H)-
ones by means of radical addition reactions of alkyl boronic acids and 
esters and alkyl trifluoroborates to afford C–C coupled products.

Carbon radicals are synthetically useful intermediates in C–C 
bond-forming reactions,1 and the addition of carbon radicals to 
heteroarenes would constitute a synthetically useful method for 
rapid construction of aromatic building blocks.2 Organoboron 
compounds, which are widely used in organic synthesis3 and can act 
as bioisosteres in bioactive molecules,4 constitute a readily 
available, minimally toxic source of stable carbon radicals.5 

Therefore, the generation of alkyl radicals by deboration of 
organoboron compounds under mild conditions is strategically 
appealing. However, owing to the high oxidation potential of C–B 
bonds (Scheme 1a),6 their cleavage requires harsh conditions. In the 
classic methods to accomplish this difficult transformation (Scheme 
1b), alkyl trifluoroborates and boronic acids undergo single-electron 
oxidation by stoichiometric strong oxidants such as AgNO3/K2S2O8

7, 
Mn(OAc)3

8 and Cu(OAc)2,9 or O2.10 In addition, alkyl trifluoroborates 
can undergo single-electron transfer to generate alkyl radicals 
under catalytic photoredox conditions,11 and alkyl boronic acids and 
esters can be converted to alkyl radicals by photoredox activation in 
the presence of a Lewis base catalyst.12

One attractive alternative to chemical oxidants is 
electrochemical oxidation, which uses electrons as a clean, 
renewable reagent (Scheme 2).13 However, anodic generation of 
alkyl radicals from boronic acid derivatives remains underexplored 
owing to their high oxidation potentials, which can lead to radical 

dimerization or to overoxidation to generate carbocations.14 Only a 
few examples have been reported, and they proceed via indirect 
pathways involving a redox mediator such as a photoredox 
catalyst15 or a Mn(OAc)3

16 catalyst (Scheme 1b).
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Scheme 1. Approaches for generating radicals from boron 
compounds.

To our knowledge, the direct use of organoboron compounds as 
carbon radical sources for electro-oxidative C–H functionalization 
reactions has not yet been achieved. Herein, as part of our ongoing 
research on organic radical chemistry,17 we describe a newly 
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developed electrochemical protocol that uses alkyl boronic acids 
and esters and alkyl trifluoroborates as alkylating agents for C–H 
alkylation reactions of quinoxalin-2(1H)-ones via direct 
electrochemical oxidation under mild conditions (Scheme 1c).

We began by carrying out reactions of 1-methylquinoxalin-2(1H)-
one (1) and cyclohexylboronic acid (2) as model substrates (Table 
1). The optimal conditions involved the use of graphite plates as 
electrodes, N,N-dimethylformamide (DMF) as the solvent, nBu4NPF6 
(2.0 equiv) as the electrolyte, trifluoroacetic acid (TFA, 4.0 equiv) as 
an additive, and a current density of 10 mA/cm2. Under these 
conditions, desired alkylation product 3 could be obtained in 85% 
isolated yield after 24 h (entry 1). Control experiments indicated 
that the acid additive (entry 2), electricity (entry 3), and the 
electrolyte (entry 4) were critical for this reaction; in their absence, 
most of the 1 was recovered. When the amount of TFA or 2 was 
reduced to 2.0 equiv, the yield of 3 decreased (entries 5 and 6). 
Decreasing the current density to 5 mA/cm2 also lowered the yield 
(entry 7), whereas increasing it to 20 mA/cm2 had little effect (entry 
8). Evaluation of various solvents revealed that DMF was the best 
choice (entries 9–11). Notably, the reaction time could be 
shortened to 8 h by increasing the reaction temperature to 80 °C 
(entry 12). The similarity of the yields under air and Ar atmospheres 
indicate that the cyclohexylboronic acid was not oxidized by oxygen 
(compare entries 1 and 13).

Table 1. Optimization of reaction conditionsa 

N

N O

N

N O B(OH)2 nBu4NPF6,TFA

DMF, r.t.

C/ C

10 mA/cm2, 24 h

1 2 3

Entry Variation from standard 
conditions

Yieldb (%)

1 none 85
2 No TFA trace
3 No electricity 0
4 No electrolyte 0
5 2.0 equiv TFA 72
6 2.0 equiv 2a 63
7 5 mA/cm2 33
8 20 mA/cm2 82
9 MeCN as solvent 15
10 DMA as solvent 10
11 DCM as solvent trace
12 80 °C, 8 h 82
13 Under Ar 84

aStandard reaction conditions: 1 (0.5 mmol), 2 (1.5 mmol), 
nBu4NPF6 (2.0 equiv), TFA (4.0 equiv), DMF (5 mL), undivided cell 
with two graphite electrodes (each 1.0 × 1.0 cm2), room 
temperature (r.t.), 10 mA/cm2, 24 h. bIsolated yields are provided.

Using the optimized conditions (Table 1, entry 12), we 
investigated the scope of the reaction with respect to the 
quinoxalin-2(1H)-one (Scheme 2). Substrates with a variety of 
substituents on the aromatic ring (methyl, chloro, fluoro, 

trifluoromethyl, cyano, methoxy) reacted smoothly with 2 to afford 
corresponding products 4–12 in moderate to good yields. The 
structure of difluoro-substituted product 12 was unambiguously 
confirmed by X-ray analysis. Various quinoxalinones bearing 
reactive functional groups on the nitrogen atom, including propyl, 
alkenyl, propargyl, benzyl, cyanomethyl, carbomethyl and 
ethoxycarbonylmethyl were also suitable substrates (13–19). 
Scheme 2. Substrate scope with respect to the quinoxalin-2(1H)-
onea
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aReaction conditions: quinoxalin-2(1H)-one (0.5 mmol), 2 (1.5 
mmol), nBu4NPF6 (2.0 equiv), TFA (4.0 equiv), DMF (5 mL), undivided 
cell with two graphite electrodes (each 1.0 × 1.0 cm2), 80 °C, 10 
mA/cm2, 8 h. Isolated yields are provided.

Next we investigated the scope with respect to the organoboron 
compound (Scheme 3). A series of acyclic and cyclic primary, 
secondary, and tertiary alkylboronic acids proved to be suitable 
substrates for this electro-oxidative C–H alkylation reaction (3, 20–
24). In addition, cyclic secondary and tertiary 
organotrifluoroborates could be used in the reaction (3, 21, 23, 24). 
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To our delight, cyclic and tertiary boronic esters were also 
compatible with the oxidative radical coupling conditions (3, 24). 
Scheme 3. Substrate scope with respect to the organoboron 
compound.
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Reaction conditions: 1 (0.5 mmol), organoboron compound (1.5 
mmol), nBu4NPF6 (2.0 equiv), TFA (4.0 equiv), DMF (5 mL), undivided 
cell with two graphite electrodes (each 1.0 × 1.0 cm2), 80 °C, 10 
mA/cm2, 8 h. Isolated yields are provided.

Heteroaryl motifs are widely exist in natural products, small-
molecule drugs, organic materials, and ligands for metal catalysts.18 
Preliminary results showed that benzoquinoxalinone (26) and a 
phenanthridine (27) could also serve as acceptable substrates under 
the electro-oxidative conditions, suggesting that the protocol may 
be useful for derivatization of pharmaceuticals (Scheme 4). 
Scheme 4. Functionalization of other heteroarene
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To verify the practicality of this electrochemical protocol, we 
carried out a scaled-up reaction (Scheme 5): reaction of 5.0 mmol of 
1-methylquinoxalin-2(1H)-one (1) with boronic acid 2 under the 
standard conditions afforded 3 in 79% yield. To our delight, the 
protocol could even be carried out with a battery as a power 
supply, demonstrating that the reaction could be used to 
accomplish the desired transformation without the need for a 
complex DC power device. Furthermore, in an additional test of the 
protocol’s utility, we performed a click reaction of alkylation 
product 13 to transform the alkyne into a triazole skeleton (25, 97% 
yield)
Scheme 5. Practicality of the electrochemical method
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The reaction mechanism was elucidated by means of several 
control experiments (Scheme 6). First, the electro-oxidative C–H 
alkylation reaction was strongly suppressed by a radical inhibitor, 
BHT (2,6-di-tert-butyl-4-methylphenol)19. Second when N-
phenylmethacrylamide was subjected to electrolysis with boronic 
acid 2 under the standard conditions, radical relay product 29 was 
isolated in 8% yield. These results indicate that an alkyl radical was 
formed.
Scheme 6. Control experiments
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Based on the above-described experimental results, we propose 
the reaction mechanism outlined in Scheme 7. Single-electron 
oxidation of the boronic compound at the anode generates an alkyl 
radical, which reacts with the protonated heteroarene to give 
radical cation I. Then the radical cation loses a proton to give C-
radical intermediate II. Finally, II undergoes single-electron 
oxidation at the anode to give the product.

Scheme 7. Proposed mechanism
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Conclusions
In summary, we have developed a protocol for electro-oxidative C–
H alkylation reactions of quinoxalin-2(1H)-ones with organoboron 
compounds. Organoboronic acids, trifluoroborates, and even 
boronic esters could be converted into alkyl radicals by direct 
electrochemical oxidation without the need for a metal, an oxidant, 
or a photoredox reagent. Further studies utilizing alkyl radicals 
generated from organoboron compounds are underway in our 
laboratory.
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